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Abstract

Transcranial motor evoked potentials (TcMEPs), which are muscle action potentials elicited by transcra-
nial brain stimulation, have been the most popular method for the last decade to monitor the functional 
integrity of the motor system during surgery. It was originally difficult to record reliable and reproduc-
ible potentials under general anesthesia, especially when inhalation-based anesthetic agents that sup-
pressed the firing of anterior horn neurons were used. Advances in anesthesia, including the introduction 
of intravenous anesthetic agents, and progress in stimulation techniques, including the use of pulse trains, 
improved the reliability and reproducibility of TcMEP responses. However, TcMEPs are much smaller 
in amplitude compared with compound muscle action potentials evoked by maximal peripheral nerve 
stimulation, and vary from one trial to another in clinical practice, suggesting that only a limited number 
of spinal motor neurons innervating the target muscle are excited in anesthetized patients. Therefore, 
reliable interpretation of the critical changes in TcMEPs remains difficult and controversial. Additionally, 
false negative cases have been occasionally encountered. Recently, several facilitative techniques using 
central or peripheral stimuli, preceding transcranial electrical stimulation, have been employed to achieve 
sufficient depolarization of motor neurons and augment TcMEP responses. These techniques might have 
potentials to improve the reliability of intraoperative motor pathway monitoring using TcMEPs.
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Introduction

It is essential to monitor motor function during 
spinal surgery that may damage the spinal cord or 
the spinal nerve roots. Transcranial motor evoked 
potentials (TcMEPs), which are muscle action 
potentials elicited by transcranial brain stimulation, 
have been the most popular method for the last 
decade to monitor the functional integrity of the 
motor system during surgery. In 1980, Merton and 
Morton discovered that it was possible to stimulate 
the human brain through the intact scalp using a 
high-voltage single electrical stimulus, and that 
TcMEPs could be recorded from the limb muscles.1,2) 

Thereafter, this method was used on anesthetized 
patients in the operating theater to monitor motor 
function during neurosurgical operations on the 
spinal cord.3) However, it was difficult to record 
reliable and reproducible potentials under general 
anesthesia, especially when inhalation-based anes-
thetic agents that suppressed the firing of anterior 
horn neurons were used.4) Furthermore, a single 

electrical stimulus applied over the skull could not 
generate multiple descending volleys, which are 
required to generate TcMEPs, due to the suppres-
sion of motor cortical excitability under general 
anesthesia.5) Advances in anesthesia, including the 
introduction of intravenous anesthetic agents,6,7) 
and progress in stimulation techniques, including 
the use of pulse trains,8–10) improved the reliability 
and reproducibility of TcMEP responses.

Methodology

I. Anesthesia
Inhalational anesthetics such as isoflurane and 

nitrous oxide attenuate the amplitudes of TcMEPs, 
because of the suppression of the excitability of 
cortical and spinal motor neurons and interference 
with synapse transmission.4,11,12) Propofol causes less 
suppression of the excitability of motor neurons 
than inhalational agents.13–15) Consequently, total 
intravenous anesthesia using propofol and opioid is 
widely recommended as optimal.16) Other favorable 
intravenous agents include ketamine, etomidate, and 
benzodiazepines.16,17–20) Neuromuscular blockade Received November 30, 2015; Accepted January 15, 2016
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transcranial electrical stimulation, epilepsy should 
be included in the contraindication of transcranial 
electrical stimulation.5,26) The vigorous contractions and 
twitches of proximal muscle groups after transcranial 
electrical stimulation interfere with surgery and put 
patients at risk of spinal cord injury, and spinal nerve 
root, eye, tongue, and lip injuries.29) However, acci-
dental injury resulting from patient movement can be 
avoided by brief surgical pauses (a few seconds) for 
monitoring of TcMEPs, coordinated between surgical 
and electrophysiological teams.30) Bite blocks are 
recommended to avoid tongue and lip lacerations. 

