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With more than 1,700 laboratory-confirmed infections, Middle East
respiratory syndrome coronavirus (MERS-CoV) remains a significant
threat for public health. However, the lack of detailed data on
modes of transmission from the animal reservoir and between
humans means that the drivers of MERS-CoV epidemics remain
poorly characterized. Here, we develop a statistical framework to
provide a comprehensive analysis of the transmission patterns
underlying the 681 MERS-CoV cases detected in the Kingdom of
Saudi Arabia (KSA) between January 2013 and July 2014. We assess
how infections from the animal reservoir, the different levels of
mixing, and heterogeneities in transmission have contributed to the
buildup ofMERS-CoV epidemics in KSA. We estimate that 12% [95%
credible interval (CI): 9%, 15%] of cases were infected from the
reservoir, the rest via human-to-human transmission in clusters
(60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%;
CI: 2%, 8%) regions. The reproduction number at the start of a
cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53;
CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by
approximately one-half (47% CI: 34%, 63%) its original value after
10 cases on average. The ongoing exposure of humans to MERS-CoV
from the reservoir is of major concern, given the continued risk of
substantial outbreaks in health care systems. The approach we pre-
sent allows the study of infectious disease transmission when data
linking cases to each other remain limited and uncertain.
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Despite the occurrence of 1,728 laboratory-confirmed cases and
624 deaths (1) since the virus was first isolated in 2012,

transmission of the Middle East respiratory syndrome coronavirus
(MERS-CoV) remains poorly understood. Dromedary camels play
a role in transmission (2), but the nature and extent of human
exposure to camels is not well defined. Despite multiple reintro-
ductions from the reservoir, there has been no sign of the contin-
uous exponential growth in human case numbers that is the typical
signature of the start of a pandemic. Furthermore, most infections
have occurred in Middle Eastern countries on the Arabian Pen-
insula, with ∼75% of cases reported by the Kingdom of Saudi
Arabia (KSA). Spatial expansion to other areas has been limited.
Although these simple observations suggest that MERS-CoV is not
presently capable of self-sustaining transmission in humans (at least
in the Middle East), large clusters of human cases, typically in
health care settings, have been documented (3). Notably, in March
to May 2014, KSA experienced a large, rapidly growing outbreak
affecting many hospitals and spanning multiple regions of the
country (Fig. 1) (4, 5).
A number of studies have attempted to characterize the human-

to-human transmission of MERS-CoV and the contribution of the
reservoir from the analysis of specific features of the epidemic—
for example, cluster sizes (6), epidemic time series in clusters (7),

transmission trees in few large clusters (8, 9), or the proportion of
MERS-CoVcaseswith no knownhuman source of infection (5, 10)—
sometimes restricted to one or more large outbreaks (5, 8, 9). Such
an approach simplifies inference but comes with a number of limi-
tations. First, by restricting analysis to simple features of the epidemic,
strong assumptions about the underlying transmission process are
often required, such as assuming that cases with no known source
of infection are infected by the reservoir (5–7, 10), that clusters
are closed epidemics independent of each other (6, 7, 10), or that
transmission rates are constant over time (6). In addition, analysis
restricted to large outbreaks may bias estimates of human-to-human
transmission upward.A coherent and holistic picture ofMERS-CoV
epidemic dynamics therefore remains elusive, reflected, for instance,
in published estimates of the proportion of infections due to the
animal reservoir varying from a few percent (5) to 55% (10).
Here, to obtain a comprehensive picture of MERS-CoV trans-

mission dynamics, we developed a general framework to analyze
detailed epidemiological records of all MERS-CoV cases reported
between January 1, 2013, and July 31, 2014 in KSA, a time frame
that included the largest outbreaks of MERS-CoV reported to
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the different levels of mixing, and heterogeneities in trans-
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date. The framework makes it possible to relax the simplifying
assumptions often made in past work about the epidemic process
(e.g., independence of clusters, unknown sources of infection being
interpreted as infections from the reservoir). It builds on methods
used to reconstruct transmission trees from case data (11, 12) but
greatly expands them by allowing estimation of the generation time
distribution, multiple and heterogeneous levels of transmission,
and changing risks of infection from a zoonotic reservoir.

