ARTICLE

Received 23 Sep 2015 | Accepted 3 Jul 2016 | Published 11 Aug 2016

Gaze data reveal distinct choice processes
underlying model-based and model-free
reinforcement learning

Arkady Konovalov! & lan Krajbich'2

Organisms appear to learn and make decisions using different strategies known as model-free
and model-based learning; the former is mere reinforcement of previously rewarded actions
and the latter is a forward-looking strategy that involves evaluation of action-state transition
probabilities. Prior work has used neural data to argue that both model-based and model-free
learners implement a value comparison process at trial onset, but model-based learners
assign more weight to forward-looking computations. Here using eye-tracking, we report
evidence for a different interpretation of prior results: model-based subjects make their
choices prior to trial onset. In contrast, model-free subjects tend to ignore model-based
aspects of the task and instead seem to treat the decision problem as a simple comparison
process between two differentially valued items, consistent with previous work on sequential-
sampling models of decision making. These findings illustrate a problem with assuming that
experimental subjects make their decisions at the same prescribed time.
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t is becoming clear that there are multiple modes of learning

and decision-making. For instance, when learning which

sequence of actions to choose, some decision-makers behave
as if they are ‘model-free’, simply repeating actions that
previously yielded rewards, while others behave as if they are
‘model-based’, additionally taking into account whether those
outcomes were likely or unlikely given their actions!™®. Model-
free behaviour is thought to reflect reinforcement learning’,
guided by reward prediction errors®!2. On the other hand,
model-based behaviour is thought to reflect consideration of the
task structure, that is, decision-makers form a ‘model’ of the
environment. Model-based choice has been linked to goal-based
behaviour!®4, cognitive control'®, slower habit formation'®,
declarative memory!” and extraversion'®, What remains unclear
is whether model-free behaviour is a distinct approach to
decision-making or whether it simply reflects suboptimal
inference.

Behavioural and neural evidence seem to support a hybrid
model where individuals exhibit mixtures of both model-based
and model-free behaviour*>!°, These models assume that the
brain uses reward outcomes to update the expected values
(‘Q-values’) of the alternatives and then compares those Q-values
at the time of choice. There is an implicit assumption in these
models that the evaluation and choice stages occur at the same
time for the model-based and model-free components, using a
similar reinforcement process, but with the model-based
component incorporating action-state transition probabilities.

In support of this view, recent neural evidence suggests that the
brain employs an arbitration system that compares the reliability
of the two systems and adjusts the relative contribution of the
model-based component at the time of choice?®. Other evidence
argues for a cooperative architecture between the model-based
and model-free systems?!. Finally, model-based choices have been
linked to prospective neural signals reflecting the desired state,
supporting the hypothesis of goal-based evaluation??.

At the same time, a parallel literature has used eye tracking and
sequential-sampling models to better understand value-based
decision-making?>~2°, This work has shown that evidence
accumulation and comparison drives choices and that the
process depends on overt attention. Krajbich et al.?? developed
the attentional drift-diffusion model (aDDM) to capture this
phenomenon. The idea behind this work is that gaze is an
indicator of attentional allocation®® and that attention to an
option magnifies its value relative to the other alternative(s).
Subsequent studies have identified similar relationships between
option values, eye movements, response times (RT) and
choices?*3!. Despite this work and the vast literature on
oculomotor control and visual search, the connection between
selective attention and reinforcement learning, particularly
model-based learning, remains unclear?®323>, Some recent
evidence does suggest a link between attention and choice in a
simple reinforcement-learning task?®, but in general the use of
eye-tracking in this literature is just beginning>>~3".

Here we seek to investigate whether model-based and model-
free behaviour reflect a common choice mechanism that utilizes
the same information uptake and value-comparison process (but
with varying degrees of accuracy), or whether these choice modes
rely on distinct processes. To do so, we use eye-tracking to study
human subjects in a two-stage learning task designed by Daw
et al’® to distinguish between model-free and model-based
learning. Gaze data allow us to test whether model-free and
model-based subjects engage in the same choice process, and
whether model-free subjects ignore task-relevant information or
simply misinterpret that information. Interestingly, we find that
the choices of model-free subjects show clear signs of an aDDM-
like comparison process, whereas model-based subjects appear to
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already know which option they will choose, showing signs of
directed visual search. Furthermore, model-free subjects often
ignore task-relevant information, suggesting that they approach
the task in a different way than the model-based subjects.

Results

Behavioural results. We carried out an eye-tracking experiment
using a two-stage decision-making task that discriminates
between model-based and model-free learning®. Forty-three
subjects completed the experiment, which consisted of two
conditions with 150 trials each.

In the first condition, we replicated the standard design. Each
trial had two stages. In the first stage subjects had to make a
choice between two Tibetan symbols (arbitrarily labelled ‘A’ and
‘B’ for further analyses) that could lead to one of two second-stage
states, ‘purple’ and ‘blue’ (Fig. 1a). The transition was stochastic:
one symbol was more likely to lead to the blue state, and the
other one was more likely to lead to the purple state. Thus each
first-stage symbol had a ‘common’ state (probability 0.7) and a
‘rare’ state (probability 0.3) associated with it. Once one of the
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Figure 1 | Experimental design. (a) Choice-trial timeline. Subjects are
forced to fixate at the center of the screen for 2's before every choice. A
first stage choice between two beige symbols yields one of two second-
stage states with either blue or purple symbols. Once one of the symbols is
selected, it is shown in the center of the screen for 2's, and the stochastic
outcome is displayed. (b) Transition structure. One of the first stage
symbols is more likely to lead to the blue state; the other is more likely to
lead to the purple state. (¢) First stage choice screen in the second part of
the experiment. The blue/purple coloured bars indicated the change in
transition probability on a particular trial ("colour deviation’).
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Figure 2 | Behavioural results. (a,b) Condition 1, first stage: Probability to stay on the same symbol conditional on the previous trial's reward and the type
of transition: (@) Twenty-two subjects that were classified as model-free learners are more likely to stay on the same symbol if it was previously rewarded.
(b) Twenty-one subjects that were classified as model-based learners are more likely to stay only when the previous trial was rewarded and the transition was
common. (c,d) Condition 2, first stage: Probability to stay on the same symbol conditional on the difference between the common state colour in that symbol’s
colour bar versus the other symbol's colour bar (more versus less colour) for (¢) model-free learners and (d) model-based learners. Both groups are affected by
the colour bar information, but model-free subjects are more likely to stay on the same symbol (60.4% versus 49.8%). Bars denote s.e., clustered by subject.