Interpretations

In spite of the introduction of intravenous anes-
thetic agents and stimulation techniques using pulse 
trains,6–10) TcMEPs are much smaller in amplitude 
compared with compound muscle action potentials 
evoked by maximal peripheral nerve stimulation, and 
vary from one trial to another in clinical practice, 
suggesting that only a limited number of spinal 
motor neurons innervating the target muscle are 
excited by the currently used transcranial stimu-
lation techniques in anesthetized patients.31) It is 
thought that TcMEPs reflect the activity of only 
1.8–8.9% of the motor neuron pool innervating 
the target muscle during surgery,32–35) particularly 
as Taniguchi et al. demonstrated that the ampli-
tude of TcMEPs corresponded to about 5% of the 
amplitude of compound muscle action potentials 
evoked by maximal peripheral nerve stimulation.36) 
The smaller amplitude of TcMEP may also be due 
to the desynchronization of the descending volley, 
which may occur and lead to a decrease in amplitude 
because of “phase cancellation” phenomena.37) We 
previously examined the proportion of recruited 
motor neurons by multipulse transcranial electrical 
stimulation after eliminating the desynchronization of 
the descending volley using Magistris’s technique,37) 
and demonstrated that only 20% of motor neurons 
innervating the target muscle are recruited during 
TcMEP monitoring under general anesthesia.38) 

Regarding the fluctuation of TcMEPs, Kajiyama 
et al. reported that CMAPs vary from trial to trial 
even under partial neuromuscular blockade and 
under the strictly controlled low-dose propofol 
anesthesia.39) Similarly, it was reported that TcMEP 
responses degrade or fade over the duration of 
a surgery although the mechanism could not be 
explained.40) Therefore, reliable interpretation of the 
critical changes in TcMEPs remains difficult and 
controversial, including 50%,41,42) 70%,43) 80%,44,45) 
or 100%46,47) attenuation of amplitude. TcMEPs are 
demonstrated to be very sensitive to ischemic and 

is often omitted after intubation.19,21,22) Otherwise, 
muscle relaxant can be administered with a constant 
infusion according to the amplitude of muscle 
responses to peripheral nerve stimulation (“train 
of four” technique).22,23) 

II. Stimulation
The electrode placement is on the skull based 

on the international 10–20 electroencephalograph 
(EEG) system.21) We prefer the method of Matsuda 
and Shimazu, with the electrode symmetrically on 
the skull 5 cm outside and 2 cm forward of Cz.23,24) 
Although EEG cup electrodes or needle electrodes 
may be used, cork screw-like needle electrodes are 
preferable because of their secure placement and 
low impedance.16,21) While the cathode becomes the 
stimulating electrode with increasing intensity of the 
current, anodal stimuli evoke potentials more effi-
ciently than cathodal stimuli.16,21,25) Constant-current 
stimulators are better than constant-voltage stimula-
tors because current delivered to the brain does not 
depend on the impedance of stimulating electrodes 
especially when impedance changes during surgery.5) 

A short train of stimuli is preferable in anesthe-
tized patients, while there remain controversies 
regarding the optimal parameters of the short train 
of stimuli including the number of pulses in the 
train, individual pulse duration, inter-pulse interval, 
and train repetition rate. We currently used a train 
of five biphasic stimuli with 0.5-ms in duration 
(two phases of 0.25 ms in each stimulus) and an 
inter-pulse interval of 2 ms.

III. Recording
TcMEPs can be recorded either with surface or 

needle electrodes. Needle electrodes inserted into 
the belly muscle yield greater amplitude due to 
their low impedance.5) Averaging of several trials is 
not always required because of high signal-to-noise 
ratios of TcMEPs.16) When choosing the muscles to 
record from for monitoring the functional integrity 
of corticospinal tract, small muscles in hands and 
feet should be included due to the rich corticospinal 
tract innervation.5)

Safety Issues

Safety concerns with intraoperative neurophysiologic 
monitoring using transcranial electrical stimulation 
include brain damage, scalp burns, seizure, bite injury, 
cardiac arrhythmias, and accidental injury resulting 
from patient movement.26) Continuous direct brain 
stimulation over a period of a few seconds with a 
frequency of 50–60 Hz was reported to easily induce 
seizures.27,28) In spite of rarity of seizure related to 
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compressive insults to the spinal cord although 
the disappearance of TcMEPs does not necessarily 
reflect a motor deficit.48,49) Additionally, in our 
clinical experience, we have occasionally encoun-
tered false negative cases in which patients have 
suffered from focal post-operative segmental motor 
weakness mostly due to single nerve root injury, 
despite no significant change in TcMEP activity 
during surgery.23) In such cases, TcMEPs may not 
have been reliable monitors of activity in motor 
units damaged intraoperatively, because of radicular 
overlap and different dominancy of each nerve root 
innervating the recorded muscle.50,51)