Results
Between January 1, 2013, and July 31, 2014, 681 MERS-CoV
patients were identified in KSA. The first outbreak was reported in
the region of Ash Sharqiyah in April to May 2013 followed by an
outbreak in Riyadh in July to September 2013 (Fig. 1). The largest
outbreak in March to May 2014 principally affected Makkah region
(mostly Jeddah) and Riyadh. Combined, these two regions accounted
for 78% (n = 294 in Makkah region and 235 in Riyadh) of cases.
Fig. 1B shows how cases clustered over space, time, and according to
the hospital (n = 98) in which they were treated, diagnosed, and/or
tested. We identify 162 clusters, where a cluster is defined as a group
of cases who were treated, diagnosed, and/or tested in the same
hospital, with a time lag between two consecutive cases of at most
21 d. The distribution of cluster sizes is highly skewed (Fig. 1C).
We were able to characterize the overall pattern of transmission

by estimating the within-cluster reproduction numbers (i.e., average
number of secondary cases generated by a case in their cluster), the
within-region reproduction number (i.e., average number of sec-
ondary cases in other clusters of the region), and the between-
region reproduction number (i.e., average number of secondary
cases in other regions) (Materials and Methods). Fig. 2A shows the
distribution of the initial within-cluster reproduction number, RC. It
has a mean of 0.45 [95% credible interval (CI): 0.33, 0.58] but with
substantial heterogeneity between clusters (SD: 0.53; 95% CI: 0.35,
0.78). The initial within-cluster reproduction number is over 1 in
12% (95% CI: 6%, 18%) of clusters. We can also assess where

each cluster falls within this distribution (Fig. 2A). We find that the
within-cluster reproduction number at a point in time is a declining
function of the cumulative number of cases that have accrued in
the cluster by that time (Fig. 2B). We estimate that, after 10 cases,
the within-cluster reproduction number is on average 47% (95%
CI: 34%, 63%) of its initial value (Fig. 2B).
The within-region reproduction number RR is estimated at 0.24

(95% CI: 0.19, 0.29). This suggests that clusters of the same region
are not necessarily closed epidemics independent of each other but
that there can be substantial transmission between them. In con-
trast, clusters from different regions appear to be largely in-
dependent of each other (between-region reproduction number
RO: 0.05, 95% CI 0.02, 0.09).
We estimate that the serial interval (delay between symptom

onset in a case and symptom onset in the persons they infect) of
MERS-CoV has a mean of 6.8 (95% CI: 6.0, 7.8) days and a SD of
4.1 (95% CI: 3.4, 5.0) days (Fig. 2C).
We estimate that the weekly number of introductions from the

reservoir grew by approximately fourfold during the study period:
from 0.5 (95% CI: 0.2, 0.8) reported cases per week infected by
the reservoir in early 2013 to 2.1 (95% CI: 1.0, 3.6) in mid-2014
(Fig. 2D).
We explore the ability of our model to reproduce MERS-CoV

epidemic dynamics in KSA by using themodel to simulate epidemics
from January 1, 2013.We find that the model satisfyingly reproduces
the distribution of the number of cases (Fig. 3A), of the number of
clusters (Fig. 3B), and of the size of these clusters (Fig. 3 C–F). The
model can also generate explosive outbreaks over short time periods
similar to what was observed in Spring 2014 (Fig. 3 G and H).
We can also use the model to reconstruct the transmission tree

and probabilistically determine the likely source of infection of
each case. Fig. 4 shows an example of an inferred transmission tree.
Fig. 5 presents summary statistics calculated from a sample of 500
such trees. We estimate that 12% (95% CI: 9%, 15%) of the cases
were infected via exposure to the animal reservoir, 60% (95% CI:
57%, 63%) were infected in their cluster, 23% (95% CI: 20%,