states was reached, subjects had another choice between two
symbols of the respective colour (Fig. 1b). Each of these four
symbols was rewarded with a different probability that slowly
drifted over the course of the experiment, independently for each
symbol and irrespective of the subjects’ choices.

In this task, a pure model-free learner typically repeats their
first-stage choice if it led to a reward in the previous trial,
irrespective of the state reached in that trial. This behaviour can
be captured with a temporal-difference model that updates action
values with a reward prediction error’. A pure model-based
learner, on the other hand, typically repeats a rewarded action
only if there was a common transition. We model this strategy in
the standard way, using a forward-looking computational model
that involves evaluation of prospective states’ values using the
empirically estimated transition probabilities®3. To fit the data, we
adapted a hybrid model that combines both model-free and
model-based learning, implying a weight w between model-based
and model-free action values for the first-stage symbols®!43°
(w=1 for pure model-based and w=10 for pure model-free; see
Methods).

The model-fitting procedure uses each subject’s history of
choices, transitions and rewards to estimate five free
parameters. The resultin§ parameter distributions were in line
with previous findings®?? (Supplementary Table 1). With these
parameters, the model assigns so-called ‘Q-values’ to each
option on a trial-by-trial basis. As usual, we assume that
these Q-values are the basis for subjects’ choices. In all
further analyses, we refer to these hybrid Q-values as simply
‘Q-values’.

Subjects exhibited varying degrees of model-based behaviour,
with the value of w ranging from 0 to 1. To illustrate the
differences between model-based and model-free behaviour, we
split our subjects into two groups based on the median w (0.3). In

all further analyses, we use the labels ‘model-free’ and ‘model-
based’ for the two groups defined by this median split. Consistent
with prior findings we observed that the more model-free learners
tended to merely repeat previously rewarded choices (mixed-
effects regression, N=22, P=10"">, Fig. 2a, Supplementary
Table 2), while the more model-based learners tended to only do
so after a common transition (mixed-effects regression, N=21,
P=0.005, Fig. 2b, Supplementary Table 2). Note that these results
simply confirm that the model parameter w is indeed capturing
model-based behaviour.

Distinct gaze patterns between types. Across multiple prior
experiments, the aDDM value comparison process has been
linked to several patterns in subjects’ gaze data®>*426:31 While
the model predicts some of them (for example, subjects tend to
choose items that they are currently looking at and items that
they have looked at longer over the course of the trial), other
patterns are merely associated with the process (for example, first
gaze location and dwell time (referred to in previous aDDM work
as ‘first fixation location’ and ‘fixation duration’) are uncorrelated
with value). Here we sought to test whether these patterns were
present in the behaviour of our model-free and model-based
subjects.

The initial %aze location in other experiments, both with
learned values?® and idiosyncratic preferences?® has been found
to be unaffected by the values of the choice options. Using a
mixed-effects logit regression of initial gaze location on the higher
Q-value item as a function of the Q-value difference in the first-
stage decisions, we found no effects for the model-free subjects
(mixed-effects regression estimates: N =22, intercept=0.007,
P=0.9; absolute Q-value difference=0.16, P=0.39, no
significant difference from 0.5: N=22, Mann-Whitney test,
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Figure 3 | Gaze properties. (a) Probability that the first gaze is on the best symbol as a function of Q-value difference. For model-based learners, it is
increasing in difference between Q-values and significantly different from 0.5. Bars denote s.e., clustered by subject. The dotted line represents the 0.5
probability level. (b,c) The empirical distribution of number of gazes per trial, for model-free (b) and model-based (c) learners. The distributions are

significantly different. (d) For model-free subjects, dwell time during the trial is significantly decreasing with easier choices. (e) Middle-gaze dwell time is
independent of the Q-value of the looked-at item for both. For display purposes, bins with fewer than five subjects per group were excluded from the plots.

Q-value differences were normalized to 1 on the group level.

W =297, P=0.16, Fig. 3a), but effects significantly different from
0.5 (N=21, Mann-Whitney test, W=368, P=0.01) and
increasing in the difference of Q-values, for model-based
learners  (mixed-effects  regression  estimates: N=21,
intercept = — 0.01, P=0.85; absolute Q-value difference =0.65,
P=0.04, Fig. 3a); the difference between the Q-value effects for
two groups was also significant (N =43, mixed-effects regression
group dummy coefficient, P=0.03; regressions that include w’s
presented in Supplementary Table 3). These results suggest that
unlike model-free subjects, model-based subjects often knew
ahead of time which symbols they would choose and used
peripheral vision to locate them.

