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ABSTRACT

A set of new data types emerged from func-
tional genomic assays, including ChIP-seq, DNase-
seq, FAIRE-seq and others. The results are typi-
cally stored as genome-wide intensities (WIG/bigWig
files) or functional genomic regions (peak/BED files).
These data types present new challenges to big data
science. Here, we present GeNemo, a web-based
search engine for functional genomic data. GeNemo
searches user-input data against online functional
genomic datasets, including the entire collection of
ENCODE and mouse ENCODE datasets. Unlike text-
based search engines, GeNemo’s searches are based
on pattern matching of functional genomic regions.
This distinguishes GeNemo from text or DNA se-
quence searches. The user can input any complete
or partial functional genomic dataset, for example,
a binding intensity file (bigWig) or a peak file. GeN-
emo reports any genomic regions, ranging from hun-
dred bases to hundred thousand bases, from any of
the online ENCODE datasets that share similar func-
tional (binding, modification, accessibility) patterns.
This is enabled by a Markov Chain Monte Carlo-based
maximization process, executed on up to 24 parallel
computing threads. By clicking on a search result,
the user can visually compare her/his data with the
found datasets and navigate the identified genomic
regions. GeNemo is available at www.genemo.org.

INTRODUCTION

Functional genomic assays produced new data types. Lever-
aging DNA sequencing as a high-throughput readout, these
assays can interrogate genome-wide distributions of tran-
scription factor binding (ChIP-seq), epigenetic modifica-
tions (ChIP-seq), regulatory regions (DNase-seq, FAIRE-
seq) and other functional outcomes. The immediate out-
puts are DNA sequences, which does not become biologi-
cally meaningful until being further processed. After pro-

cessing, the data are typically stored as genome-wide in-
tensities (e.g. bigWig files (1)) or functional regions (peak
files (2)). These processed data provide functional informa-
tion of the genome. The formats of these processed data
are very different from those storing DNA sequences (2,3).
Thus, functional genomic data bring new computational
challenges.

A pressing challenge is to effectively search functional ge-
nomic data from online data repositories. To date, the EN-
CODE and mouse ENCODE projects have released 3312
functional genomic datasets (4–6). There are at least two
conceivable means to search these data. One is to ‘search
by text’, that is to find relevant words in the data descrip-
tion. It would be straightforward to use Google for such a
task. The other is to ‘search inside the functional data’, for
example, to search for any binding patterns that are similar
to that of a novel transcription factor. To better appreci-
ate the difference of the two types of searches, let us com-
pare the functional genomic data files with video files. The
‘text search’ is like searching by keywords in the title or the
description of a video file. The ‘inside data search’ is like
searching for a video clip by pattern matching within the
video itself. Again, it should be noted that the data formats
of concern here are not DNA sequences, but rather genome-
wide intensities. There is yet no software for executing the
second type of searches online.

Here we present GeNemo.org, a rudimentary search en-
gine for functional genomic data. Providing GeNemo with
a bigWig or a peak file, users can search online for func-
tional genomic data that share similar patterns at any ge-
nomic regions. Alternatively, the user can designate any on-
line bigWig or peak file as the input to initiate the search, by
providing the URL of the input file to GeNemo. The search
results are reported to the user in two steps. The initial re-
turn is a synopsis of all found datasets and the correspond-
ing genomic regions that (partially) matched with the input
data. If the user clicks on an item in the synopsis, GeNemo
will retrieve the specific regions of the found dataset and dis-
play it side-by-side with the user input data. Although the
actual data are stored on remote servers, the current release
of GeNemo offers nearly instant data retrieval and display
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to users. This allows the user to discover, for example, within
certain genomic regions, the pattern of binding of a protein
is similar to that of an epigenetic modification.

MATERIALS AND METHODS

Target function for search

GeNemo searches for genomic regions where the data pat-
terns of the input data and a target dataset are similar. This
search is achieved by comparing the input data to every in-
dexed target dataset, using parallel computing. Between the
input data and every target dataset, the search is based on
a maximization process, which maximizes a local similarity
score (Rt) over the start location (i1) and the end location
(i2) of a genomic region, namely:

arg max
t,i1,i2

Rt(i1, i2),

where t is the index of the target datasets; i1 and i2 collec-
tively represent a genomic region, that includes a chromo-
some number and the start and the end positions on this
chromosome. GeNemo first uses metadata to determine if
a target dataset has a matched control dataset (such as an
IgG ChIP-seq). If a control dataset is available, the signals
of the target dataset are normalized to its respective control
before calculating Rt(i1, i2).

The local similarity score is defined as:

Rt(i1, i2) = log(Ct(i1, i2) + 1.001) + α · log(|i2 − i1|)),
where, Ct(i1, i2) is the Pearson correlation between the sig-
nals of the input file and the tth target file between genomic
coordinates i1 and i2; α is a tuning parameter, set at 0.01.

