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The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given
the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hema-
topoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that
become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is rou-
tinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only
routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages
in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where mac-
rophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies
thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the
asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus.

Macrophages are a diverse and functionally important com-
ponent of the immune system. Evolutionarily conserved in

almost all species of the phylum Chordata, macrophages are one
of the “oldest” leukocyte lineages and have the highest degree of
plasticity across leukocyte subsets (1). Macrophages differentiate
from the yolk sac, fetal liver, and peripheral blood monocytes that
developed from bone marrow-derived hematopoietic stem cells.
With their phenotypic and functional plasticity and presence in
disparate tissues, macrophages play supportive roles in multiple
aspects of physiology. Their function often depends upon their
anatomical location, their individual ontogeny, and extracellular
cues. For example, macrophages derived from the yolk sac or fetal
liver reside in organs such as the brain (as microglia cells), pan-
creas, spleen, liver (as Kuppfer cells), and kidney. For many years,
yolk sac- and fetal liver-derived macrophages were thought to be
very long-lived, perhaps for the life span of the host. Indeed, after
differentiating during fetal development, these macrophages can
populate tissues for the duration of the host’s life. However, recent
data suggest that these cells can also divide in vivo to maintain
homeostasis (1–3) and are able to rapidly repopulate after chemo-
therapeutic depletion (in the case of brain-resident microglia cells
[4]). Our understanding of macrophage longevity and factors im-
portant for their homeostatic proliferation in vivo is incomplete
and more data are required.

FUNCTIONS OF MACROPHAGES IN HEALTH

Though macrophage longevity is not fully understood, many
studies have demonstrated that tissue-resident macrophages have
critically important functions in tissue immunity and repair, an-
tigen presentation, and tissue homeostasis. Indeed, the impor-
tance of their functionality can be tested in mice in vivo by thera-
peutic administration of toxins that kill macrophages after toxin
phagocytosis (5, 6). Of the many roles macrophages play in health
and disease, the two most prominent functions are the production
of effector cytokines and chemokines and the phagocytosis of
pathogens, immune complexes, and dead or dying cells. The type
of effector cytokines and chemokines produced after antigen rec-

ognition depends on the context in which the antigen is recog-
nized. The molecules produced by macrophages can direct epithe-
lial cell homeostasis, tissue remodeling, and/or recruitment of
other leukocytes.

Though macrophages are a member of the innate arm of the
immune system and lack genetically rearranged antigen receptors,
they can modulate their function in response to environmental
and antigenic cues. For example, macrophages express Toll-like
receptors (TLRs) that allow quick response to individual micro-
bial antigens after exposure. Moreover, cytokine receptors allow
macrophages to modify their subsequent functionality. In partic-
ular, differential recognition of gamma interferon (IFN-�), inter-
leukin-4 (IL-4), IL-13, and individual TLR ligands is thought to
allow macrophages to tune their functionality toward an M1 or
M2 phenotype. M1 and M2 functional profiles have some similar-
ity to Th1 and Th2 functions observed in memory CD4 T cells. M1
macrophages produce effector cytokines such as tumor necrosis
factor (TNF) and IL-12 and thus help in differentiation of CD4 T
cells toward a Th1 phenotype, whereas M2 macrophages produce
effector cytokines, including IL-10, and are important for wound
healing. Macrophage functionality is significantly more complex
than this oversimplification and is an area of active investigation
(7, 8).

FUNCTIONS OF MACROPHAGES IN HIV/SIV INFECTIONS

HIV infection of humans and simian immunodeficiency virus
(SIV) infection of Asian macaque monkeys are associated with
robust virus replication and progressive loss of CD4 T cells that
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ultimately render infected individuals susceptible to opportunis-
tic infections and/or neoplasias. While the virus directly infects
CD4 T cells, leading to their death, HIV/SIV pathogenesis is com-
plex, with multiple contributing factors. In addition to viral infec-
tion of CD4 T cells and their subsequent death, a hallmark of
progressive immunodeficiency lentiviral infections is systemic in-
flammation. Importantly, the degree to which the immune system
is stimulated is the best predictor of the rate of disease progression
(9, 10). While the systemic inflammation observed in HIV/SIV
infection includes every component of the immune system, acti-
vation of CD4 T cells in particular directly benefits the virus by
increasing the pool of preferred target cells. The causes of inflam-
mation observed in progressive HIV/SIV infections are many and
are the center of much research effort (11). Broadly speaking,
inflammation is thought to be initiated by factors including trans-
locating microbial products from a damaged gastrointestinal (GI)
tract, recognition of viral nucleic acids via Toll-like receptors, and
responses to proinflammatory cytokines such as TNF-� and
IFN-�.

