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The functional native states of globular proteins become unstable at
low temperatures, resulting in cold unfolding and impairment of
normal biological function. Fundamental understanding of this phe-
nomenon is essential to rationalizing the evolution of freeze-tolerant
organisms and developing improved strategies for long-term preser-
vation of biological materials. We present fully atomistic simulations of
cold denaturation of an a-helical protein, the widely studied Trp-cage
miniprotein. In contrast to the significant destabilization of the folded
structure at high temperatures, Trp-cage cold denatures at 210 K into a
compact, partially folded state; major elements of the secondary struc-
ture, including the a-helix, are conserved, but the salt bridge between
aspartic acid and arginine is lost. The stability of Trp-cage’s a-helix at
low temperatures suggests a possible evolutionary explanation for the
prevalence of such structures in antifreeze peptides produced by cold-
weather species, such as Arctic char. Although the 3y-helix is observed
at cold conditions, its position is shifted toward Trp-cage’s C-terminus.
This shift is accompanied by intrusion of water into Trp-cage’s interior
and the hydration of buried hydrophobic residues. However, our cal-
culations also show that the dominant contribution to the favorable
energetics of low-temperature unfolding of Trp-cage comes from the
hydration of hydrophilic residues.

cold denaturation | Trp-cage miniprotein | protein folding

he functional native states of globular proteins that are stable

near physiological conditions become labile when changes in
temperature, pressure, and solvent composition alter their envi-
ronment. The partial or complete unfolding of secondary and
tertiary structure associated with this loss of stability can strongly
affect protein behavior, leading to significantly impaired biological
function (1, 2). Denaturation upon heating is a ubiquitous and
well-studied phenomenon in which proteins gain configurational
entropy and unfold as a result of increased kinetic energy. By con-
trast, the mechanisms responsible for pressure-induced unfolding,
and for denaturation of globular proteins at low temperatures, re-
main incompletely understood (3-5).

Fundamental understanding of cold denaturation is important
due to its ecological implications and relevance to industrial
processing of proteins and biological materials. Freeze-tolerant
organisms such as the Arctic char, for example, thrive in sub-
freezing habitats where cold denaturation can occur (6). Bio-
pharmaceuticals are also exposed to cold conditions that can
result in denaturation when they are lyophilized into freeze-dried
solids to prolong their shelf life (7, 8). Natural cryoprotectants
such as sugars and polyols stabilize proteins against denaturation
in cold-weather species (6), and similar compounds have been
used to mitigate the damaging effects of freeze-drying in phar-
maceutical formulations (7, 9).

Cold denaturation was first reported by Hopkins in 1930 (10).
Brandts (11) subsequently observed that the Gibbs free-energy
change upon denaturation of the globular protein chymotryp-
sinogen exhibits a parabolic shape as a function of temperature,
suggesting that unfolding can occur at both hot and cold con-
ditions. Although similar parabolic free-energy curves have been
reported for other globular proteins (3), direct observation of
cold denaturation in experiment is often frustrated by freezing of
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the solvent because the low-temperature unfolding conditions
usually lie below water’s freezing point (4, 5). Experimental in-
vestigations have therefore involved proteins that cold-denature
above the freezing point of water (5, 12, 13), or systems whose
thermophysical properties are altered by chemical denaturants
(14, 15), freezing-point depressants (16), or pressurization (4).
Alternatively, cold denaturation has been studied in deeply
supercooled samples, stabilized by confining the protein in
emulsified water droplets (17, 18) or by encapsulation in reverse
micelles (19).

Numerous theoretical and computational investigations us-
ing coarse-grained models have been performed to understand
cold denaturation (20-30). Such studies suggest that globular
proteins denature at low temperatures due to destabilization
of the folded structure as a result of hydration of hydrophobic
residues in their core (21, 22, 24-26). However, such coarse-
grained models have a limited ability to describe protein—-water
interactions realistically, highlighting the need for atomic-level
understanding of this phenomenon. Furthermore, some recent
studies have challenged this view, arguing that increased hydra-
tion of hydrophilic groups may also play a significant role in cold
denaturation (27).