In the current release, GeNemo ranks all Rt(i1, i2) and
outputs the datasets/regions with Rt(i1, i2) > 0. If there are
more than 1000 such datasets/regions, only the top 1000
datasets/regions with the largest Rt(i1, i2) are returned. We
developed an algorithm to maximize Rt(i1, i2) based on
Markov Chain Monte Carlo (MCMC).

MCMC algorithm

To maximize Rt(i1, i2), we developed a MCMC method
based on Metropolis–Hastings algorithm (7). We will
describe the initialization, the auxiliary chain and the
acceptance-rejection rule.

To initialize, our algorithm identifies ‘seed’ regions by
finding all 1000-nt regions (i2 = i1 + 1000) on each tar-
get dataset t such that Ct(i1, i2) ≥ 0.8 and Rt(i1, i2) ≥ 0.9. If
there are any connected regions been identified, these con-
nected regions will be merged into one region if Rt(i1, i2)
for the merged region is larger than that of each unmerged
region.

We devised the auxiliary chain as follows. Denote i k =
(i k

1 , i k
2 ) as the boundary locations of a genomic region at

step k of the auxiliary chain. The proposed move is to
shift either boundary to either direction by up to δ bases.
Specifically, we generate a binary random number Ak ∼
Binary (0.5). If Ak = 1, the left boundary i k

1 will be moved,
and otherwise i k

2 will be moved. Next, we generate a uniform
random variable Bk ∼ Uniform(1, 2δ + 1), and then shift

the corresponding boundary by i k+1
1 = i k

1 − (δ + 1) + Bk

when Ak = 1, or by i k+1
2 = i k

2 − (δ + 1) + Bk when Ak = 0.
To be theoretically complete, we set i k+1

1 or i k+1
2 as the max-

imum or the minimum coordinate when the boundary of a
chromosome has been reached at a proposed move. Such
a scenario never happens in practice because there are no
functional signals in telemeric regions due to their degener-
ative sequence.

Our actual chain is generated by superimposing the fol-
lowing acceptance-rejection rule onto the auxiliary chain.
The probability of accepting a proposed move is given by
α = min (1,

Rt(i k+1)q(ik|ik+1)
Rt(i k)q(ik+1|ik) ), where Rt(i k) = Rt(i k

1 , i k
2 ), and

q(ik+1|ik) is the probability of moving from (i k
1 , i k

2 ) to
(i k+1

1 , i k+1
2 ) in the auxiliary chain. Given how the auxil-

iary chain is constructed, we derive that q(ik+1|ik) = 1
2 ·

u
2∗δ+1 , where u = 1 when chromosome boundaries are not
reached. To be theoretically complete, when a chromosome
boundary is reached, u = 1 + u∗ and u∗ is the number of
bases beyond the boundary. We recall that in this case the
auxiliary chain puts ik+1 on the boundary coordinate of the
chromosome. It is easy to see that our actual chain is ergodic
and reversible.

Parallel computing

To minimize response time, the current release of GeN-
emo creates up to 24 parallel computing threads for every
search. The target datasets are separated into up to 100 non-
overlapping subsets, and each subset is handled by a com-
puting thread. The results of these computing threads, in the
form of Rt(i1, i2), are assembled and then ranked. We tested
a series input files using 1, 10 and 20 computing threads, and
found that 20 threads typically accelerated the search by 7–9
folds (Supplementary Table S4).

Replacing signals from real data by noise for simulation

In order to make a ‘negative’ region to contain a noise pro-
file (the shape of intensities in this region) that appears simi-
lar to ‘positive’ regions, we generated the noises in two steps.
In step 1, the noise locations were generated on every chro-
mosome by a Poisson process, BP(Ni , λ), where Ni is the
total number of bases of Chromosome i, and λ = 0.01. In
step 2, on every noise location, a noise value was generated
by a Gaussian distribution G(μ, σ 2), where μ and σ 2 were
given by the mean and the variance of the intensities of all
the positive regions. We note that the noise locations should
be close to each other, because the interval between two con-
secutive noise locations should follow an exponential distri-
bution Exp(λ = 0.01).

RESULTS

The current release of GeNemo search engine

The current release of GeNemo can search against all the
released functional genomic datasets produced by the EN-
CODE and mouse ENCODE projects. As of September
30, 2015, there were a total of 3312 datasets from histone
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and transcription factor ChIP-seq, DNase-seq and FAIRE-
seq experiments. These datasets are located on remote data
servers and are not managed by GeNemo developers. We
developed a program to index these remote datasets and cre-
ate a metadata on the GeNemo server. Anticipating future
data releases, we will use this program to index additional
datasets and thus expand the pool of target files.

