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ABSTRACT

Similar to the development of gene set enrichment
and gene regulatory network analysis tools over a
decade ago, microRNA enrichment tools are cur-
rently gaining importance. Building on our experi-
ence with the gene set analysis toolkit GeneTrail, we
implemented the miRNA Enrichment Analysis and
Annotation tool (miEAA). MiEAA is a web-based ap-
plication that offers a variety of commonly applied
statistical tests such as over-representation analysis
and miRNA set enrichment analysis, which is similar
to Gene Set Enrichment Analysis. Besides the differ-
ent statistical tests, miEAA also provides rich func-
tionality in terms of miRNA categories. Altogether,
over 14 000 miRNA sets have been added, includ-
ing pathways, diseases, organs and target genes.
Importantly, our tool can be applied for miRNA pre-
cursors as well as mature miRNAs. To make the tool
as useful as possible we additionally implemented
supporting tools such as converters between differ-
ent miRBase versions and converters from miRNA
names to precursor names. We evaluated the per-
formance of miEAA on two sets of miRNAs that are
affected in lung adenocarcinomas and have been de-
tected by array analysis. The web-based application
is freely accessible at: http://www.ccb.uni-saarland.
de/mieaa tool/.

INTRODUCTION

miRNAs are small non-coding RNA molecules of ap-
proximately 22 nucleotides length. Since their discovery in
Caenorhabditis elegans, they have been established as im-
portant regulators of biological and pathological processes
(1,2). miRNAs regulate messenger RNAs (mRNAs) in post
transcriptional phases by either halting the translation or by
degrading the mRNA molecule. In addition to their impor-
tance in biological processes, varying miRNA expression
levels in specific diseases makes them valuable biomarker

candidates, such as for Alzheimer’s disease (AD) (3). The
overall importance of miRNAs is emphasized by a study
of Lewis et al., which estimates that as much as 30% of
the human genes are regulated by miRNAs (4). As the
amount of data and applications in miRNomics is increas-
ing rapidly, driven by the fast advances in next-generation
sequencing (NGS), respective tools supporting the analy-
sis are implemented. These include miRNA prediction tools
from NGS reads (5,6), prediction of miRNA targets (7–9),
or miRNA enrichment (10,11) and annotation tools (12).
Most tools that provide enrichment analyses for miRNAs
first convert them to their targets and then perform the
analysis on the target genes (13–16). Recently, it has been
shown that this approach is biased and leads to inaccu-
rate results (17). To overcome this bias, Godard and van
Eyll suggested converting the gene-categories into miRNA-
categories and then performing the enrichment analysis di-
rectly at the level of miRNAs. Among the most widely used
tools implementing this approach is the ‘Tool for annota-
tions of human miRNAs’ (TAM) (18), which is based on
over-representation analysis (ORA) and miRNA categories
collected from databases such as HMDD (19) or miRBase
(20) and additional publications.

Here, we present miEAA which relies on the established
statistical framework of the gene set analysis toolkit Gene-
Trail (21). GeneTrail finds significantly enriched categories
for gene sets and annotates them accordingly. Like Gene-
Trail, miEAA also provides the two most common statis-
tical analyses, ORA and GSEA (gene set enrichment anal-
ysis) (22). In contrast to GeneTrail, miEAA is tailored for
miRNA input as it supports miRNA precursor names, as
well as mature miRNA names. To offer a broad function-
ality and applicability, we collected about 14 000 differ-
ent miRNA sets from the literature and various important
miRNA databases and integrated them into miEAA. Fur-
thermore, we added tools for the conversion of miRNAs
and precursors into different miRBase versions, as well as
a converter between miRNA names and precursor names.
To exemplify the functionality of miEAA, we analyzed a
set of lung adenocarcinoma related miRNAs and also com-
pared the findings to an analysis with TAM. miEAA is de-
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signed as a web-based application and is freely accessible at
http://www.ccb.uni-saarland.de/mieaa tool/.