Here, we report results from a fully atomistic computational
study of cold denaturation of a protein with an a-helix. Using
replica exchange molecular dynamics (REMD), we examine the
stability of the 20-residue Trp-cage miniprotein (31) at tempera-
tures down to 210 K. Despite Trp-cage’s small size, it has a co-
operatively folded tertiary structure with features similar to those
found in larger globular proteins, including a hydrophobic core
with a “caged” tryptophan amino acid residue, multiple secondary
domains (an N-terminal a-helix, a 3j¢-helix, and a C-terminal
polyproline II segment), and a salt bridge between oppositely
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Fig. 1. (A) The unfolding free-energy change (Upper) and the fraction of
folded proteins (Lower) as a function of temperature. (B) The corresponding
enthalpy and entropy changes. The temperature at which the fold fraction is
a maximum is 277 K (red dashed line), and the melting and cold unfolding
temperatures (x = 0.5, purple dotted lines) are located at 231 K and 342 K,
respectively. Error bars are explicitly shown or are smaller than the symbols.
See Materials and Methods for error calculation.

charged residues D9 and R16; its fast folding kinetics (~4 ps) (32)
make it an ideal model protein system for use in fundamental
computational studies (32-38). Our simulations show that Trp-cage
cold unfolds into a compact structure, increasing the exposure of
both hydrophilic and hydrophobic residues to the surrounding sol-
vent. We observe that intrusion of water into Trp-cage’s hydrophobic
core is facilitated by disruption of the salt bridge and a shift in the
position of the 3;¢-helix. Despite shifting position, however, the a-
and 3j¢-helices remain stable under cold conditions, suggesting a

>

possible explanation for the prevalence of helical structures in anti-
freeze peptides (39, 40).

Cold Denaturation Thermodynamics

In contrast with experiment, ice formation does not impede
computational investigations of cold denaturation because crys-
tallization is a rare event on the time scales accessible with
simulation (41). Accordingly, simulations allow atomic-level in-
vestigation of systems in which folding and unfolding events are
appreciably faster than ice nucleation. Cold denaturation is still
challenging to simulate, however, because the solvent viscosity
increases rapidly as the temperature drops below water’s freezing
point (42), resulting in sluggish dynamics that frustrate sampling.
As a result, previous studies have only examined the stability of
Trp-cage at temperatures above 280 K. Yang et al. (43) recently
demonstrated that such sampling challenges can be overcome by
using REMD to investigate the folding behavior of a beta-hair-
pin structured miniprotein (MrH1) down to 240 K. We apply this
same approach to study the stability of Trp-cage over the range
210-496.5 K, at ambient pressure.

Trajectories from the 4.5-uys REMD simulations of Trp-cage
were analyzed using the two-state model of Anson (44) to
compute changes in thermodynamic properties upon unfolding
at each temperature (Fig. 1). The Gibbs free-energy change
(AG) of unfolding was calculated using

AG=Gy—Gr=—RT In (lxi) [1]

where x is the fraction of folded proteins (37) or, equivalently,
the probability of observing the single Trp-cage unit in a folded
state. Determination of x requires defining a metric to distin-
guish between folded and unfolded structures. We used the rmsd
of the a-carbons on Trp-cage (Ca rmsd) from a fully folded
reference structure obtained from NMR data (31). Based on
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Fig. 2. (A) The free-energy surface (reported in units of RT) associated with the order parameters Ca rmsd and a-helix rmsd at 210, 300, and 496.5 K. The
protein structures show representative configurations for selected basins identified on the free-energy surface. (B) Probability distribution of the location of
Trp-cage’s three-residue-long 31o-helix structure (Left). The number reported on the abscissa denotes the residue on which the 3q0-helix is centered. The
discrete distributions are represented using a continuous spline function for visual clarity. The most probable location of Trp-cage’s 31o-helix shifts from
residue 12-14 as the Trp-cage cold denatures. (Right) Distance between residues W6 and S14. As the Trp-cage cold denatures at 210 K, the separation be-
tween W6 and S14 widens. (C) Representative protein configurations from the most populated states at 210, 300, and 496.5 K. Trp-cage’s a-helix, 31o-helix,
and aromatic side chain on residue W6 are rendered in purple, blue, and red, respectively.
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Fig. 3. Probability distribution of the distance between salt bridge-forming

residues D9 and R16. The protein structures show representative configu-
rations from the two most populated states, highlighting the position of the
two salt bridge-forming residues (D9, black; R16, yellow).

our analysis of this quantity at ambient conditions (Fig. S1), we
define the folded state as the ensemble of configurations with a
Co rmsd value less than 0.3 nm. The enthalpy change (AH) was
computed by directly averaging the instantaneous values of H
over configurations belonging to the folded and unfolded
states, respectively. The entropy of unfolding (AS) was calcu-
lated from AG and AH using the thermodynamic relationship
AS = (AH — AG)/T.

