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GCTA-GREML accounts for linkage disequilibrium
when estimating genetic variance from

genome-wide SNPs

Jian Yanga'b'1, S. Hong Lee€, Naomi R. Wray?, Michael E. Goddard®®, and Peter M. Visscher®"’

In a recent publication in PNAS, Krishna Kumar et al.
(1) claim that “GCTA applied to current SNP data can-
not produce reliable or stable estimates of heritabil-
ity.” We show below that those claims are false due to
their misunderstanding of the theory and practice of
random-effect models underlying genome-wide com-
plex trait analysis (GCTA) (2).

GCTA, more precisely, the genomic-relatedness-
based restricted maximum-likelihood (GREML) approach
(3) implemented in GCTA (4), is a method to estimate the
proportion of phenotypic variation that can be explained
by all genome-wide SNPs (hg) using an SNP-derived ge-
netic relationship matrix. Krishna Kumar et al. (1) claim
that the estimate of hZ from GCTA-GREML is unreliable
based on the observations that the observed variance
explained per SNP (52 =hé/m, where m is the number
of SNPs) from simulations is inconsistent with their expec-
tation. This is because they misunderstand that “GCTA
assumes that the SNPs used are in linkage equilibrium”
(ref. 1, p. 2), and mistakenly believe that 62 should be the
same regardless of the number of SNPs fitted in the
model in either their original paper (1) or subsequent re-
sponse (5) to our commentary (2). In fact, GREML fits all of
the SNPs jointly in a random-effect model so that each
SNP effect is fitted conditioning on the joint effects of all
of the other SNPs [i.e., it accounts for linkage disequilib-
rium (LD) between the SNPs] (3). The estimate of 62 in a
random effect is interpreted as the variance of an SNP
effect when it is fitted jointly with all of the other SNPs.
Therefore, 62 for a random subset of SNPs (O—zubset) is
larger than that for the entire set (¢2,;,.) if SNPs are in LD.

Krishna Kumar et al. (1) show by analysis of a real
dataset (ref. 1, figure 4A) that 62, __. was, on average,

much larger than 62, .. They further used the estimates

from our previous studies (3, 6) as examples to show
that 62 with a smaller m was larger than with a larger m
(5). All of these observations are entirely consistent with
published theory that 62, . for a random subset of
SNPs is larger than &2, . _ if SNPs are in LD. It was clearly
demonstrated by Yang et al. (figure 2 of ref. 3) that hg
increases toward a plateau as m increases.

From simulations of unlinked SNPs (figure 2 in ref.
1), Krishna Kumar et al. (1) observed that SD(52 ,.,)
was much larger than SD(&2 ;). Their claim that this
is a failure of GCTA-GREML is therefore incorrect be-
cause SD(6?) is expected to increase with a decrease in
m. If SNPs are unlinked, SD(6?)~ % \/2, where n =
sample size (2, 7). For n = 2,000 and m = 50,000, this
equation predicts that SD(2) ~ 3.2 x 107, which is
highly consistent with the observation by Krishna Kumar
etal. (1) of 3.1 x 107°.

There are many other errors in the paper by Krishna
Kumar et al. (1), as pointed out by us (2) and others (8).
In conclusion, Krishna Kumar et al. (1, 5) misunderstood
the model and assumptions underlying GCTA-GREML,
and therefore used the incorrect expected mean and
SD of 62, .., for comparison with those values observed
from resampling. Hence, their conclusion about biased-
ness of GREML estimates is not supported by empirical
evidence.
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