Fig. 1. The epidemic of MERS-CoV in KSA between January 1, 2013, and July
31, 2014. (A) Biweekly number of MERS-CoV laboratory-confirmed infections
per region. (B) Weekly number of cases in the different hospitals and over time.
The color of dots indicates the weekly number of cases. Colors on the y axis
indicate the region of the hospital. (C) Distribution of the number of cases per
cluster. (D) Map of the KSA. Colors in A, B, and Cmatch the color of regions in D.
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Fig. 2. Transmission characteristics of MERS-CoV in KSA. (A) Cumulative dis-
tribution function of the within-cluster reproduction number at the start of a
new cluster (black line). Gray dots show the posterior mean for each cluster.
(B) Variations in the within-cluster reproduction number as a function of the
cumulated number of cases in the cluster (solid line: posterior mean; dotted lines:
95% CI). (C) Distribution of the serial interval of MERS-CoV (solid line: posterior
mean; dotted lines: 95% CI). (D) Weekly number of introductions from the res-
ervoir during the study period (solid line: posterior mean; dotted lines: 95% CI).
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27%) were infected by cases from other clusters in their region, and
only 5% (95% CI: 2%, 8%) from cases of other regions (Fig. 5A).
This finding is illustrated in Fig. 4 where the different regional
outbreaks appear to be largely independent. In particular, there is
very little transmission between Riyadh and Makkah regions. Fig.
5B shows the time series of the reconstructed cumulative number

of cases by source of infection. It suggests that infections from the
reservoir have occurred repeatedly over the study period. In con-
trast, within-cluster infections are concentrated in time during
three substantial outbreaks that occurred in May 2013, September
2013, and March to May 2014. The last of these outbreaks involved
by far the largest contribution of within-cluster and within-region
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Fig. 4. A reconstructed transmission tree consistent with the data. Each dot represents a case. The large central dot represents the animal reservoir.
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transmission. These three peaks of transmission are apparent in
Fig. 5C, which presents reconstructed trends in individual re-
production numbers. The smoothed overall reproduction number
peaked at 1.9 in March to April 2014. Fig. 4 also shows that, al-
though most introductions generated few secondary infections, a
small number of them had a disproportionate contribution to the
epidemic. We estimate that three zoonotic infections were re-
sponsible for 464 (95% CI: 376, 532) MERS-CoV cases during this
time period, indicating large heterogeneity in the length of chains
of human-to-human transmission.

Discussion
In this paper, we studied the spatiotemporal clustering of MERS-
CoV cases in KSA, the country that has been the most affected by
MERS-CoV. The framework we developed made it possible to
analyze all surveillance data in a coherent and integrated manner,
in contrast to previous studies that have examined individual as-
pects of the observed epidemiology (for example, cluster sizes).
Our analysis has resulted in a more holistic characterization of
MERS-CoV epidemiology in KSA.
Surveillance data for zoonotic infections such as MERS-CoV or

avian influenza are often challenging to interpret because it is
rarely possible to reliably identify the source of infection of each
case. If multiple clusters of cases are detected in the same area and
time period, it is unclear whether we should assume that they are
independent introductions of the virus from the reservoir or that
they belong to the same chain of transmission. If no human source
of infection has been identified, does it mean that the case was

infected by the reservoir? The answer depends on the quality of the
epidemiological investigation, which may vary geographically and
over time. A strength of our approach is that we do not need to
assume that clusters are completely independent of each other.
Instead, we can estimate the degree of epidemiological linkage
between clusters and assess how that linkage varies by the geo-
graphic separation of clusters (within vs. between region). Our
algorithm for identifying clusters was deliberately designed to be
liberal in linking cases, to match the way surveillance data are
collected. However, we found that the clusters thus identified were
highly relevant epidemiological units in that we estimate that two-
thirds of human-to-human transmissions occurred within clusters.
The clusters we identified also stratified observed heterogeneity in
transmission intensity well. We estimated that there was substantial
transmission between clusters within the same region, validating
our prior belief that clusters cannot be treated as independent, but
little transmission between regions. Another strength of our ap-
proach is that it does not require that the source of infection of a
case (human or animal) to be known to ascertain the contribution
of the animal reservoir in the overall epidemic.
We found that a majority of MERS-CoV cases (88%) reported