Consistent with this idea, model-based subjects were also more
likely to look at only one of the symbols before making their first-
stage choice (45% versus 32% for model-free subjects, N =43,
P =0.05, controlling for Q-value difference using a mixed-effects
regression). As a result, the two groups had significantly different
distributions of the number of gazes per trial (y*(11)=108.9,
P<0.001; Fig. 3b,c).

In line with previous findings®> and characteristic of the aDDM
process, during the first-stage choices, model-free middle-gaze dwells
(those that were neither first nor last, so this analysis included only
trials with three or more gazes) were shorter if the choice was easier
(that is, the difference in Q-values was larger) (Fig. 3d; mixed-effects
regression estimates: N = 22, intercept = 5.35, P= 10~ '%; absolute
Q-value difference= —2.62, P=0.03), while for model-based
subjects this effect was only marginal (mixed-effects regression
estimate: N=21, intercept=>5.14, P=10" 13, absolute Q-value
difference= —1.79, P=0.07), although the difference in the
coefficients between the two groups was not significant. This
correlation between dwell time and choice difficulty has been noted
in prior aDDM experiments and is likely due to the fact that long
gazes in easier trials are more likely to result in a boundary crossing,
terminating the decision.

Also consistent with previous aDDM findings, for both groups,
in the first-stage choices, middle-gaze dwell time was independent
of the Q-value for the looked-at symbol (Fig. 3e; mixed-effects
regression estimates; N=22 and 21, P=0.31 for model-free and
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P=0.71 for model-based). This finding is important for thinking
about causality, as it suggests that overt attention is not drawn to
high-value stimuli.

At the same time, we did not find any evidence that median
dwell times (two-sided t-test, #(39)=0.85, P=0.4) or RTs
(two-sided t-test, t(41) = — 0.26, P=0.8) were different across
the two groups or varied with w (dwell time: Pearson r(41) =0.2,
P=0.2; RTs: Pearson r(41)=0.14, P=0.39). Both groups
exhibited similar-sized effects of log(RT) decreasing with the
absolute Q-value difference (mixed-effects regression estimate;
model-free subjects: N = 22, intercept = 6.84, P= 10 ~ '4; absolute
Q-value difference= —0.2, P=0.02; model-based subjects:
N=21, intercept=6.81, P=10"16 absolute Q-value
difference= — 0.36, P=0.02), but the interaction between the
Q-value effect and model-based behaviour was not significant
(N =43, mixed-effects group dummy regression coefficient, P=0.3).

In 78% of first-stage choices, there were only one or two gazes,
so if the symbol that was looked at first was not chosen during
that first gaze, it was less likely to be chosen afterwards. This bias
was significant for both model-free and model-based learners, but
was stronger for the latter. Here we estimated a mixed-effects
regression for all trials where both symbols were viewed, with the
first-stage choice as the dependent variable and the following
variables as predictors: absolute Q-value difference, first-gaze
location, model-based dummy and the interaction between the
first-gaze location and the model-based dummy. The results
showed a negative effect of the first-gaze location with a stronger
effect for model-based learners (N=43, intercept=0.36,
P=0.002; Q-value difference (B— A)=5.03, P=10"19; first-

dummy =0.22, P=0.19; interaction between first gaze location
and model-based group dummy: — 0.51, P=0.02; note that the
significant intercept does not indicate a preference for the
arbitrarily chosen symbol ‘B’, rather it is a consequence of the
other significant effects). This is consistent with the hypothesis
that a model-based learner is looking for a particular symbol and
so if they look beyond the first symbol, that symbol is unlikely to
be chosen.

Model-free behaviour is driven more by dwell time. Choices in
both stages were affected not only by the predicted Q-values, but
by gaze patterns as well (Table 1).

First, we restricted out analyses to first-stage choices. Both
groups’ choices were affected both by the difference in Q-values
and by the location of their final gaze (Fig. 4a). Analogous to
prior work with the aDDM, when the Q-value difference is small,
last-gaze location strongly predicts subjects’ choices, whereas
when the Q-value difference is large, attention has relatively less
effect on the choice outcome and subjects overwhelmingly choose
the best item irrespective of their last-gaze location. At the same
time, model-based subjects’ choices were more affected by the
gaze location: for instance, if the last gaze was on the worse
symbol (in terms of Q-values), they were more likely to choose
that symbol, unlike the model-free subjects (two-group Mann-
Whitney test, N=22 and 21, W =150, P=0.02).

On the other hand, model-free subjects were significantly more
influenced by dwell time: they were 27% more likely to choose the
last-seen symbol if the total gaze time for that symbol during the