Inflammation is an important factor in HIV/SIV disease pro-
gression in both untreated and antiretroviral (ARV)-treated indi-
viduals. Even in HIV-infected individuals receiving ARV treat-
ment, residual inflammation persists. Several studies have shown
that, especially if ARVs are initiated in the chronic phase of infec-
tion, this residual inflammation is associated with increased mor-

tality among ARV-treated, HIV-infected individuals (12–14).
Importantly, this increased mortality is not associated with op-
portunistic infections but instead is attributed primarily to cardio-
vascular disease and malignancies.

Tissue macrophage functions are thought to contribute to
HIV/SIV disease pathogenesis via a variety of mechanisms. Mac-
rophages are thought to be targeted by the virus in vivo, to respond
to microbial products that translocate from the lumen of the GI
tract, to phagocytose infected T cells, antibody complexes, and
microbial products, and to remodel tissue (Fig. 1). While CD4 T
cells, in particular memory CD4 T cells, are thought to be the
predominant target for the virus in vivo, several studies have sug-
gested that macrophages can also serve as targets for HIV and SIV
(discussed in more detail below). During the chronic phase of
HIV/SIV infection, and after administration of ARVs, myeloid
cells clearly contribute to the observed systemic inflammation
(Fig. 1). Though the antigens or factors that directly stimulate
myeloid cells in vivo are multifactorial and incompletely under-
stood, they likely include bacterial products, dead and dying cells,
virus particle-containing immune complexes, and proinflamma-
tory cytokines (15).

Irrespective of the antigens/products that directly stimulate
myeloid cells in vivo, myeloid cell responses directly contribute to
disease pathogenesis. The effector molecules produced by myeloid
cells after stimulation include TNF-�, IL-1�, soluble CD14

FIG 1 Macrophage activation and subsequent contributions to systemic inflammation and disease progression. Macrophages can be activated by pathogens,
microbial products, or proinflammatory cytokines. Activated macrophages then contribute to inflammation-associated pathologies, including fibrosis, cardio-
vascular disease, neurological disease, and bystander cell death in surrounding tissues.
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(sCD14), D-dimer, IL-6, transforming growth factor � (TGF-�),
tissue factor (TF), sCD163, and IL-13 (16–18). These molecules
each play particular roles in pathogenic occurrences observed in
HIV-infected individuals. TNF-� and IL-1� can have direct ef-
fects on cells within multiple tissues. TNF-� signaling through
many receptors can lead to activation of proteases that activate
intracellular caspase proteins, leading to apoptotic death (19).
IL-1� can lead to activation of the inflammasome with subsequent
induction of pyroptosis-mediated cell death (20). Exuberant pro-
duction of these two effector cytokines can thus lead to bystander
cell death that can contribute to HIV/SIV disease pathogenesis.
Elevated levels of sCD14, TF, D-dimer, and IL-6 are observed in
both ARV-treated and treatment-naive HIV/SIV-infected indi-
viduals (12, 14, 18). Importantly, in ARV-treated HIV-infected
individuals, plasma levels of these markers are associated with
increased mortality (11, 13, 21). As mentioned, a predominant
cause of increased mortality is cardiovascular disease (CVD). IL-6,
sCD14, TF, and D-dimer are thought to act directly on the plate-
let-clotting cascade, increasing thrombotic events and contribut-
ing to CVD (14, 18, 22, 23). Additionally, macrophage activation
can lead to fibrosis. Stimulated macrophages can produce TGF-�,
which is thought to lead to reorganization of extracellular spaces
(24, 25). TGF-� stimulates production of collagen by resident
fibroblasts. This collagen production is part of the wound healing
process, but chronic collagen deposition leads to fibrosis (26).
Fibrosis within lymphoid tissue of HIV/SIV-infected individuals
is thought to limit the ability of the tissue to support healthy im-
munological processes (24, 25, 27).

Taken together, it is clear that the function of tissue-resident
macrophages is critically important for health. However, their
chronic activation can lead to several detrimental consequences
that contribute to HIV/SIV disease progression, and novel thera-
peutic interventions might aim to blunt these responses.