during this time period were due to human-to-human trans-
mission. Different strategies may be considered to evaluate the
relative contribution of the animal-to-human and human-to-
human transmission First, one can perform thorough epidemi-
ological investigations of MERS-CoV patients to ascertain their likely
source of infection. Second, viral genetic sequences can be used to
assess the number of independent introductions of the virus in an
area. Third, analysis and modeling of the spatiotemporal cluster-
ing of MERS-CoV patients as performed here can be used to better
characterize the dynamics of spread. Each of these approaches has
limitations. Epidemiological investigation may struggle to identify
sources of infection when modes of zoonotic exposure remain poorly
characterized and when multiple exposures are possible. Although
the number of concurrent viral lineages may be inferred from se-
quence data, the origin of these lineages (e.g., animal reservoir vs.
humans from other regions) may be harder to ascertain. Last,
modeling relies on spatiotemporal locality to link cases and may be
sensitive to assumptions about the mechanisms of spread. Given
these limitations, substantial insights may be gained by running these
analyses independently and then carefully comparing their findings
(7, 13). In that respect, the large Jeddah outbreak in March to May
2014 offers an interesting opportunity. A thorough field investigation
of MERS-CoV patients in the outbreak concluded that the pro-
portion of cases infected by the reservoir was likely to be very small (3
out of 112 of MERS-CoV patients who were not health care workers
and had exploitable data) (5). This is largely consistent with our
analysis that estimates that 5 (95% CI: 2–11) cases in this out-
break were infected by the reservoir. These results are also
corroborated by the analysis of seven sequences isolated during
the Jeddah outbreak that were found to be largely homoge-
neous, all falling within a single clade (4). For the 2014 Riyadh
outbreak, concurrently circulating viruses were found to be
distributed across at least 6 different clades (4), which is roughly
consistent with our estimate of 4 (95% CI: 1, 8) introductions
from the reservoir in that outbreak. Compared with epidemio-
logical investigations that are thorough but limited in time and
space (5), the analysis of surveillance data presented here makes
it possible to get a more comprehensive picture of MERS-CoV
transmission across KSA for an 19-mo time period. Although
transmission was relatively quickly controlled in most clusters,
our study highlights that few clusters acted as major amplifiers
of the epidemic. Ensuring a consistent response is quickly
implemented in all clusters is essential to reduce the burden
of MERS-CoV.
In the absence of detailed data documenting infection control

measures implemented during MERS-CoV outbreaks, it is not
possible to estimate the intrinsic transmissibility of MERS-CoV in
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the absence of interventions (the basic reproduction number R0).
We can only estimate the reproduction number seen in individual
outbreaks, an estimate that implicitly incorporates the effects of
the interventions in place. Our study shows that, for the level of
control implemented in KSA, MERS-CoV epidemics are not self-
sustaining in that country. However, one needs to be cautious
when extrapolating from this study to countries with more limited
health care resources. Analogies exist with the recent Ebola epi-
demic in West Africa; previous Ebola outbreaks were contained
after at most few hundred cases, arguably leading to a false sense of
security that all future outbreaks would also be readily contained.
Like Ebola, MERS-CoV also exhibits high levels of heterogeneity
in onward infection rates from case to case and hospital to hospital.
Indeed, given MERS-CoV infections are not as consistently clini-
cally severe as Ebola, case finding and effective contact tracing
might be more challenging in a large-scale outbreak in a resource-
poor setting. Furthermore, evolutionary theory suggests that path-
ogens that are most at risk for evolving high levels of transmissibility
are those that are already moderately transmissible; predicted
probabilities of major epidemics increase nonlinearly as reproduc-
tion numbers approach 1 and case numbers increase (14). Our ap-
proach, like other methods that reconstruct the transmission tree
from case data (11, 12), can quantify trends in the effective re-
production number. However, more detailed models and data are
needed to decipher the mechanisms explaining these trends. For
example, is the declining trend in the within-cluster reproduction
number (Fig. 2B) due to control measures or to other mechanisms
such as depletion of susceptibles? Answering this question will
require detailed data on control measures but also on the struc-
ture of hospitals (number of wards and number of beds per ward,
bed occupancy, etc.).
This study has a number of limitations. Like for most emerging