gaze location= —0.85, P=10"13 model-based group trial was longer than the gaze time for the other symbol, while
Table 1 | Choice predictors.
P (B chosen) Two groups Continuous w
Two or more gazes Exactly two gazes Two or more gazes Exactly two gazes
Intercept —249™" —0.06 —243" 0.01
(0.29) (0.44) (0.30) (0.45)
QB—QA 3.72™ 3.92"" 3.66" 3.89"
(0.41) (0.48) (0.40) (0.51)
B chosen at t —1 168" 1.85™" 169" 1.85™"
0.27) (0.33) (0.26) (0.33)
First gaze on B 120" 120"
0.21) 0.21)
Last gaze on B 206" —1.21 2.00™" —1.21
(0.36) (0.72) (0.38) (0.76)
Last gaze dwell time —0.39™" —0.84"" —0.38" —0.83"
(0.09) (0.16) (0.09) ©7)
Model-based/w 0.84" 158" -0.75 -2.04"
(0.14) 0.27) (0.46) (0.76)
Last gaze time x last gaze on B —0.50 —145" 0.83" 156"
(0.35) (0.54) (0.14) (0.29)
Model-based/w x last gaze on B 115" 2.83" 1.53" 3.54"
(0.50) (0.99) (0.68) (1.39)
Model-based/w x last gaze time 0.18 0.45* 0.19 0.55*
(0.12) (0.19) (0.16) (0.27)
Model-based/w x last gaze on B x last gaze time —0.39" —0.92" —0.44" —~1.09"
(0.17) (0.34) (0.25) (0.49)
AIC 2027.81 1324.87 2028.99 1311.58
BIC 2267.11 1541.19 2268.30 1488.05
Log likelihood —974.90 —624.44 —975.50 —624.79
Number of trials 3415 2192 3415 2192
Number of subjects 43 42 43 42
"P<0.001, “"P<0.01, *P<0.05, P<0.1. Standard errors in parentheses.
Fixed effects coefficient estimates of first-stage choice regressions in part 1 of the experiment (symbols are arbitrarily labelled A and B) using mixed-effects logistic models. Columns 1 and 2 display
results that used a group dummy variable to compare model-based and model-free subjects coefficients; columns 3 and 4 present the results using a continuous value of w. Model-based behaviour is
more affected by the gaze location, while model-free behaviour is more influenced by dwell time. The binary dependent variable was equal to 1 if symbol ‘B" was chosen; QB — QA is the hybrid Q-value
difference estimated from the computational model; ‘B chosen at t — 1, ‘Last gaze on B’, and ‘First gaze on B’ are binary variables; ‘Last gaze time' is duration of the last gaze on the particular trial; ‘model-
based’ was equal to 1if the subject was in the model-based group (w<0.3). The coefficients of primary interest are shown in bold. AIC, Akaike information criterion; BIC, Bayesian information criterion.
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Figure 4 | Last gaze properties. (a) Probability to choose the symbol with a
higher Q-value split by the last gaze location (higher or lower Q-value symbol)
and model-based/model-free groups. Model-based subjects tend to choose
the last seen symbol irrespective of the Q-value difference. Bins with fewer
than five subjects per group were excluded from the plots. Q-value differences
were normalized to 1 on the group level. Bars denote s.e., clustered by subject.
(b) Effect of gaze time advantage on probability to choose the last seen
symbol. Model-free subjects are more likely to choose the last seen symbol if
they spent more time looking at it during the trial.

this effect was only 13% in model-based subjects (Fig. 4b, two-
group Mann-Whitney test, N=22 and 21, W=138, P=0.02).
The effect of dwell time on choice is a robust effect in previous
work on value-based choice, so its relative weakness in the model-
based subjects again suggests that they are often using a different
choice process.

To account for all the relevant factors, we used a mixed-effects
logistic regression model (Table 1) to model subjects’ choices. We
included the following choice predictors: trial-by-trial Q-values
generated by the computational learning model, the choice on the
previous trial, last-gaze dwell time, and first and last-gaze
location, as well as interactions between the gaze variables. The
two groups exhibited significant differences both in the last-gaze-
duration effect (Table 1, columns 1 and 3, last gaze duration
coefficients) and the last-gaze-location effect (Table 1, columns 1
and 3, last gaze on B coefficients). We also observed a significant
positive effect of the interaction between gaze location and a
model-based dummy (N =43, P=0.02) and a significant negative
effect of the interaction between these two variables and dwell
time (N =43, P=0.02). These regression results were also robust
to using w in place of the dummy variable (Table 1, column 3),
and to replacing the Q-values with cumulative rewards for each
symbol (Supplementary Table 4).

Next, we restricted this analysis to trials with only one gaze to
each symbol (Table 1, columns 2 and 4; these trials constituted

40% of all trials used for eye-tracking analysis). These are the
most important trials in which to look for differences between
model-based and model-free subjects, since the visual search
process should not require more than two gazes while the aDDM
process should generally require at least two gazes. Thus the two-
gaze trials are where we are most likely to observe both processes.
Further supporting our earlier findings, we found that in these
trials the last-gaze location effect was significantly stronger for
model-based subjects (N=42, P=0.004, Table 1, column 2),
while the dwell time effect was significantly stronger for
model-free subjects (N=42, P=0.007, Table 1, column 2).
These results were also robust to continuous w specification
(Table 1, column 4).

Finally, if indeed model-based subjects know ahead of time
what they intend to choose, we should also expect to see a similar
pattern in the second-stage choices, but weaker for rare
transitions than common transitions. To test this hypothesis we
repeated the same analyses for the second-stage choices, taking all
trials with 2 or more gazes on the second-stage symbols, and
found qualitatively similar effects (Supplementary Table 5), which
were indeed weaker for rare-transition trials (Supplementary
Tables 6 and 7).

Taken together, these findings indicate that the behaviour of
model-free subjects is consistent with an aDDM comparison
process. On the other hand, model-based learners seem to often
know what they are looking for (a particular symbol leading to
the desired state) and thus seem to rely more on a simple visual
search process. Naturally, the correspondence between the two
learning types and these two processes is imperfect, but the data
suggest that subjects that are more likely to employ the model-
based strategy are also more likely to engage in directed visual
search. Moreover, the aDDM is mostly able to capture the choice,
RT, and gaze patterns (the last gaze effect and the dwell-time
effect) observed in the model-free data, but it cannot account for
the shifts in the model-based data: the stronger last gaze location
effect (Fig. 4a) but the weaker dwell-time effects on choice
(Fig. 4b; Supplementary Note 1 and Supplementary Figs 1-4).
The aDDM predicts that with a change in the model parameters
these effects should go in the same direction; thus the aDDM
cannot seem to capture the visual-search process employed
primarily by the model-based subjects.