CLINICAL DISORDERS ASSOCIATED WITH VIRAL
REPLICATION IN MACROPHAGES

Prior to the development of ARV therapy, up to 60% of HIV-
infected individuals were diagnosed with a disorder referred to as
HIV-1-associated dementia (HAD) (28–31). The term HAD is
somewhat ambiguous and includes any symptom involving cog-
nitive impairments, which can range from psychiatric disorders to
motor impairment. Decreased learning, information processing,
and concentration or attention are also associated with HAD (31,
32). More severe disease can include HIV-associated encephalitis
(33). While there are conflicting reports on potential effects of
HIV-1 clade type on HAD incidence, HIV clade type may influ-
ence the likelihood that persons living with HIV will develop neu-
rocognitive disorders and/or the severity of HAD onset and pro-
gression (34). For example, HIV-1 clade D virus is associated with
a higher frequency of HAD than HIV-1 clade C (34). Confound-
ing factors, including access to ARV therapy, neuropsychological
diagnostic methodology, and coinfections, limit comparisons
across these studies. Recent data suggest neurodevelopmental de-
lay and/or acute neurological symptoms in young children in-
fected with clade C HIV-1 (35). There is evidence that HAD is
attributable to viral infection of brain-resident macrophages (mi-
croglia cells and perivascular macrophages), especially when HAD
has advanced to HIV-associated encephalitis (33). In in vitro stud-
ies, these cells can be infected with certain HIV subtypes (36, 37).
Moreover, viral RNA levels in cerebral spinal fluid (CSF) are ele-

vated in HIV-infected individuals with HAD (38). However, viral
RNA is only detected in �20% of CSF samples of ARV-naive,
HIV-infected individuals with peripheral blood CD4 T cell counts
higher than 500 (39). Multinucleated giant cells, which are
thought to develop after HIV envelope protein-mediated fusion of
infected cells, are often found within the lesions observed in HIV-
associated encephalitis (40, 41). However, it is important to note
that giant, multinucleated cells are observed in many diseases as-
sociated with inflammation (independent of HIV/SIV infections),
and this is thought to be attributable to fusion of adjacent macro-
phages in the presence of proinflammatory cytokines such as IL-4
and IL-13 (42). Thus, the degree to which the observed multinu-
cleated cells in HIV/SIV infections can be attributed to envelope
protein-mediated fusion versus inflammation-mediated fusion
warrants further investigation.

While assessing direct viral infection of brain-resident leuko-
cytes has remained somewhat elusive (discussed below), much
effort has focused on understanding the quasispecies of contem-
poraneous viruses that exist in plasma and CSF. These studies
have consistently demonstrated compartmentalization of HIV se-
quences within the CSF compared to virus in plasma (35, 38, 43).
Similarly, viruses isolated from the brains of SIV-infected ma-
caques with SIV encephalitis are genetically different from viruses
isolated from other anatomical sites (44), and host genetic factors
are thought to contribute to the ability of SIV to become neu-
rotropic (45). Moreover, viruses isolated from the CSF infect mac-
rophages efficiently in vitro, and their envelopes tend to have a
higher affinity for CD4 (46–48). Further, some studies have ana-
lyzed brain tissue taken from HIV-infected individuals postmor-
tem. Using molecular approaches to detect viral RNA and DNA,
these studies suggested that individuals who were suffering from
some neurocognitive deficiencies had higher levels of viral nucleic
acids in the brain (49, 50). Additional studies using immunohis-
tochemical analysis with cell-specific markers in combination
with HIV-specific in situ hybridization or antibodies against HIV
proteins have suggested that the virus exists within brain microglia
and perivascular macrophages (40, 51). Though replication-com-
petent virus has been isolated from brain tissue sections, more
definitive studies with isolation of viable perivascular macro-
phages or microglia cells and subsequent recovery of replica-
tion-competent virus have not been performed. Hence, direct
and conclusive evidence that virus within the CSF originates
from brain-resident myeloid cells is lacking.

With the advent of highly active antiretroviral therapy (HAART),
the severity of HAD has significantly decreased (34, 52, 53). How-
ever, subtler neurological disorders can arise even in individuals
who are aviremic with HAART (54). These milder neurological
disorders have been collectively designated HIV-associated neu-
rocognitive disorder (HAND). Though the frequency of HAD has
significantly decreased with HAART, approximately half of all
HIV-infected individuals develop some form of HAND (34, 55,
56). One plausible explanation for HAND is decreased, but in-
completely suppressed, viral replication within the central ner-
vous system (CNS) (54, 57). Indeed, the blood-brain barrier is
thought to decrease the penetrance of antiretroviral medication
into the CNS (55, 58). Hence, suboptimal dissemination of ARVs
into the CNS might allow virus to replicate at low levels within
brain-resident cells, resulting in HAND. Some studies have shown
that viral nucleic acids can be recovered from the CNS of individ-
uals who are treated with antiretrovirals and who have contempo-
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raneously undetected virus in plasma (59). While residual viral
replication in brain-resident cells could contribute to neurological
diseases observed in ARV-treated individuals, several studies have
also implicated local inflammation (33, 52, 60, 61). Myeloid cells
produce multiple proinflammatory proteins that have been di-
rectly implicated in HAND in vivo. Levels of neopterin, CXCL10,
and CCL2 are elevated in the CSF of individuals with HAND,
suggesting that infiltration and activation of local myeloid cells
may contribute to the disease (62). Moreover, inflammation is
thought to promote production of amyloid precursor protein,
potentially leading to formation of amyloid plaques—which are
observed in individuals with neurological symptoms (63)—and
contribute to HAND in individuals on ARVs (64).