The parabolic shape of AG as a function of temperature (Fig.
14) is characteristic of globular proteins that thermally unfold
and cold denature (3, 11). The largest value of AG (2.1 kJ/mol) is
observed at 277 K, where the folded fraction reaches its maxi-
mum. This estimate is in agreement with experimental studies of
Trp-cage that report values of AG =~ 3 kJ/mol near ambient
conditions (45). Experimental studies of globular proteins also
report AG values ranging from 1 kJ/mol for small peptides
similar in size to Trp-cage to 20 kJ/mol for proteins with ~100
residues (12, 46). In contrast, AG at ambient conditions ranges
from 20 to 60 kJ/mol for larger proteins (46). The comparatively
small value of AG for Trp-cage is a result of its small size and the
absence of strong cooperative effects between amino acids that
stabilize larger proteins. The fact that AG at the temperature of
maximum stability is very similar to RT (2.4 kJ/mol) indicates that
in Trp-cage one observes a dynamic equilibrium of folded and
unfolded states.

The stability of Trp-cage’s folded state decreases dramatically
at temperatures above and below 277 K. Unfolding becomes
favorable as the folded fraction drops below 0.5 and AG
becomes negative. This threshold is crossed at 342 and 231 K,
which are the nominal melting and cold unfolding temperatures,
respectively. Our simulations predict a higher melting tempera-
ture (342 K) than the experimental value (315 K) (31), but they
capture well the qualitative temperature dependence of Trp-
cage’s stability. The computed change in heat capacity upon
unfolding, AC,, is 0.28 kJ/(mol K) at 298 K, in good agreement
with the experimental value of 0.3 kJ/(mol K) (45). It was
computed using the thermodynamic equation

0AS
ACP = T <W>P. [2]

The thermodynamic relationships

Kim et al.

_ (0AG _[0AGT

imply (Fig. 1B) that hot denaturation is endothermic with posi-
tive entropy change (AH, AS > 0), and cold unfolding is exo-
thermic with negative entropy change (AH, AS < 0) (47).

Stability and Structure of Cold-Unfolded States

Coarse-grained computational models have captured the
principal thermodynamic signatures of hot and cold de-
naturation (28). Fully atomistic simulations can offer addi-
tional insight, however, by providing a detailed microscopic
description. To this end, we have characterized the effects of
hot and cold denaturation on Trp-cage’s structure. Changes in
Trp-cage’s overall structure were monitored by computing Ca
rmsd; the evolution of its a-helix domain encompassing resi-
dues 2-8 was characterized independently by computing the
rmsd of the backbone atoms in these residues with respect to
those in an ideal helical reference structure (a-helix rmsd).
The free-energy surface associated with these two order pa-
rameters (Fig. 24) was computed at 210, 300, and 496.5 K
using

G
RT In(p) +C, [4]
where R is the gas constant, p is a histogram approximation to
the configuration density, and C is a normalization constant.
The free-energy surface at 496.5 K shows that Trp-cage’s heat-
denatured state becomes stable with respect to the folded
structure (Fig. 24). This state is distinguished from the folded
protein by the absence of well-defined secondary and tertiary
structure, except for the a-helix, which remains partially folded
in a large subset of the accessible configurations. The increase in
Trp-cage’s radius of gyration and solvent-accessible surface area
(Fig. S2) suggests that its structure unravels significantly at high
temperatures. By contrast, cold unfolding at 210 K results in a
denatured structure that is relatively compact (Fig. 24). The
cold-denatured state also conserves Trp-cage’s o-helix, which
becomes more stable at cold temperatures, as evidenced by the
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Fig. 4. (Upper) Probability distribution of the number of protein-protein

and protein—water H-bonds. (Lower) Probability distribution of the number
of H-bonds formed between water and polar amino acids (PolarAA), and
between water and nonpolar amino acids (NonpolarAA) in Trp-cage.
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Fig. 5. (A) Average number of water molecules within 0.4 nm of each
residue. (B) Normalized fluctuation in the number of water molecules near
each residue, a measure of residue effective hydrophobicity. The gray bars
highlight the location of residues W6, G11, and P18, which exhibit a sig-
nificant reduction in their effective hydrophobicity upon cooling to 210 K.

disappearance of the structure where the a-helix is not present
(o-helix rmsd >0.25 nm at 300 K). The free-energy surfaces also
show that cold denatured-like states are already present at 300 K
(Co rmsd = 0.3-0.45 nm). These states become increasingly
populated as the temperature is lowered until they dominate the
free-energy landscape (Fig. 24 and Fig. S2).