IMPLEMENTATION

Workflow

The workflow of our miEAA tool is presented in Figure 1.
We differentiate between miRNA precursor names and ma-
ture miRNA names as input, because we collected the data
specific for those entities if possible. Since our annotations
rely on the miRBase v21 names, users can also convert their
miRNA/precursor names from earlier miRBase versions to
version 21 using an additional tool linked on the miEAA
homepage. In addition, users can also convert their miR-
NAs to precursor names or vice versa. After choosing the
input type, the user can upload their test set and then select
between ORA or GSEA (gene set enrichment analysis). The
ORA also demands a reference/background set that the
user can also upload. If this option is skipped, all annotated
miRNAs/precursors we collected are used as reference set.
If performing a GSEA, the input set of miRNAs/precursors
must be sorted by some criterion, e.g. expression level. In a
last step, the user can choose the miRNA/precursor cate-
gories that they want to analyze with miEAA, as well as
set some statistical parameters such as significance thresh-
old and P-value adjustment. After miEAA has finished the
computation, the results are illustrated in tabular form on
an HTML page.

Integrated resources

Since miEAA is intended to serve as a miRNA annota-
tion and enrichment tool, we collected information from
different miRNA-specific tools and databases (miRBase,
HMDD2, miRWalk, miRTarBase) (20,23–25) and our own
publications (3,26–28). An overview of the collected data
for miRNAs and precursors is presented in Table 1. We in-
cluded only subcategories in miEAA that contained at least
two miRNAs or precursors, respectively. For mature miR-
NAs, our tool offers 10 categories and 13 962 subcategories
in total. For precursors, miEAA includes five categories and
792 subcategories. From our own publications, we collected
the data sets diseases (3,28), age/gender (26) and immune
cells (27). These collected literature miRNAs stem from our
own studies, where miRNAs were analyzed as biomarkers
in peripheral blood. For the disease category, we provide
three data sets per disease: miRNAs found deregulated in
this disease (significant P-value), miRNAs significantly up-
regulated in the disease, miRNAs significantly downregu-
lated in the disease. The immune cell data set comprises the
miRNAs we found expressed in at least three individuals for
the respective cell type (CD14, CD15, CD19, CD3, CD56).
In addition, we assembled the immune cell specific miRNAs
showing an expression in at least three individuals of one
cell type, but not in the others. For the age- and gender-
dependent miRNA set, we provide the miRNAs found gen-
erally correlated with age, as well as those that are posi-
tively and negatively correlated, and those that are dereg-
ulated between male and female, as well as those that are
upregulated in male and upregulated in female. From miR-
Base (version 21), we collected the information about chro-

mosomal location, families, cluster (50 kB) and conserved
miRNAs. A conserved miRNA is in our case a miRNA that
has the same sequence in at least five different species. The
other data sets from miRWalk 2.0 (downloaded in 2015/05),
HMDD2 and miRTarbase (Release 4.5: Nov. 1, 2013) were
downloaded from their homepage and the miRNA names
were converted to the current miRBase v21. For miRWalk
we downloaded the data from the ‘validated miRNA-target
interactions’ (http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk2/holistic.html). Afterward, miRNAs were anno-
tated to belong to a category if they were annotated by miR-
Walk to target at least one gene in that category. The en-
richment analysis is performed directly at the level of miR-
NAs or precursors for all collected categories. The collected
data sets can be downloaded from our home page (http:
//www.ccb.uni-saarland.de/mieaa tool/downloads/). Addi-
tional information about the data sets can also be found in
Supplementary Table S1.

Statistical analysis

Regarding the statistical analysis, miEAA implements the
two most common approaches: the miRNA set based ORA
and GSEA. ORA calculates the significance of categories
for a test set and shows if the specific category is over-
represented or under-represented for the test set with re-
spect to a reference set. P-values are computed by applying
the Fisher’s exact test according to the following formula:
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Given a test set consisting of miRNAs of which k be-
long to a certain category C and l do not belong to this
category and a reference set of which j miRNAs belong
to C and m miRNAs do not belong to this category, we
would expect to find k′ = j · k+l

j+m elements in the test set be-
longing to C by chance. If k′ < k, the considered category
is under-represented for the test set, otherwise it is over-
represented. A standard significance threshold of 0.05 is ap-
plied to check if the computed P-value is statistically signifi-
cant. In miEAA, the user can adjust this threshold arbitrar-
ily.