Overall, HAND is the most widely accepted clinical manifesta-
tion observed in HIV-infected individuals that has been attributed
to direct viral infection of myeloid cells. While it is impossible to
discern between pathologies attributed to combinations of direct
viral infection, interactions between viral proteins and brain-res-
ident cells, and local inflammation, neurological disease is a very
common event in HIV-infected individuals and novel therapeutic
interventions to reduce or prevent it are greatly needed.

EVIDENCE THAT MACROPHAGES SUPPORT VIRAL
REPLICATION

Several years after HIV was identified as the causative agent of
AIDS, strains of HIV were described as either macrophage tropic
(“M-tropic”) or T cell tropic (“T-tropic”). For example, postmor-
tem HIV isolates from the brain of a patient with AIDS dementia
complex (HIV YU-2) and lung of a patient with AIDS (HIV Ba-L)
were both identified as viruses that replicate efficiently in primary
macrophages and were termed M-tropic (65, 66). Conversely, the
first molecular clone of HIV, NL4-3, was obtained from the
peripheral blood of a patient with AIDS, replicated in CD4 T cell
lines but not non-T cell lines, and was identified as T-tropic (67).
Further investigation demonstrated that the M-tropic and
T-tropic nomenclature actually reflected the coreceptors utilized
by each virus, with M-tropic and T-tropic viruses using CCR5 and
CXCR4, respectively. A new viral nomenclature then emerged in
which M-tropic viruses are R5 tropic and T-tropic viruses are X4
tropic (68). Though only a minority of CD4 T cells in the periph-
eral blood express CCR5, the majority of CD4 T cells within the GI
tract express CCR5, and the vast majority of transmitted viruses
are R5 tropic, with X4-tropic viruses generally emerging very late
in infection (69–71).

R5 macrophage-tropic viruses tend to be defined by their abil-
ity to infect monocyte-derived macrophages (MDM) in vitro (72).
In this system, monocytes are purified from peripheral blood and
stimulated in vitro with lipopolysaccharide and IL-4, causing ac-
tivation and differentiation into cells that resemble tissue-resident
macrophages. At this point, the cells are significantly more prone
to infection with HIV-1. Indeed, resting monocytes are very diffi-
cult to infect in vitro (70). That HIV-1 can very clearly infect
MDM in vitro suggests that macrophages could support viral rep-
lication in vivo.

Importantly, though R5-tropic viruses comprise the majority
of virus variants until late in infection, several studies have dem-
onstrated that not all R5-tropic HIV-1 variants can infect macro-
phages and that factors beyond coreceptor dependence—includ-
ing CD4-binding affinity and anatomic location—may influence
what types of cells are infected (73). R5-tropic viruses that infect

myeloid cells in vitro tend to have much higher affinity (up to
30-fold) for CD4 than viruses (R5 or X4 tropic) that cannot infect
myeloid cells in vitro (74). The vast majority of CCR5-tropic HIV
strains do not infect myeloid cells in vitro and might, instead, be
classified as “R5 T cell tropic” (46, 48, 70, 74). Thus, a new no-
menclature system has been suggested: R5 T cell tropic (the vast
majority of viruses isolated from patients), R5 macrophage tropic
(that evolve late in untreated infection to have a relatively higher
affinity for CD4), and X4 T cell tropic (that evolve only late in
infection) (70).

As previously stated, many tissue macrophages arise from dif-
ferentiation of peripheral blood monocytes, and some data sug-
gest that these monocytic macrophage precursors might be in-
fected in vivo. Monocytes that circulate in peripheral blood are
easily obtained from HIV-infected individuals. While these cells
are extremely short-lived (either dying or differentiating into tis-
sue macrophages [75]), some studies have suggested that viral
DNA can be found within peripheral blood monocytes (76–79).
Peripheral blood monocytes are separated into two subsets based
upon expression patterns of CD16 and CD14, where CD16�

monocytes are thought to have initiated differentiation into tissue
macrophages (80). Monocytes that express CD16 are more prone
to infection with HIV-1 in vitro, and some studies have found very
low levels of viral DNA within these cells after flow cytometric
sorting from peripheral blood of HIV-infected individuals (80,
81). However, other groups have reported that viral DNA is not
detectable in peripheral blood monocytes from HIV-infected in-
dividuals (82, 83).