Visual transition cues affect choice behaviour. Our behavioural
results, consistent with previous findings, suggest that model-free
subjects do not properly take the transition structure into account
during their first-stage choices. What is not yet known is whether
these subjects are trying to track this information (and failing) or
simply ignoring this aspect of the task. To answer this question,
we designed a second condition of the experiment with visual
cues to convey trial-to-trial variations in the transition
probabilities.

In this condition, subjects completed another 150 trials of the
same task, with one important difference: the transition
probabilities varied randomly and independently across trials.
Each trial, the probability of the common transition varied
uniformly from 0.4 to 1. Mathematically the mean objective
probability of the common transition was 0.7 in both conditions,
but in the second condition, subjects had to update the average
transition probabilities with the trial-to-trial changes in those
probabilities. Here we provided subjects with on-screen visual
cues indicating the deviations of the transition probabilities from
their means (Fig. 1c). For simplicity we refer to the deviation of a
symbol’s common colour as its ‘colour deviation’. We conveyed
this information with two horizontal bars (one for each symbol).
Each bar was coloured partly blue and partly purple. For example,
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for a symbol that on average leads to the blue state with P=0.7, a
half-blue and half-purple bar would indicate that on this trial the
probability of reaching the blue state is P=0.7 (colour
deviation = 0), while a full-purple bar would indicate that on
this trial the probability of reaching the blue state is only P=0.4
(colour deviation = -0.3). Thus a model-based subject looking to
reach a particular state should utilize both the identities of the
symbols and the bars.

Using a mixed-effects regression, we found that subjects indeed
made use of the bars in their choices. Subjects were more likely to
choose the same symbol as in the previous trial if that choice led
to a rewarded common transition and the symbol’s current colour
deviation was greater than the other symbol’s negative colour
deviation. In other words, a symbol that typically leads to the blue
state would be more likely to be chosen again if it led to a
rewarded blue state in the last trial and its current bar contains
more blue than the other bar (see Methods). This effect was
highly significant (mixed-effects regression, N=43, P=10"%
Fig. 2c,d, Supplementary Table 2, triple interaction between
reward, transition type and colour deviation difference). As
before, we also found a weak model-free effect of pure
reinforcement (mixed-effects regression, N=43, P=0.08) on
the probability of repeating one’s first-stage choice, however, we
no longer observed a pure model-based effect of reward
interacted with transition type (mixed-effects regression,
N=43, P=0.57).

To better understand the change in these effects, relative to the
first condition, we fit a modified hybrid-learning model that
incorporated an additional weight parameter v for the colour
deviations (see Methods). Optimally, a subject should weight the
colour information equally to the baseline transition probability
information (w=v). Instead we found that subjects heavily
overweighed the colour deviations (v=0.67) relative to the
baseline probabilities (w=0.16) and the model-free information
(1-v-w=10.17; see Supplementary Table 1). This helps to explain
the greatly diminished effects of reward and the reward*transition
type interaction on subjects’ choices.

Additionally, we observed that, across subjects, the model-free
regression coefficient in this second condition of the experiment
was negatively correlated with both v (Pearson r(41)= —0.5,
P=0.001) from the second condition and the model-based
weight w (Pearson r(41)= —0.39, P=0.01) from the first
condition.

We can also ask whether introducing the transition informa-
tion encouraged subjects to adopt a more model-based strategy.
Indeed, we observed a decrease in the average model-free
behaviour (1-w in the first condition and 1-w-v in the second
condition) from 0.6 to 0.2 (N =43, Mann-Whitney test, W = 350,
P=10"9%. While we cannot say whether the break between
conditions or the additional instructions were partly responsible
for this effect, we can rule out a simple effect of decreasing model-
free behaviour over time. We fit a model that used two different
w’s for the first and the second halves of the first condition, and
actually observed a slight increase in the model-free weight
(N =43, Mann-Whitney test, W =798, P=0.08).

Model-based learners look more at the transition cues. We
hypothesized that model-free subjects might pay less attention to
the coloured bars, indicating that they do not make full use of the
task structure. To test this hypothesis, we compared subjects’ gaze
patterns with their choice behaviour in both conditions of the
experiment.

To measure subjects’ model-based attention, we calculated the
total share of dwell time on the bars compared to the symbols, as
well as the probabilities of first and last gaze to the bars. All three

variables were strongly correlated (Pearson r(41) > 0.9, P<0.001),
so we used gaze share in all further analyses.

Similar to our previous analyses, we measured the effect of the
bars on subjects’ choices in two ways, one with a regression model
and one with the hybrid-learning model. For the first analysis, we
estimated a mixed-effects logit regression predicting subjects’
choices in response to the pure reinforcement effect (reward
coefficient, Supplementary Table 2) the model-based effect
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Figure 5 | Second condition results. Across-subject correlations; lines
depict linear least squares fits. Pearson correlations and P-values are
displayed. (a) Correlation between the effect of the common state colour
bar and the share of time spent looking at the bars in the second condition.
(b) Correlation between the effect of reward in the second condition and
the share of time spent looking at the bars. (¢) Correlation between the
model-based weight w in the first condition and the share of time spent
looking at the bars in the second condition.
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(interaction between reward and transition) and the effect of the
bar information (interaction between reward, transition and
colour deviation). For the second analysis, we included the
parameter v that captures the weight that subjects put on the
colour deviations in their choices.