While ORA relies on a partitioning of miRNAs into test
and reference set, GSEA considers only a sorted list of
miRNAs/precursors as input. We know that l of these in-
put miRNAs belong to a category C, and m-l do not. While
traversing now the sorted input list from top to bottom, the
running sum is increased by m-l or decreased by l, whenever
we find that the considered miRNA belongs to C or not, re-
spectively. The P-value is computed as the fraction of the
number of permutations that have a higher absolute maxi-
mum of the running sum as compared to the considered test
set. We have implemented a dynamic algorithm, which com-
putes the exact P-value for this unweighted GSEA variant
(22).

http://www.ccb.uni-saarland.de/mieaa_tool/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/holistic.html
http://www.ccb.uni-saarland.de/mieaa_tool/downloads/
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Figure 1. Workflow of miEAA. Input for miEAA are either miRNA or precursor names from miRBase version 21. After uploading a plain text file
containing these names, the user can chose the enrichment method: ORA or GSEA. Depending on this choice, the user can provide an own reference set
for ORA. For GSEA, the input list must be sorted by a meaningful criterion. In a last step, the user can choose the categories that should be analyzed, as
well as the P-value significance threshold and adjustment method. After computation, the results are presented in a tabular format on an HTML web site
and can also be downloaded as Excel sheet or tab-separated text file.

Table 1. Overview of the integrated categories in miEAA

Precursors
Category Subcategory
Families (miRBase (20)) 151
Clusters (miRBase (20)) 216
Chromosomal Locations (miRBase (20)) 24
Pubmed (miRBase (20)) 106
Diseases (HMDD2 (23)) 295
Mature miRNAs
Category Subcategory
Diseases (literature (3,28)) 60
Age/Gender (literature (26)) 6
Immune cells (literature (27)) 6
Diseases (mirWalk (24)) 172
Pathways (miRWalk (24)) 484
Organs (miRWalk (24)) 176
Gene Ontology (miRWalk (24)) 5401
Target genes (miRTarbase (25)) 7632
Chromosomal Locations (miRBase (20)) 24
Conserved miRNAs (miRBase (20)) 1

For both enrichment approaches, the user can set a lower
threshold value for the number of miRNAs from the test
set that must be contained in the categories. This parameter
has no influence on the P-value computation and adjust-
ment and is only applied afterward to reduce the amount
of categories displayed in the output. If a category contains
less miRNAs from the test set than this threshold, the cat-
egory is not displayed. Furthermore, we provide the option
to adjust P-values for multiple testing by two standard ap-
proaches, Bonferroni and Benjamini–Hochberg (29). How-
ever, the user can also perform the computation without P-
value adjustment.

Results representation

miEAA visualizes the computed results on a clearly ar-
ranged web-page in tabular form. In addition, we provide
the possibility to download the results as tab-separated text
file or as Excel file. The respective results table contains
the category, subcategory, P-value, expected and observed
number of miRNAs, and the respective miRNAs per sub-
category (Figure 2). A red or green arrow in the ORA out-
put represent an optical visualization of over-representation
or under-representation, respectively. Furthermore, the re-
sults table is freely sortable and filterable. The filters can also
be combined, e.g. the user can filter all results having a P-
value ‘<0.001’ and an observation value ‘>4.’ In addition,
we provide a link to a view where we list for each miRNA
its significant subcategories, sorted by the miRNA with the
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Figure 2. Example of an ORA for miRNA input. This screenshot visualizes an example, where we analyzed a set of miRNAs with ORA as enrichment
method. The output has a tabular format containing the category (e.g. target genes from miRTarbase), subcategories (e.g. a certain target gene), the P-value,
the miRNAs from the test set that are contained in the subcategory, the type of enrichment, the number of miRNAs that we would expect to find and the
number of miRNAs that we actually observed.

most significant annotations on top (see Supplementary
Figure S1). Furthermore, we also collected sequence prop-
erties for the miRNAs/precursors in the input list (Supple-
mentary Figure S2), e.g. the minimum free energy (MFE)
as computed by RNAfold (2.1.9) from the Vienna package
(30). If a miRNA has several precursors, we list all of them.