Secondary structure analysis using the STRIDE algorithm (48)
reveals that the center of the three-residue-long 3¢-helix on Trp-
cage positioned at P12 in the folded structure (Fig. 2B) shifts to
S14 at cold conditions. This shift is accompanied by an increase
in the distance between residues W6 and S14 (Fig. 2B), which
reside in Trp-cage’s hydrophobic core and on its C-terminus,
respectively. W6 and S14 are in close proximity in the folded
structure, because of its U-shape. The increased separation at
low temperatures therefore suggests a widening of Trp-cage’s
U-shape and possible exposure of its hydrophobic core to the
surrounding solvent. Such structural changes are indeed ob-
served upon visual examination of representative configurations
from the most populated state at each temperature (Fig. 2C).
Configurations illustrate that hot denaturation causes significant
destabilization of Trp-cage’s secondary and tertiary structures,
whereas cold denaturation results in a compact, partially un-
folded structure with a 3;¢-helix that is slightly shifted from its
position at ambient conditions. Recent REMD simulations of
the B-hairpin miniprotein MrH1 also report a cold denatured
state with compact backbone structure (43). Hence, cold de-
naturation in Trp-cage can be viewed as partial unfolding, rather
than a nearly complete structural unraveling, as observed at
high temperatures.

Strong electrostatic interactions between oppositely charged
residues D9 and R16 on Trp-cage stabilize the folded structure.
Computational studies have shown that the formation a salt
bridge between these residues can expedite the folding kinetics
of Trp-cage (32, 49). To the best of our knowledge, however, the
effects of cold conditions on salt bridge stability have not been
studied. We investigated the behavior of the Trp-cage’s salt
bridge by monitoring the distance between oxygen and nitrogen
atoms on the side chains of residues D9 and R16, respectively.
The D9-R16 distance distribution shows that the salt bridge
forms when the two residues are separated by less than ~0.5 nm
(Fig. 3). Although the salt bridge is metastable at all conditions
examined, it loses stability upon heating or cooling the system.
This effect is particularly pronounced upon cooling, as evidenced
by the fact that states in which the salt bridge is intact become
significantly less populated at low temperatures. The reduced
stability of the salt bridge shows that the relative importance of
attractive electrostatic interactions decreases at low temperature.

8994 | www.pnas.org/cgi/doi/10.1073/pnas.1607500113

Hydration of Trp-Cage

Unlike thermal denaturation, cold unfolding is an exothermic process
that occurs despite an unfavorable change in entropy. Because of
Trp-cage’s small size, the contribution to AH arising from the volume
change of unfolding is negligible at ambient pressure (Fig. S3); it
therefore changes in the configurational energy (AU) because of
structural rearrangements in the protein and surrounding solvent that
drive cold denaturation. Although unfolding results in less favorable
intramolecular protein—protein interactions, this effect is offset at low
temperatures by an appreciable increase in the strength of protein—
water interactions. Intramolecular H-bonds formed within Trp-cage’s
folded structure at 300 K are disrupted at both high and low tem-
peratures (Fig. 4). The extent of disruption, however, is much more
significant at high temperature, consistent with the fact that elements
of Trp-cage’s secondary and tertiary structure are conserved in the
cold-unfolded state. By contrast, protein-water H-bonds are affected
differently by hot and cold conditions (Fig. 4): their number decreases
at high temperature and increases upon cooling. The formation of 4.6
additional H-bonds on average during cold denaturation (i.e., at 210
K with respect to 300 K) (Fig. 4) aids in stabilizing the unfolded state.
By computing the interaction energy between the protein and
H-bonded water molecules, we estimate that the strength of a typical
protein—water H-bond is approximately —7 kJ/mol for the models
considered here, which is within the typical range found in biological
systems (224 kJ/mol) (50, 51). The formation of H-bonds upon
lowering the temperature from 300 to 210 K therefore decreases the
configurational energy by ~32 kJ/mol. This value is comparable to the
—34 kJ/mol change in the enthalpy of unfolding observed between
300 and 210 K, suggesting that H-bond formation is largely re-
sponsible for the exothermic nature of the cold unfolding processes.
Furthermore, we find that on average only 1.3 of the 4.6 H-bonds
formed during cold unfolding are between water and hydrophobic
nonpolar residues on Trp-cage; the remaining H-bonds are associated
with increased hydration of hydrophilic polar residues. In agreement
with recent arguments by Ben-Naim (27), our results therefore in-
dicate that hydration of hydrophilic residues is the dominant contri-
bution to the favorable enthalpy of unfolding.