While peripheral blood is relatively easy to obtain from cohorts
of HIV-infected and uninfected individuals, obtaining tissue-res-
ident macrophages presents a particularly difficult problem. Two
anatomical sites that have been surgically sampled in HIV-in-
fected individuals are broncheoalveolar lavage (BAL) fluid and the
intestine. Alveolar macrophages are the predominant cell type in
BAL fluid. Thus, high numbers of alveolar macrophages can be
obtained and isolated. Two studies have found that viral DNA can
be detected in alveolar macrophages from HIV-infected individ-
uals (84, 85). In both cases, alveolar macrophages from 70% of the
subjects sampled contained viral DNA. Moreover, in each study,
levels of viral DNA within alveolar macrophages were very low
(even in treatment-naive, viremic, HIV-infected individuals),
with around 1 in 100,000 alveolar macrophages containing viral
DNA. Both studies also noted the difficulty in purely isolating
alveolar macrophages given their autofluorescence and nonspe-
cific antibody binding. Another study used flow cytometric sort-
ing to isolate CD4� T cells and non-CD4 T cells from ileal and
rectal biopsy specimens of HIV-infected individuals (86). In both
anatomical sites the authors found low, but routinely detectable,
levels of viral DNA in non-CD4 T cells, suggesting that myeloid
cells were infected. However, other studies have suggested that GI
tract-resident macrophages are resistant to HIV infection (87),
and it is important to note that some HIV accessory proteins ac-
tively downregulate both CD3 and CD4 (88). Thus, CD4 T cells
might become infected and then downregulate CD3 and CD4,
making them appear as if they were not actually CD4 T cells. While
these limited studies have routinely found viral DNA in tissue-
resident macrophages from HIV-infected humans, all studies
highlighted the need for further investigation given the limited
numbers of cells that could be analyzed, the low levels of viral
DNA observed, and the relative difficulty in studying and isolating
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these cells that are rare, bind antibodies nonspecifically, and are
autofluorescent.

ANIMAL MODELS OF MACROPHAGE INFECTION IN VIVO

The nonhuman primate SIV model of HIV infection has the po-
tential to ameliorate at least one of the major limitations of re-
search with human subjects. Namely, at necropsy, abundant tis-
sues from any and all anatomical sites are available from
nonhuman primates. Moreover, the availability of different
strains of SIV, with differing macrophage tropism, allows for test-
ing the hypothesis that tissue macrophages can support viral rep-
lication in vivo.

Early after HIV was described as the causative agent of AIDS in
humans, researchers found a similar virus, SIV, that recapitulated
HIV pathogenesis in Asian macaques (89). Since the discovery of
SIV and its pathogenicity in nonhuman primates, there have been
numerous identified or developed strains of SIV that cause very
specific pathologies. A number of SIV models have been associ-
ated with significant viral replication in macrophages in vivo.
SIVsmPBj is one of the first versions of SIV that was found to
efficiently replicate in macrophage populations in vivo (90). When
pigtail macaque monkeys are infected with SIVsmPBj, the animals
very rapidly progress to death. Within a few weeks of infection, the
animals experience severe diarrhea and generally require euthana-
sia to avoid death from dehydration. At the time of death,
SIVsmPBj can easily be detected in GI tract lymphocytes, includ-
ing macrophages, by in situ hybridization and immunohisto-
chemistry. The disease caused by SIVsmPBj leads to a nearly com-
plete destruction of the epithelial barrier of the GI tract.

The second SIV model wherein SIV efficiently replicates in
macrophages in vivo is SIV/17EFr infection of pigtailed macaques
(91). SIV/17EFr was grown from the brain of a SIV-infected ani-
mal that manifested neurological disease, and it is considered neu-
rotropic. While the virus is not sufficient to cause disease in Asian
macaques, when pigtail macaques are coinoculated with SIV/
17EFr and a virus that replicates efficiently in memory CD4 T cells
(such as SIV/�B670), the animals quickly (generally within 5
months) succumb to neurological disease. The ensuing neurolog-
ical disease is associated with significant levels of virus in the CSF,
and viral RNA can be detected by in situ hybridization within
brain-resident cells.

Another immunodeficiency virus that infects macrophages
in vivo is the HIV/SIV chimeric virus SHIVDH12 (92, 93). This
virus was created molecularly by inserting a CXCR4-tropic enve-
lope gene from an HIV molecular clone (HIV DH12) into the
SIVmac239 clone (94). After inoculation and passage in rhesus
macaques, a very pathogenic virus emerged that was subsequently
subcloned and called SHIVDH12R. When SHIVDH12R is inocu-
lated into rhesus macaques, the numbers of CD4 T cells in the
animal drop precipitously, and after the CD4 T cell targets are
depleted, viral replication can be detected in tissue-resident mac-
rophages by in situ hybridization and immunohistochemistry (92,
93). Disease progression is rapid, with animals requiring euthana-
sia within 5 months postinfection, and viral RNA can be detected
within macrophages from both lymphoid and GI tract tissues.
That this HIV/SIV chimeric virus uses CXCR4 as a coreceptor and
infects macrophages certainly challenges the idea that macro-
phage-tropic viruses require use of CCR5 as a coreceptor. Thus,
alternative mechanisms for infection or interactions with macro-

phages in vivo that are independent of direct chemokine receptor-
dependent infection may exist.