GeNemo has a simple user interface (Figure 1A). The
minimum required input from the user is a bigWig file or
a peak file in BED format and choice of the species. The
user can either upload the input file from her/his own com-
puter, or designate a URL if her/his file is online. GeNemo
will automatically detect the file type. With the input files,
the user can click the search button to initiate the search.
The user can also click the ‘use sample file’ button to sup-
ply GeNemo with the sample input file.

The more sophisticated users can take advantage of a few
optional inputs. The user can supply an email address. In
this case, GeNemo will send an email with a link to the
search results. This is useful when the user wants to keep
a record of the search outcome, or the search takes more
than a few minutes and that is beyond the user’s patience.

The user can choose what datasets to search against, by
clicking the ‘data selection’ button. For example, she/he can
choose to search against the entire collection of ENCODE
datasets, by clicking on ‘Use filters -> Select all -> Add’.
Alternatively, she/he can constraint the search to any sub-
set of the target files. For example, the user can constraint
the search space to certain cell types or certain kinds of ex-
periments.

GeNemo returns the search results typically in minutes.
The results are displayed in user’s web browser. In addi-
tion, a web link to the results is sent to user, if an email
address was provided. GeNemo reports the search results
in two steps. The initial return is a synopsis of all found
datasets (Figure 1B). Each entry reports a genomic region
where a found dataset exhibited similar patterns to the in-
put. The user can further investigate a found dataset by
clicking the ‘Visualize’ button next to each entry. This is
an intuitive design (imagine clicking on a Google found
entry to browse the found website). This action will in-
voke a genome browser-like display (3). The user input data
will be displayed in parallel to the found data, centered at
the genomic region where a pattern match was found (Fig-
ure 1C). The user can navigate these datasets by zooming
and shifting her/his genomic views using the ‘Navigation’
panel. Even though the found data are stored on remote
data servers that are not managed by GeNemo developers,
we optimized the data retrieval strategy such that the user
would not experience noticeable waiting time for data vi-
sualization. GeNemo instantly displays the input and the
found data, even when the user navigates to other genomic
regions.

Simulation analysis

We carried out three simulation studies to test algorithm
performance.

In the first study, we simulated the cases where all the ge-
nomic regions with matched signals were completely known
(gold standard was available). We generated three datasets.

Each dataset was composed of one input file and one target
file. Both simulated files covered the entire length of the hu-
man genome. Each pair of files contained certain number
of regions with matched signals, termed ‘matched regions’
hereafter (Supplementary Table S1). Each matched region
contained a random number of signal segments (between
1 and 10), and each signal segment had a random length
(between 100 and 2000 bp). These matched regions were in-
serted to the simulated genome at random positions. The
input and the target files had the same matched regions at
the same locations. For the rest of the genome, we inserted
additional signal segments at random locations to the target
files, and kept the input file free of any additional randomly
inserted signals. These three pairs of input and target files
were subjected to the search. Consistent to the simplicity of
the simulated data, all the matched regions in datasets 1 and
2 were found; the algorithm did not report any additional
matched regions (Supplementary Table S1). In dataset 3, the
algorithm only reported 1000 of the 1500 matched regions.
This was expected because our program was set to only out-
put the top 1000 matches.

The second simulation was carried out in a similar fash-
ion, except that additional signal segments were randomly
added to both the input and the target files (Supplemen-
tary Table S2). This is to better mimic the noises in actual
experiments and the errors in data processing. The caveat
of this simulation is that it does not offer a ‘gold standard’
test dataset. This is because if there were two additional sig-
nal segments with overlaps in the input and the target files,
they should be considered as a match in the context of a pat-
tern search, even though they were outside of the designated
‘matched regions’. If we consider two random typos that
happened to match each other, from the perspective of a text
search, it would be correct to find a match between the two
typos. In evaluating the algorithm, we chose not to include
the overlaps of the randomly inserted additional signals into
the ‘true positive’ set. We recognize that this choice would
lead to underestimation of the precision of the algorithm.
Still, the algorithm found the majority of the matched re-
gions with high precision (Supplementary Table S2).