Test data for enrichment analysis

For testing the utility of our tool, we downloaded a publicly
available data set from GEO (GSE48414). This data set con-
tains array data of lung adenocarcinoma patients and nor-
mal controls and has been published by Bjaanæs et al. in
2014 (31). We downloaded the raw data of the Agilent ar-
rays (miRBase v16) and extracted the gTotalProbeSignal,
which is the average of all the background corrected signals
for each replicated probe. These values were summed up to
calculate the total expression value for each miRNA per
sample. Normalization was applied by using the quantile
normalization implemented in the preprocessCore package
of the programming language R. Finally, we performed a
log2 transformation of the data. For computing the differ-
entially expressed miRNAs, we used 20 lung cancer sam-
ples and 20 matched controls. We computed the median fold
changes, Wilcoxon–Mann–Whitney P-values and AUC val-
ues for all miRNAs that showed at least expression in half
of the samples of one group (434 miRNAs, Supplementary
Table S2). After conversion of the miRBase v16 miRNAs
into v21, 423 miRNAs remained. We sorted this list by their

descending AUC values and used this list of 423 miRNAs
for miRNA set enrichment analysis. As a second example,
we extracted miRNAs with a fold change of more than 1.5
in tumor samples compared to normal samples and hav-
ing a significant adjusted two-tailed P-value (< 0.05) in the
Wilcoxon–Mann–Whitney test. This list contained 49 miR-
NAs and was further converted into precursors with our
miRNA-precursor conversion tool. For this conversion, we
allowed non-unique mappings, which resulted in a set of 55
precursors.

RESULTS AND DISCUSSION

As mentioned in the Introduction, many enrichment tools
are already available, at least for miRNA target genes. Some
popular tools such as DIANA miRPath (16), miTalos (32)
and miRTar (15) work on predicted or validated targets of
miRNAs, which has been shown to be biased (17). In ad-
dition, they mostly provide only one or the other standard
enrichment analysis or have some restrictions on the input
size (e.g. 100 miRNAs for DIANA miRPath). Some other
tools such as miSEA (10) or miTEA (11) provide alternative
approaches, but they require some specialized input. The in-
put for miTEA is a list of ranked genes and then it identi-
fies the miRNAs that are significantly associated with these
genes. miSEA requires the upload of a control and treat-
ment file with expression data and seems to work on a mix-
ture of miRNA names and precursor names from the look
of the example files. It is not obvious how or if a conversion
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of miRNAs to precursors is done. Other tools as miRNAp-
ath (13) and CORNA (33) are only available as R package
and are not easily applicable for nonexpert users. Therefore,
we provide in this study primarily a comparison of our tool
to TAM (18), which is the most similar in functionality.

As a first use case, we explored a set of 49 miRNAs
we found significantly upregulated (FC > 1.5, adjusted P-
value < 0.05) when comparing 20 lung cancer samples and
20 matched controls (Supplementary Table S2). With these
miRNAs we performed an ORA with miEAA using the de-
fault parameters and uploading the human miRNAs spot-
ted on the Agilent array as a reference set. This analysis
resulted in 59 significant categories (Supplementary Table
S3). Among the most significant categories, we found for
example the target genes HOXB5, KLF11, ZEB1, RASSF2
and PTPRD. The HOX genes encode transcription factors
that regulate the embryonic morphogenesis and have pre-
viously been described to be deregulated in lung cancer
(34). KLF11 is also a transcription factor and tumor sup-
pressor, which plays an important role in TGF-� induced
growth inhibition in pancreatic cells (35). ZEB1 and ZEB2
are key regulators of the epithelial to mesenchymal transi-
tion, a process which contributes in cancer to the formation
of metastases, and have also been described in lung cancer
(36–39). Loss of RASSF2 is associated with an enhanced
tumorigenicity of lung cancer cells (40). PTPRD is a can-
didate for a tumor suppressor gene in lung cancer (41). Be-
sides these target genes, we also found the pathways ‘EGF
EGFR signaling’ and ‘small cell lung cancer’ significantly
enriched.