The three strains of viruses mentioned above (SIVsmPBj, SIV/
17EFr, and SHIVDH12R) are not the common viruses that most
researchers use in the field to study immunopathogenesis or to
develop potential HIV vaccines. The most widely used SIV strains
across the world are SIVmac251, SIVmac239, SIVsmE543, and
SIVsmE660. SIVmac239 and SIVsmE543 are molecular clones,
and SIVmac251 and SIVsmE660 are uncloned viruses and thus
contain a swarm of individual viruses. Irrespective of the virus,
infection route, and species of Asian macaque used, SIV-infected
animals exhibit acute viremia that reduces to a set point, progres-
sive loss of CD4 T cells from peripheral blood, and progression to
simian AIDS in approximately 2 years. In rare instances, however,
animals infected with one of these viruses rapidly progress to sim-
ian AIDS. These rapid progressor animals are fairly atypical in that
they very quickly lose memory CD4 T cells and do not produce an
antibody response to the virus (are virus seronegative). At the time
of euthanasia, viral RNA can be detected in macrophages of mul-
tiple tissues by in situ hybridization and immunohistochemistry
in these rapid progressors (95).

Among these four models of SIV that have been shown to effi-
ciently replicate in macrophages, a common theme is the very
rapid and nearly complete depletion of CD4 T cell targets. Massive
depletion of CD4 T cells can also be accomplished experimentally
with antibodies against CD4 that deplete CD4 T cells in vivo. In-
deed, experimental depletion of CD4 T cells in rhesus macaques
with depleting anti-CD4 antibody followed by infection with SIV
leads to very rapid disease progression and robust viral replication
within macrophages (96).

An additional area of investigation for infection of macro-
phages has focused on the role of viral accessory proteins in cellu-
lar targeting and disease progression. The viral protein X (Vpx)
has been reported to promote viral replication in macrophages
both in vitro and in vivo by targeting the host restriction factor
SAMHD1 for proteasomal degradation (97–99). SAMHD1 inhib-
its viral replication in myeloid and dendritic cells by depleting the
cellular pool of deoxyribonucleotide triphosphates for reverse
transcription (99, 100). In HIV-2 and SIV strains of the SIVsm
lineages, Vpx may facilitate efficient viral replication in macro-
phages by degrading SAMHD1. Indeed, in rhesus macaques in-
fected with a vpx deletion mutation of SIVmac239, macrophages
in the spleen and lymph node had a significantly lower frequency
of SIV infection than animals infected with wild-type SIVmac239
(101). However, we recently reported a dramatic decrease in viral
replication in rhesus macaques infected with SIVmac239�Vpx
but no increase in the frequency of viral DNA in the myeloid
cell compartment compared to animals infected with wild-type
SIVmac239 (102). In the same study, we saw no difference in the
frequency of animals with viral DNA� myeloid cells in African
green monkeys infected with SIVagm, which does not express
Vpx. That tissue myeloid cells were not infected at a higher fre-
quency in Vpx-encoding virus infection may be explained in part
by recent reports that viral protein R (Vpr), an evolutionarily re-
lated viral accessory protein, may also degrade SAMHD1 in my-
eloid and dendritic cells (103, 104). Unlike Vpx, Vpr is encoded by
all extant primate lentiviruses. Though additional characteriza-
tion of the roles of Vpr and Vpx in HIV/SIV infection is needed,
current data demonstrate the importance of considering differ-
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ences between HIV and SIV strains when studying infection of
macrophages both in vitro and in vivo.

In addition to the aforementioned Asian macaque SIV models,
one group very recently developed a murine model for studying
macrophage-tropic HIV in vivo. In this model, immunodeficient
mice were reconstituted with fetal, human, hematopoietic cells
that developed into myeloid cells but not T cells. These particular
“humanized” mice, termed myeloid-only mice (MoM), could
subsequently be infected with macrophage-tropic strains of HIV
in vivo and support viral replication (83). Interestingly, very few
CCR5-tropic viruses were able to replicate in MoM, suggesting
this might be a very rare event in vivo.