infectious diseases, reporting of MERS-CoV cases is imperfect and
has changed over time. For example, the case definition changed
on May 13, 2014 to allow for wider testing of suspect cases (15).
Underreporting and variations in testing protocols can potentially
bias estimates. To evaluate the robustness of our findings to these
issues, in a sensitivity analysis, we restricted the study to 495 cases
(73%) that were detected through passive surveillance (Table S1),
that is, the surveillance type that was most stable over time. Even
though one-third of cases were removed, results remained roughly
unchanged with the proportion of infections from the reservoir
increasing slightly from 12% (95% CI: 9%, 15%) to 17% (95% CI:
13%, 20%). In particular, exponential growth in the risk of spill-
over was robust to the surveillance subset (Table S1). This suggests
that the quantified increase was not a mere surveillance artifact
and that there was indeed a growing MERS-CoV epidemic in the
reservoir at the time of the study. We also explored sensitivity of
our findings to the presence of atypically large clusters and found
that our estimates changed little when we removed 102 cases from
the most affected hospital from the analysis (Table S2). We
modeled temporal variations in introductions from the reservoir
with a Poisson distribution that had a time-varying mean. However,
introductions may occur in clumps. To explore this possibility, we
considered an alternative scenario in which the daily number of
introductions was modeled with a negative-binomial distribution
characterized by high overdispersion. We found this had little
impact on our estimates (Table S3). We cannot rule out the pos-
sibility that some of the human-to-human transmission events we
inferred could actually be animal-to-human transmission events
even though our population level estimates are consistent with
other data sources.

Although health care facilities can amplify transmission of MERS-
CoV, we still poorly understand the factors that facilitate
human-to-human transmission in health care settings and in
the community, and that may therefore explain the heterogeneity
in transmission intensity we have characterized. In a number of
nosocomial outbreaks, a large proportion of cases had comorbid-
ities (3, 5) that have been suggested to increase susceptibility to
infection or disease severity. Another possibility is that certain
aerosolizing medical procedures in hospitals facilitate spread.
Unfortunately, we were unable to test these hypotheses here as
information on comorbidities and hospital practices was un-
available. It is important that we address such knowledge gaps to
strengthen outbreak control in the future.
The ongoing exposure of the humans to MERS-CoV is of major

concern, with the risk of a major epidemic growing larger the longer
exposure remains unchecked. Understanding the medical, health
care, and social factors that facilitate high levels of human-to-human
transmission and lead to large outbreaks is critical to continued
containment of the ongoing threat posed by MERS-CoV.

Materials and Methods
Data. The KSA Ministry of Health routinely collects detailed information on all
patients with laboratory-confirmedMERS-CoV infection throughmultiple sources
that include MERS-CoV case report forms, laboratory report forms, and clinical
records. The database contains the following for each case: the reason for testing,
whether the casehad symptomsmeeting theMERS-CoVcasedefinitionat the time
of testing, clinical status (hospitalized, home isolation, discharged, or deceased),
demographic information, date of symptom onset, and hospital where treated,
diagnosed, and/or tested. The study period is January 1, 2013, to July 31, 2014.

We partition MERS-CoV cases into clusters. A cluster is defined as a group of
cases who were treated, diagnosed, and/or tested in the same hospital, with a
time lag between two consecutive cases of at most 21 d. These clusters thus
encompass not just nosocomial infections that occurred within the hospital but
also infections that may have occurred in the catchment area of the hospital
(either from another person in the community or from the animal reservoir).

The data are available in Dataset S1.

Modeling the Risk of MERS-CoV Infection. The reproduction number R (i.e., the
mean number of secondary cases generated by a human case) is decomposed
into mutually exclusive categories arising from within-cluster transmission (RC),
from within-region transmission (RR, i.e., transmission to other clusters of the
region), and from between-region transmission (RO, i.e., transmission to clusters
of other regions). To capture the dynamics of transmission and control within
clusters, we assume that, when a new cluster c starts, the within-cluster re-
production number Rc

Cð0Þ in that cluster is drawn from a Gamma distribution
with mean RC and SD σC. After Ct cases, the within-cluster reproduction number
is Rc

CðCtÞ=Rc
Cð0Þð1+CtÞ−γ (16, 17). Decline in the within-cluster reproduction

number could be due to control measures and/or to other factors such as the
natural depletion of susceptible individuals.

We explore scenarios where the risk of infection from the reservoir could be
constant or increase exponentially over time.

Statistical Inference. In a Bayesian setting, we develop a data augmentation
strategy to estimate parameters of themodel (18–21). The source of infection of
each case (reservoir or another human case of the dataset) is considered as
augmented data. Markov chain Monte Carlo sampling is used to explore the
joint posterior distribution of parameters and augmented data (18–22).

Technical details are given in Supporting Information.
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