We found that the bar gaze share was positively correlated,
across subjects, with both the bar-colour choice effect in the
mixed-effects regression (Pearson r(41) =0.53, P=10" 5 Fig. 5a)
and the model parameter v (Pearson r(41) =0.7, P=10" 7). The
gaze share was also negatively correlated with the model-free
(reward) coefficient in the mixed-effects model (Pearson
r(41)= —0.65, P=10"6; Fig. 5b) and the model-free weight
1-w-v (Pearson r(41)= — 0.7, P=10"7) of the hybrid-learning
model, indicating that model-free subjects were considerably less
likely to look at the visual cues.

Finally, this same bar-gaze-share measure was positively
correlated with the model-based weight w from the first condition
of the experiment (Pearson r(41) =0.37, P=0.015; Fig. 5c): on
average, subjects that were classified as model-free learners were
looking at the indicator bars 57% of the time, while model-based
learners were looking at these bars 75% of the time. These out-of-
sample results indicate that model-free subjects ignore crucial
aspects of the decision task, rather than simply misinterpreting
that information.

Discussion

These results provide new insights into the intrinsic differences
between model-based and model-free learning. Gaze data
revealed that model-based learners seem to know what they will
choose before the options even appear, while model-free learners
employ an on-the-spot value comparison process that ignores the
structure of the environment. The model-based learners were
more likely to look at the best option first, were most likely to
look at only one option, and their choices were relatively
unaffected by gaze time. On the other hand, the model-free
learners mostly looked at both options, often multiple times,
made choices that were strongly influenced by relative gaze time,
and ignored visual cues that provided information about
transition probabilities. We propose that there are two distinct
processes being observed at the ‘time of choice’ in these multi-
stage decision tasks. One is a stimulus-driven comparison process
exhibited primarily by model-free subjects and the other is a
simple visual search process to find an already chosen item, more
typical for model-based subjects. Our novel condition with visual
cues conveying model-based information was able to significantly
increase subjects’ reliance on transition-probability information,
suggesting that the mere presence of explicit information may
encourage model-based behaviour.

Our findings highlight the need to study the dynamical
properties of decisions rather than treating them as static
processes. The random initial gaze location and effects of gaze
time and final gaze location on model-free choice align closely
with previous aDDM research on decisions between food items
and consumer goods?>*43! as well subsequent studies using
conditioned stimuli’?® and monetary gambles?®. This work
has demonstrated that these relationships between attention
and choice are a natural consequence of a value-comparison
process that is biased towards the currently attended
option?>0-42 These studies typically find that gaze location
and dwell time are independent of the values of the stimuli
(at least in binary choice?®*3) suggesting a causal effect of
attention on choice (see also?>#24%) Other research has argued
for the opposite direction of causality, that is, that the reward
process might be able to bias attention towards more valuable
stmuli?24>-47,

Our results also have implications for the research into the
neural underpinnings of model-free and model-based behaviour.
Some of these studies have shown that model-based computa-
tions, particularly state prediction error evaluations, are per-
formed at the time of reward*®*°, while others show prospective
computation at the ‘time of choice’>?25%°1, Because our findings
suggest that the time of choice is systematically different across
groups, this means that stimulus driven neural activity must be
interpreted with some caution, as it could reflect the decision
process or the post-decision search process. Future neuroimaging
experiments could instead investigate activity during the inter-
trial interval to see if it is possible to detect model-based planning
then.

There are two prominent mechanisms for how memories
might be integrated to guide decisions®?. One is prospective
integration, which involves retrieving memories at the time a
response is required?’. The other is retrospective integration,
which involves learning at feedback time, before the next decision
is confronted*®>3>*, The DYNA framework suggests how such
learning could occur?! and successor representation describes
how this could be extended to multi-stage environments®>>®, Our
findings provide support for a retrospective mechanism, which
occurs between trials. However, we depart from these established
models in arguing that what occurs between trials is not only
learning, but the actual choice as well. It may be possible to test
this directly: for instance, one would predict that a decrease in
inter-trial interval might decrease model-based behaviour as there
will be less time to retrospectively learn and plan for the next trial.

Finally, the distinction between model-based and model-free
learners is reminiscent of the distinction between proactive and
reactive cognitive control®’. In the dual-mechanisms-of-control
framework, proactive control involves anticipatory goal-related
activity, while reactive control is purely stimulus driven. Similarly,
we have argued that model-based behaviour involves formulating
a plan before the coming decision, while model-free behaviour is
stimulus driven. However, a key difference is that in most
cognitive control settings the stimuli are unpredictable, whereas
in our setting the same two options are present in every trial. This
suggests that our results may possibly extend to more complex
settings where the options vary from trial to trial?2.

Our study also demonstrates another use for eye-tracking data
in the study of decision-making: determining whether subjects
make use of all of the available information. The eye-tracking
results from the second condition of our experiment showed
that model-free subjects do not simply misinterpret or
miscalculate the task structure information, but rather tend to
ignore it, even when it is presented in explicit visual form. On the
other hand, model-based subjects clearly attend to this
information and use it to inform their model of the task. These
results corroborate previous findings in MouseLab studies of
strategic bargaining®®, where subjects who were better at
forward-looking strategic thinking were also more likely to
collect information about payoffs in future states. Moreover,
providing these visual cues seemed to reduce the overall amount
of model-free learning, suggesting a potential remedy to this
suboptimal behaviour.