Theoretical studies of coarse-grained models have suggested
that the protein structure is destabilized during cold denatur-
ation by the exposure of the buried hydrophobic groups to water
(21, 22, 24-26, 43). Although our findings suggest that hydro-
phobic hydration is not the dominant driving force for cold
unfolding, we investigated this process further by computing the
number of water molecules surrounding each residue (Fig. 54)
to examine changes in the local hydration state of Trp-cage. A
water molecule was considered to be near a residue if the water’s
oxygen was found to be within 0.4 nm of any atoms on the res-
idue. Even in the folded configurations, the residues in the hy-
drophobic core, such as W6 and G11, are hydrated by a few
water molecules, in agreement with previous calculations (35).
The number of surrounding water molecules is found to increase
near most residues as temperature decreases, and there is no
clear trend suggesting a selective increase in hydration of polar
vs. nonpolar residues. A more appropriate hydrophobicity met-
ric, especially in a heterogeneous system such as a protein, is the
magnitude of local solvent density fluctuations (52-55). This
local compressibility quantifies the softness of the protein—water
interface. Analysis of normalized water density fluctuations for
Trp-cage shows a reduction in effective hydrophobicity upon
cooling from 300 to 210 K (Fig. 5B). The most pronounced de-
crease is observed at W6, G11, and P18—nonpolar residues that
are part of Trp-cage’s hydrophobic core. This behavior is con-
sistent with the viewpoint that cold unfolding is accompanied by
the hydration of buried nonpolar residues, leading to a reduction
in their effective hydrophobicity at low temperatures (21, 22, 24—
26, 43). Thus, hydrophobic hydration, though not the dominant
effect energetically (at least not in Trp-cage), is responsible for
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the increase in the overall “hardness” of the protein—-water in-
terface upon cooling. We also see that “local” residue-level hy-
drophobicity depends not only on the nature of the residue but
also, importantly, on its environment.

Conclusions

We have presented a fully atomistic simulation of cold unfolding
of an a-helical protein. The free energy of unfolding has a par-
abolic temperature dependence, similar to that reported for
larger globular proteins that undergo both heat and cold de-
naturation. In contrast to endothermic denaturation at high
temperature, cold unfolding is enthalpically driven. The cold-
denatured states are populated by compact, partially folded
structures in which the salt bridge is destabilized and Trp-cage’s
310-helix is shifted slightly from its position at 300 K. Further-
more, the stability of Trp-cage’s a-helix increases at low tem-
peratures, suggesting a possible evolutionary explanation for the
prevalence of these structures in antifreeze peptides produced by
freeze-tolerant organisms such as Arctic char. This finding may
also have implications for understanding changes in protein
stability during freeze-drying. The negative enthalpy change as-
sociated with cold unfolding of Trp-cage results from increased
protein hydration, with the most significant contributions coming
from additional H-bonds formed between water and polar resi-
dues. Although hydrophobic hydration is not the dominant
driving force for cold unfolding of Trp-cage, analysis of water
density fluctuations shows that the effective hydrophobicity of
nonpolar residues is reduced at low temperatures. Our findings
are therefore consistent with the prevailing hypothesis that cold
unfolding involves hydrophobic hydration of buried core resi-
dues, but they suggest that hydration of polar residues must be
considered in thermodynamic analysis of this process. The im-
portance of polar groups in considering the hydrophobic effect
was also noted in the case of chemical denaturation (56). Finally,
we have demonstrated that REMD can be used to overcome
sampling challenges associated with studying protein stability at
temperatures as low as 210 K. We anticipate that improved
sampling algorithms and increases in computational power will
facilitate the study of cold denaturation of larger globular proteins
and enable the calculation of full P, T stability diagrams, which
cannot be easily obtained by experiment.

Materials and Methods

The NMR structure of Trp-cage was taken from the Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank (PDB ID code 1L2Y) (31)
and hydrated with 2,910 water molecules in a cubic box of 89.08 nm? in
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