Taken together, it is clear that primate immunodeficiency len-
tiviruses can have the capacity to replicate in myeloid cells in vitro
and in vivo. However, it is important to note that the models
wherein viral replication is routinely observed to occur within
tissue-resident macrophages have two common themes: (i) mas-
sive systemic depletion of CD4 T cells and (ii) very rapid disease
progression. Indeed, the four nonhuman primate models listed
above are all associated with progression to AIDS in only a few
months, compared to the “normal” progression rate of 1 to 2 years
for SIVmac239, SIVmac251, SIVsmE543, and SIVsmE660 or
compared to the “normal” progression rate of nearly 10 years for
ARV-untreated HIV-infected individuals. Thus, though these
models provide useful tools for studying viral replication in mac-
rophages and pathologies that can occur in SIV-induced enceph-
alitis, they do not necessarily provide conclusive information re-
garding the importance of SIV-macrophage interactions in the
setting of normal progression in HIV-infected individuals, nor do
these models necessarily suggest that macrophages represent a res-
ervoir of infected cells after initiation of ARVs. Moreover, the
SIV/Asian macaque animal model for HIV is further complicated
by the finding that SIVs only very rarely evolve in vivo to use
CXCR4 as a coreceptor, which might limit the appropriateness of
this model for examination of cellular targeting by the virus in
animals who have progressed to simian AIDS (105, 106).

METHODS FOR CHARACTERIZING HIV/SIV IN
MACROPHAGES

Characterization of interactions between HIV/SIV and macro-
phages in vivo has relied, almost entirely, on detection of viral
nucleic acids or viral antigens associated with these cells. This can
be accomplished either by in situ hybridization, isolating macro-
phages from tissues followed by molecular detection of HIV/SIV
RNA and/or DNA, or the use of antibodies against viral antigens
(i.e., Gag protein) via immunohistochemistry. Some studies have,
alternatively, used electron microscopy to identify the cellular lo-
calization of viral particles within macrophages.

In situ hybridization can be performed on formalin-fixed tissue
sections. With this method, complementary oligonucleotide
probes hybridize to the HIV/SIV genome and are revealed by mi-
croscopy. This analysis can be combined with monoclonal anti-
body staining against viral antigens and cellular antigens to iden-
tify which cells contain viral nucleic acids. Historically, in situ
hybridization has relied upon the use of “riboprobes” to detect
viral RNA where only cells containing multiple copies of viral
RNA could be detected. This technology has become the “gold
standard” for identifying cells that replicate HIV/SIV in vivo. In-
deed, this analysis has been routinely used to identify viral RNA�

myeloid cells in the macrophage-tropic SIV/nonhuman primate
models listed above.

Examination of viral RNA� cells by in situ hybridization and
viral antigen-positive cells by immunohistochemistry has been ex-
haustively performed using tissues from nonhuman primates in-
fected with SIVmac239, SIVmac251, SIVsmE543, or SIVsmE660.
Many of these studies have performed phenotypic analysis of vi-
rus-positive cells based upon expression (or lack thereof) of CD3,
CD68, HAM56, and/or CD163 (107, 108). In SIV-infected ma-
caques that rapidly progress, the majority of SIV viral RNA� cells
appear to be macrophages (95). However, when chronically SIV-
infected Asian macaques are examined, the vast majority of cells
that are defined viral RNA� by in situ hybridization express CD3
(95). Cells that are virus positive but CD3� are assumed to belong
to a myeloid lineage and can account for up to 10% of all virus-
positive events in chronically infected animals (95). New technol-
ogies, termed DNAscope and RNAscope, have inherent signal am-
plifications that allow for detection of as few as one copy of viral
nucleic acid (109). These techniques coupled with the cellular lo-
calization of the signal(s) may be able to identify cells with one
integrated copy of viral DNA and could help to unambiguously
identify the level to which macrophages become infected by the
virus in vivo.

While in situ hybridization has been used to measure RNA-
producing cells in vivo, alternative explanations exist to explain
the detection of virus-positive cells by using this technique. One of
the many functions that tissue-resident macrophages perform is
clearance of dead and dying cells and of antibody/complement-
coated immune complexes (26). Thus, macrophages that appear
as viral RNA� by in situ hybridization might, occasionally, be in
the process of clearing antibody/complement-coated HIV/SIV via
phagocytosis. As mentioned previously, another approach to
identify viral infectivity in individual subsets of cells in vivo in-
volves disruption of tissues into single-cell suspensions with sub-
sequent flow cytometric sorting of individual cells followed by
PCR for viral DNA. Recently, we performed a fairly comprehen-
sive analysis of viral DNA levels in CD4 T cell subsets and myeloid
cells from multiple tissues of a large cohort of chronically SIV-
infected Asian macaques (102). From this analysis, viral DNA was
amplified from mucosal-resident macrophages from only two
SIV-infected animals (colon-resident macrophages and jejunum-
resident macrophages). Myeloid cells isolated from lymphoid tis-
sues contained viral DNA in approximately 40% of the animals.
These results are consistent with the anatomical localization of
virus-positive cells in tissues where CD4 T cells are less dramati-
cally depleted compared to mucosal tissues in progressively in-
fected individuals (69). We therefore argued that routine viral
acquisition by tissue-resident myeloid cells was dependent upon
the presence of CD4 T cells in the same tissue.