Further research into the dynamical properties of model-based
and model-free behaviour are clearly needed to gain a better
understanding of the distinction between these modes of learning.
Our study has provided an initial glimpse into the different
mechanisms underlying these behaviours, but more work is
needed to link the eye-tracking data to neuroimaging results. We
hope that this research will fuel further investigation into the ties
between static models of learning and dynamical models of
choice, which will certainly yield deeper insights into these core
topics in decision science.

| 7:12438 | DOI: 10.1038/ncomms12438 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

Methods

Subjects. Forty-five students (19 female) at The Ohio State University were
recruited from the Department of Economics subject pool. Subjects were paid
based on their overall performance in the decision task, at a rate of 5¢ for one
reward point, with a minimum payment of $5 as a show-up fee. Subjects earned an
average of $16. One subject experienced software crashes during the experiment,
and another one explicitly failed to understand the task, so these two subjects’ data
were excluded from the analysis. The Ohio State University Internal Review Board
approved the experiment, and all subjects provided written informed consent.

Two-stage decision task. In the first condition of the experiment, subjects
completed 150 trials of a two-stage Markov decision process task®, with two short
breaks every 50 trials (Fig. 1a). On each trial, the first stage involved a choice
between two Tibetan symbols that had different probabilities of transition to two
possible second-stage states (blue and purple, by the colour of the boxes that
contained the symbols). One symbol was more likely to lead (on average) to the
blue state, while the other one was more likely to lead to the purple state (Fig. 1b).
On every trial, for each first-stage symbol the transition probabilities to the
common state were independently and randomly sampled from a uniform
distribution in the interval between 0.4 and 1, resulting in an average of P=0.7 for
each symbol. The other, rare state, was reached with probability 0.3. Subjects were
instructed that each symbol was more likely to lead to one of the second-stage
states, but they had to identify the transition probabilities on their own.

In the second stage, subjects were required to choose between two symbols in
the state they reached (blue or purple). Each of the four second-stage symbols had
an independent probability of yielding a fixed reward. During the course of the
experiment, these probabilities drifted independently in the range from 0.25 to 0.75
according to slow Gaussian walks with mean =0 and s.d. =0.025 to facilitate
learning and exploring different states.

In each stage, the position of the symbols on the screen was randomized.
Choices were made using a keyboard, and every choice was followed by a white
frame around the chosen symbol for 0.5s. All choices had free RT. After the
second-stage symbol was chosen, it was displayed at the center of the screen,
with the outcome shown in the bottom part of the screen (either ‘+ 1 point” or
‘0 points’).

Before starting the task, subjects were introduced to the rules of the task,
including a short practice on each part of the task, and a 30-trial practice session
with different stimuli.

Two-stage decision task with visual transition cues. In the second condition of
the experiment, subjects completed another 150 trials of the two-stage task with a
modified first-stage decision screen. Under each symbol we displayed visual cues

for the respective deviations of the transition probabilities (Fig. 1c). The cues were
presented in the form of coloured (blue and purple) bars. The horizontal size of

each bar was equal to the horizontal size of the symbol boxes. Each bar showed the
deviation of the particular trial transition probability from the average (0.7). At the
average, each bar had blue and purple segments of equal size. If the probability of
transition to a common state was sampled closer to 1, the segment of that state’s
colour had a larger share of the bar, proportional to the absolute deviation from

0.7. On the other hand, if the transition probability approached 0.4, that segment’s
share was smaller. Subjects went through additional instructions and training with
the bars to ensure comprehension of the task.

The second stage decision screen was exactly the same as in the first condition
of the experiment (see above). Subjects were instructed that the reward
probabilities for all four second-stage symbols were randomly reset for this
condition, but that the first-stage symbols retained their transition probabilities.

Eye-tracking methods. Subjects’ gaze data was recorded using an EyeLink 1000 +
desktop-mounted eye-tracker with a chin rest and sampled at 1000 Hz. Before
every choice, subjects were required to fixate at the center of the screen for 2s, or
the software did not allow them to proceed. This ensured unbiased initial gaze
positions. The task was created and displayed using Matlab and Psychtoolbox™®.
The chin rest was placed at 65 cm away from the screen, and the screen resolution
was set at 1920 x 1080.

Eye-tracking data analysis. The following procedure was applied to the gaze
position data. The size of a symbol was set to 400 x 290 pixels. A gaze on a symbol
was recorded if the gaze position was within a region of interest (ROI) that
included the symbol itself and a 50-pixel margin, so the horizontal distance
between ROIs was 460 pixels. The ROISs for the bar indicators were set at the same
size as the symbol ROIs centered around the bars. Vertically, the symbols were
centered at 33% of the distance from the top of the screen, and the bars were placed
at 80% distance from the top of the screen.

Trials with no gaze on the ROIs were excluded from all gaze analyses (the mean
number of such trials in the first stage was 20 out of 150 per subject, with 30
subjects having less than 20 trials excluded; there was no significant difference in
the number of excluded trials between model-based and model-free learners, two-
sided t-test, N=22 and 21, P=0.77). The main results were also robust to focusing
solely on these 30 subjects (Supplementary Figs 5-7, Supplementary Table 8).

Gaps between two gazes on the same ROI were interpreted as a blink or a
technical error (for example, eye-tracker losing the pupil) and treated as one gaze
to the same item. Gaps between gazes on two different ROIs were discarded.

First condition choice analysis. We implement a variant of a well-known hybrid
learning model®® that assigns so-called action-state Q-values to every action and
combines the SARSA()) (state-action-reward-state-action) model-free
reinforcement and a forward-looking model-based strategy that makes use of the
empirical transition probabilities to evaluate expected values of the first-stage
choices.