The third simulation utilized a real dataset (H3K27ac
ChIP-seq in Bruce4 ES cells) to generate the input file. First,
to obtain the ‘positive’ match regions, we searched this
dataset (wgEncodeEM002497) against itself and obtained
the top 100 matched regions. These regions were regarded
as positive regions. The rest of the genome was regarded
as ‘negative’ regions. Signals within these positive regions
were kept, and signals on the rest of genome were replaced
by noises (see ‘Materials and Methods’ section). This pro-
duced a synthetic dataset (Dataset 7, Supplementary Ta-
ble S3). We used this synthetic dataset to search against
all ENCODE datasets. We obtained top 100 GeNemo re-
turned regions. We regarded a returned region as ‘true pos-
itive’ if this match was generated from the original wgEn-
codeEM002497 track and it overlapped with a positive re-
gion. Next, we repeated this simulation by first obtaining
500 and 1000 ‘positive’ regions (Datasets 6 and 7, Supple-
mentary Table S3). GeNemo’s sensitivity and precision in
these simulations ranged from 100% to 89.9% (Supplemen-
tary Table S3). The search took ∼10% more time in Dataset
9, where the positive regions covered ∼1.3% of the effective
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Figure 1. GeNemo screens. (A) Input screen, references and the data file is needed to search; (B) Results screen, the coordinates and tracks matching are
shown; (C) Visualization screen, the input track, genes, matching tracks (shown as results) and other annotations are shown.

genome size, than those (Datasets 6 and 7) with smaller pos-
itive regions (Running time, Supplementary Table S3).

Data applications

We will present a data example. We retrieved a public
dataset from the GeNemo indexed files. This is a bigWig
file for E2F4 ChIP-seq in B-cell Lymphoma (CH12) (8).
We used this bigWig file as the input, and used the ‘data
selection’ tool to specify GeNemo to search against all
the ENCODE datasets other than E2F4 ChIP-seq experi-
ments. GeNemo returned 1000 similarity regions (Supple-
mentary Figure S1). Some top ranked regions suggested
co-binding of E2F4 with the core transcriptional machin-
ery such as TBP and Pol2 in lymphoma (CH12 tracks, Fig-
ure 2A) and leukemia (MEL tracks, Figure 2A). Some of
these regions were precisely decorated with H3K4me3, an
epigenetic mark associated with transcriptional activation
(CH12 tracks, Figure 2B) or bivalent domains (9). Although
E2F4 was generally considered a transcriptional repressor,
these data suggest that E2F4 may also contribute to tran-
scriptional activation or bivalent regulation in blood can-
cers. Consistent to this idea, overexpression of E2F4 and its
transcriptional cofactors led to both transcriptional repres-
sion and activation in lymphoblastoid cell lines (10).

We did not expect the same E2F4 bound regions men-
tioned above to match DNA hypersensitivity regions in

normal tissues, including brain (WholeBrain tracks, Fig-
ure 2A), large intestine (LgIntestine tracks), kidney (Kid-
ney tracks, Figure 2B) and liver (Liver tracks, Figure 2B).
This makes us to posit that the identified regions are reg-
ulatory sequences used for transcriptional control in nor-
mal tissues; some blood cancers potentially used these reg-
ulatory sequences for transcriptional activation, which were
attached with E2F4. This example illustrates that GeNemo
may be used as a hypothesis generating tool. However, we
recognize the gap between any hypotheses generated by as-
sociation and functional validation.

DISCUSSION

We anticipate that online search engines will revolutionize
the utilities of biomedical big data, like Google did with text
big data. However, except for medical records, many types
of biomedical data cannot be searched as text. Functional
genomic data are a point in case. Despite their increasing
importance to biomedical research, to our knowledge, there
is yet no online search engine for them. We note that the
search methods for genomic sequences (text based or string
based) are very different from, and probably irrelevant to
the searches for functional genomic data. The latter repre-
sents the extent of molecular activities at every genomic lo-
cation. Therefore, it requires new computational engineer-
ing efforts that are customized to this data type.



W126 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Figure 2. Results for E2F4 ChIP. (A) Result in chromosome 17. Several other ChIP experiments (HCFC1, TBP, Pol2) and DNase-Seq experiments in large
intestine (LgIntestine) and whole brain (WholeBrain) are shown to have similar signals around this region. (B) Result in chromosome X. ChIP experiments
for epigenetic signal (H3K4me3) and DNase-Seq experiments in kidney and liver are shown to have similar signals.

GeNemo is the first online search engine for functional
genomic data. Many aspects of the design and the imple-
mentation of this search engine were made to optimize
the speed. This is to offer the users the opportunity to
‘interact’ with the search engine by executing more than
one search. We anticipate GeNemo to release the research
power of physicians and biologists at large. No program-
ming or bioinformatic expertise is required. GeNemo re-
duces months of work on data processing and computation
into minutes.

The price to pay for the flexibility and scalability of an on-
line search engine is that the raw datasets cannot be down-
loaded and processed at a centralized data repository. This
makes a number of normalization techniques not applica-
ble. The current release of GeNemo has a limited number of
target datasets. To expand the target datasets, we developed
programs to index additional datasets and expand GeN-
emo’s metadata. However, the next round of expansion on
indexed datasets requires substantial investments on hard-
ware, software and engineering fronts. Speed enhancements
would be another important future direction. These efforts
should probably be undertaken as industrial goals.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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