Recent Developments

To reduce the false negative cases, more spinal 
motor neurons innervating the target muscle should 
be recruited to augment TcMEP responses. Almost 
two decades passed without any significant devel-
opments in anesthetic technique except for the 
introduction of the short-acting muscle relaxant 
rocuronium. Sugammadex to reverse rocuronium was 
demonstrated to facilitate motor evoked potentials 
monitoring during spinal surgery.52)

Recently, several facilitative techniques using central 
or peripheral stimuli (conditioning stimulation), 
preceding transcranial electrical stimulation, have 
been employed to achieve sufficient depolarization 
of motor neurons and augment TcMEP responses 
during surgery.29,53–57) According to Journée et al., 
conditioning stimulation can be classified into two 
categories: (1) heteronymous stimulation in which 
conditioning stimuli are applied at a different site from 
a test stimulus and (2) homonymous stimulation in 
which both conditioning and test stimuli are applied 
at the same site.57) One homonymous conditioning 
stimulation technique previously reported is recur-
rent pulse trains at low frequency (2–5 Hz), which 
was demonstrated to progressively facilitate TcMEP 
responses.21,58–60) Another homonymous conditioning 
is double-train stimulation developed by Journée  
et al.54) They demonstrated that double-train stimula-
tion elicited a marked facilitation of TcMEPs when 
the inter-train interval (ITI) was short (10 ms ≤ ITI 
≤ 40 ms) or long (ITI ≥ 0.1 s). Taking these previous 
homonymous conditioning techniques into account, 
we systematically investigated the optimal setting of 
multiple transcranial electrical pulse trains (Fig. 1), 
so-called multi-train stimulation (MTS) to enhance 
TcMEP responses, in which a pulse train was delivered 
repeatedly at repetitive rates of 2 Hz, 5 Hz, and  
10 Hz (ITI; 0.5 s, 0.2 s, and 0.1 s, respectively).61) The 
amplitudes of TcMEPs increased with the number 
of train stimuli, and the strongest augmentation of 

Fig. 1  A schematic of the multi-train stimulation (MTS) 
technique, in which a pulse train is delivered repeat-
edly at  constant repetitive rates (e.g., 2 Hz, 5 Hz, and 
10 Hz). A pulse train consists of five biphasic stimuli 
with 0.5-ms in duration (two phases of 0.25 ms in each 
stimulus) and an inter-pulse interval of 2 ms. Transcra-
nial motor evoked potentials are recorded from a pair 
of needle electrodes inserted in the muscle belly of the 
abductor hallucis (AH).

Fig. 2  The within-patient variability of the amplitude 
of transcranial motor evoked potentials recorded from 
the abductor halluces muscle, which is assessed with 
the coefficient of variation (CV: standard deviation/
mean). There is a statistically significant difference in 
CV between single-train stimulation (STS) and multi-train 
stimulation (MTS) (*p = 0.026, Mann-Whitney U test).

TcMEPs was observed at a repetition rate of 5 Hz 
(ITI; 0.2 s). In addition, MTS significantly reduced 
the trial-to-trial variability of TcMEPs (Fig. 2), and 
enabled to obtain the stable responses throughout a 
surgery (Fig. 3), indicating that MTS could overcome 
“anesthetic fade.”

Conclusion

Intraoperative neurophysiologic monitoring has been 
indispensable with the recent advancement of surgical 
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techniques for the treatment of more complicated 
spinal diseases which might damage neural tissues. 
Although the development of commercial equipment 
for intraoperative monitoring enabled reliable and 
reproducible evoked potentials, there have been some 
reports of false negative cases. Further advances 
in the TcMEP monitoring technique are required 
to enable it to be a good predictor of the patient’s 
motor function during spinal surgery.
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