The model-free learning strategy uses only reward information to update the
Q-values. These values are initialized to zero at the beginning of the experiment.
Let a; be the symbol chosen in the first stage of the task, and a, be the second-stage
choice (subscripts generally indicate stage number). Then, after a trial ¢ is
completed and a reward r(t) € {0,1} is received, the chosen second-stage symbol a,’s
Q-value Q, is updated in the following way:

2 (a2, t +1) = QM (@, 1) +a(r(t) - Q' (a2, 1)), (1)

where o is a learning rate parameter, and r(t) — QMF(if) is a reward prediction
error. This process is identical for both model-free and model-based decision
makers as there is no stochastic transition after this stage.

The value of the symbol chosen in the first stage is also updated through the
reinforcement process, using both the second-stage reward prediction error and the
prediction error that comes from the difference between the obtained and expected
value of the second-stage state:

Q" (ar, t+1) = Q' (ar, 0) + (G (@, £) = Q" (ar, 1)) + 02 (r(t) = QG (a1, 1)), (2)

where / is an eligibility trace parameter that captures the effect of the second-stage
prediction error on the first-stage action value.
The model-based learning strategy incorporates the empirical transition

probabilities into the updating process>s:

Q"8 (ay, t+ 1) = P(blue| a,) max(QS™(ay, t)) + P(purple| a;) max (le’“rplc(az, 1), (3)
@2(blue) a

2 (purple)

where P(blue|a;) and P(purple|a;) are the respective transition probabilities after
choosing action a; which are calculated using Beta-Binomial Bayesian updating:

1+ N(blue|a) . (@)

2+ N(blue|a) + N(purple|a)
where N(blue|a) and N(purple|a) are the numbers of times the blue or purple state
was reached after making a choice a.
The hybrid model Q-value for each first-stage choice is calculated using a
convex combination of the model-free and model-based action values:

B, t+1) = (1—w)Q¥ (ar, t+1) + wQYB(ay, £+ 1), (5)

where w is a weight parameter restricted between 0 (pure model-free strategy) and
1 (pure model-based strategy).

A logit discrete choice model is assumed for both stage choices, with probability
of the second stage choice computed as

exp(B(QY (a2, 1))
., exp(B(QY (05, 1))

P(blue|a) =

P(ay, t) = (6)

and the first stage as

exp(B(QM (a1, 1) +p - 1(a)))
2 exp(B(Q"P(ay, 1) +p - 1(a})))’

where f is a traditional choice ‘inverse temperature’ parameter, 1(a;) is an
indicator function that returns 1 if the same symbol was chosen in trial t— 1, and 0
otherwise, and p is a parameter that captures ‘stickiness’ in first-stage choices.

The hybrid model has 5 free parameters: o,f,4,p,w. We do not use different o’s
and f’s for the two stages for several reasons: (a) a larger number of parameters
adds more noise to the estimation of our parameter of interest, w, (b) previous
studies do not provide conclusive statistical evidence of a difference between first
and second stage o and f§ values in the population®?2, and (c) we find that for
almost all of the subjects (40/43) the simpler model fits the data better, in terms of
the Bayesian information criterion (BIC), than the model with two additional
parameters.

We fit the model individually to each subject’s data using a maximum
likelihood estimator and the probability formulas defined above. We restrict o, 4
and w to lie between 0 and 1, f§ to be positive, and use a Nelder—-Mead optimization
procedure with 10,000 random starting points to ensure the achievement of global
maxima. Obtained values were used to derive hybrid Q-values on a trial-by-trial
basis for each subject individually.

Play,t) = (7)

Second condition choice analysis. In the second condition of the experiment,
choices were influenced by visual cues presented on the screen. For this condition,
we used a modified model that assumed two weight parameters instead of one. For
the sake of notation simplicity, let pe = P(state|a;) be the empirical probability of
transition to a particular state after the first-stage action a;, estimated via the
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Baysesian updating formula in (4), and Apge = p(t) — 0.7 be the deviation of the
trial transition probability from the mean. Then the hybrid Q-value for action a, is
defined as

QII-IYB(al,t-‘r l)

= (WPblue + VAPbluc) mhaX(le’lue(ab £)) + (Wppurple (8)
A(blue)

- VAppupie) max (Q5P (az, 1)) + (1 —w—v) QI (a1, £41),

A2 (purple)

where w is a weight assigned to the mean transition probability that has to be
inferred from the symbol’s identity, and v is a weight assigned to the correction
provided by the colour bars.

In all other aspects, the computational model in this part of the experiment is
equivalent to the model in the first part.

Regression analysis. In addition, following previous literature®!$, we ran a

hierarchical logistic regression. All data was fit using the mixed-effects regression in
Ime4 package® in R, and all coefficients were treated as random effects at the
subject level. The dependent variable was the choice of the same first-stage symbol
that was chosen in the previous trial (stay = 1, switch =0).

In the first condition of the experiment, it was regressed on the previous trial
reward (1 or 0) and type of the previous trial state transition: 1 if the state reached
was common for the chosen symbol and 0 if it was rare, as well as the interaction of
these two variables. In this regression, the coefficient on the reward reflects model-
free choice, and the coefficient on the interaction reflects model-based choice: a
model-based subject would repeat their choice if the transition was common, and
would switch to the other symbol if the transition was rare.

In the second condition of the experiment, we used an additional continuous
variable colour that was equal to the difference between the colour deviation for the
common transition for the symbol chosen in the previous trial and the colour
deviation for the same state for the other symbol. For example, if symbol A was
chosen on the previous trial, and its common state was blue, then the colour
variable in the current trial would be equal to the blue area for symbol A minus the
blue area for symbol B. In this regression, we used all three regressors as well as
their interactions. In addition to the effects described above, the interaction
between reward, transition type and colour, measures the effect of the visual cues
on choices in the first stage of the task.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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