Analysis of lymphoid tissues, particularly the lymph node, by
in situ hybridization and immunohistochemistry has also shown
that virus-positive myeloid cells are primarily found in tissues
where CD4 T cells persist. In the lymph node, virus-positive CD3�

myeloid cells are found almost exclusively within the paracortex
area (V. M. Hirsch, unpublished data, and J. D. Estes, personal
communication). One explanation consistent with this finding
(viral DNA in myeloid cells in anatomical sites replete with CD4
T cells and the colocalization of viral RNA� cells in the lymph
node paracortex) is phagocytosis of SIV-infected CD4 T cells
by resident macrophages. Using quantitative PCR for rear-
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ranged T cell receptor genes, we showed that myeloid cells
containing viral DNA also contained rearranged TCR DNA,
suggesting that myeloid cells might have acquired the viral
DNA by phagocytosis of SIV-infected CD4 T cells (102). While
we were unable to determine whether or not the viral DNA we
amplified from lymphoid tissue-resident myeloid cells repre-
sented replication-competent virus, it remains possible that
virus within phagocytosed T cells could be responsible for la-
tency and/or that macrophages become infected during the
phagocytosis process. Indeed, recent work has suggested that
HIV can replicate in macrophages after macrophage phagocy-
tosis of HIV-infected T cells (110).

Consistent with the premise that viral replication can occur
within myeloid cells through phagocytosis, analysis of HIV-in-
fected macrophages via electron microscopy suggests that the
virus is localized in membrane-bound intracellular compart-
ments termed virus-containing compartments (VCCs) (111,
112). These VCCs closely resemble compartments formed during
phagocytosis where lysosomes fuse with phagosomes before their
contents are recycled through the cell into the extracellular space.
Some have argued that viral replication in macrophages is physi-
ologically different from that observed in T cells and that the virus
replicates within these VCCs (111, 112).

CONCLUDING REMARKS

That macrophages are capable of supporting HIV/SIV replication
is incontrovertible. Indeed, HIV can replicate in purified mono-
cyte-derived macrophages in vitro, and there is compelling evi-
dence that SIV replicates in macrophages in vivo when CD4 T cell
targets are very dramatically depleted. However, it is unclear how
macrophage infection contributes to the asymptomatic phase of

HIV/SIV infection, and it is completely unclear whether or not
macrophages represent a reservoir of replication-competent virus
in ARV-treated, HIV/SIV-infected individuals. While it has been
possible to isolate virus from anatomical sites where macrophages
are presumed to be the source of virus in vivo (113), there have
been no data generated to demonstrate that replication-compe-
tent virus can be retrieved from a macrophage population ex vivo.
There are several important ways in which the virus can interact
with macrophages and contribute to disease (Fig. 2). These inter-
actions include (i) direct infection, (ii) viral replication, possibly
via VCCs, (iii) phagocytosis of infected CD4 T cells, and (iv)
phagocytosis of antibody/complement/virus complexes. How
these interactions facilitate viral spread and/or disease progression
remains unclear, and additional work is certainly warranted. In-
deed, it remains critically important to determine the degree to
which replication-competent virus can be retrieved from macro-
phages, whether this virus is genetically disparate from virus re-
covered from CD4 T cells, how currently used antiretroviral med-
ications interfere with these processes, whether macrophages are a
viral reservoir in ARV-treated individuals and, ultimately, if addi-
tional therapeutic interventions are required. Finally, expanded
use of biopsy specimens or explants from both ARV-treated and
untreated HIV-infected individuals would provide valuable infor-
mation about the role of macrophages in HIV infection and the
relevance of in vitro and animal models for studying the latent
viral reservoir. Irrespective of the infection status of myeloid cells
in vivo, their contribution to inflammation is indisputable and
novel therapeutic agents to reverse myeloid cell activation in vivo,
or therapies to reduce myeloid cell stimulatory factors, are greatly
needed.

FIG 2 Reported interactions of macrophages with HIV/SIV. (1) Direct infection by cell-free virus via CD4 and CCR5; (2) infection of macrophages via
cell-to-cell transmission; (3) viral replication in macrophages; (4) clearance of infected dead or dying CD4 T cells via phagocytosis; (5) compartmentalization of
virions in virus-containing compartments; and (6) phagocytosis of antibody-coated virions via Fc receptors (FcR) or complement receptors (CR).
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