To compare our tool to TAM, we performed the analysis
with this tool for the same set of 49 miRNAs with the fol-
lowing parameters: annotation set version 2, FDR adjust-
ment, same reference set as above. For these data, the TAM
analysis finds in total 14 categories significantly enriched:
Learned Helplessness, mir-8 family, Pain, Carcinoma, Cell
cycle related, carbohydrate metabolism, Glomerulonephri-
tis, Breast Neoplasms, hsa-mir-200a cluster, hsa-mir-182
cluster, Nephrosclerosis, Carcinoma Renal Cell, Carcinoma
Spindle Cell, Cholangiocarcinoma, which seem to be rather
unspecific and not necessarily related to lung cancer. The
different annotation and data handling can explain the dif-
ferences in the results between TAM and miEAA. TAM
converts the input into precursor names by cutting off the -
3p/-5p/* ending of the name and renaming ‘miR’ into ‘mir.’
Thus, if data sets contain two mature miRNAs of the same
precursor, these would be merged, introducing a potential
bias. Furthermore, this way of conversion may cause chal-
lenges if mature miRNAs stem from different precursors,
e.g. in our data set of 49 miRNAs, we have four cases, where
we have several potential precursors. As an example, the
miRNA hsa-miR-9-3p can stem from the precursors hsa-
mir-9-1, hsa-mir-9-2 or hsa-mir-9-3, the miRNA hsa-miR-
7-5p from the precursors hsa-mir-7-1, hsa-mir-7-2 or hsa-
mir-7-3. Another problem we noticed is that TAM some-
times does not recognize official precursor names. When
using hsa-let-7f-1 and hsa-let-7f-2 as input, it seems that
TAM does not recognize them correctly, although it pro-
vides annotations when hsa-let-7f is used as input. There-
fore, when using TAM these conversion steps have to be
kept in mind and users should take care on the conver-

sion before uploading the data. To facilitate mapping tasks
we implemented conversion tools between different miR-
Base versions, as well as a tool that converts miRNA names
to precursor names and vice versa. These supporting tools
can be accessed from the miEAA homepage. To show that
there are still many differences between miEAA and TAM,
even if we provide TAM with correctly converted precur-
sors and although these tools have an overlap of annotation
resources, we converted the 49 miRNAs into their corre-
sponding 55 precursors, as well as the reference set, and re-
peated the above analysis with the precursor input for both
tools. While TAM still finds the same 14 categories signifi-
cant, miEAA finds 77 categories significantly enriched. Of
course, there is now an overlap of the findings of miEAA
and TAM, but miEAA finds also categories such as ‘car-
cinoma, non-small-cell lung’ and ‘lung neoplasms’ signifi-
cantly enriched (Supplementary Table S4).

In contrast to ORA, GSEA is a threshold free approach
that does not require a reference set as background distri-
bution. The above described analysis is a frequently applied
procedure for extracting miRNAs from array experiments
that are upregulated according to an arbitrary threshold.
The results of the ORA vary largely on this chosen thresh-
old. To overcome this issue, a GSEA can be performed by
sorting the expressed miRNAs on the array, e.g., by their
AUC values or fold changes. As mentioned in the Meth-
ods section, we sorted the list of 423 miRNA from the same
lung cancer study by their AUC values and performed a
GSEA using the default settings in miEAA. In total, this
analysis yielded 148 significant categories, with most hits in
pathways (69), Gene Ontology terms (34), diseases (21) and
targets (11) (Supplementary Table S5). Among the path-
ways, we find some that are directly associated with specific
cancers (Non small cell lung cancer, Melanoma, Glioma,
Prostate cancer) or are known to be often influenced in can-
cer development and progression (ErbB signaling pathway,
p53 pathway, Focal adhesion, Jak STAT signaling pathway,
p38 MAPK Signaling Pathway, PI3 kinase pathway, Apop-
tosis, Wnt signaling pathway, Adherens junction). The GO
terms having the most annotated miRNAs are involved in
transcription processes. In this context, we also find tran-
scription factors among the significant targets (HOXB5,
TCF7L1, KLF11). Another interesting finding is that most
of the miRNAs that are downregulated in the tumor tissue
are conserved miRNAs.

Summarizing our analysis of the lung cancer data set of
Bjaanæs et al., we showed that the ORA as well as GSEA
in miEAA yielded interesting results and highlighted some
pathways and targets that may be influenced in lung cancer
development.

CONCLUSION

The development of miRNA enrichment tools gain rapidly
on importance. First solutions are already available, in-
cluding the TAM tool, which offers ORA for miRNA
precursors. Here, we presented miEAA, a comprehensive
miRNA enrichment tool in terms of statistical tests and
miRNA/precursor categories. While the TAM tool con-
tains 362 categories only for precursors, miEAA includes
over 14 000 categories, defined both for precursors and ma-
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ture miRNAs. In addition, we provide supporting tools for
the conversion of precursor and miRNA names into differ-
ent miRBase versions and for the mapping of precursors to
miRNAs or vice versa. The correct mapping and handling
of precursors or miRNAs is an important step, often ne-
glected in currently available tools.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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