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ABSTRACT

This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand
the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial
and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geo-
graphic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition
of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years
and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covar-
ied with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleo-
tide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences
between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented
taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed
taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred tax-
onomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in
the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration,
operational and environmental conditions, and even differences in laboratory protocols.

IMPORTANCE

This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our re-
sults are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to
influent wastewater characteristics. Differences in bacterial community structures between WWTPs were consistent with differ-
ences in the abundance of distinctive sets of functional categories, which were related to the metabolic potential that would be
expected according to the source of the wastewater.

Revealing the mechanisms that drive microbial community as-
sembly in activated sludge is critical for improving the reliabil-

ity of wastewater treatment management and helping to develop a
conceptual framework that could be applied to microbial commu-
nities in other environmental biotechnology processes. Current
knowledge of microbial community assembly in biological waste-
water treatment systems has greatly expanded in the past few years,
because of the extended use of massive sequencing technologies and
advances in microbial ecological theory (1). Because of the recog-
nized influence of biodiversity on ecosystem performance and stabil-
ity, particular attention has been given to elucidating the biogeo-
graphic patterns and environmental factors that shape the structure
of bacterial communities in activated sludge (2, 3).

Ample experimental evidence has provided support for both
stochastic and niche-based species-sorting processes in the assem-
bly of bacterial communities in wastewater treatment facilities
(4–9). An early quantitative survey of bacteria in industrial acti-
vated sludge from our laboratory showed that the distribution of
the most abundant bacteria fitted a geometric distribution, sug-
gesting that resource competition was a primary factor determin-
ing the assembly characteristics of those populations (10). Several
other 16S rRNA-based surveys of community composition indi-
cated that, apart from being dominated by high-abundance taxa,
microbial communities in environmental biotechnology pro-
cesses were characterized by the presence of large numbers of rare

taxa, which appeared to contribute considerably to the overall func-
tion, providing the high level of genetic diversity needed to maintain
system performance (11, 12). The use of high-density microarrays
targeting universal 16S rRNA genes (13) and several amplicon se-
quencing studies (2, 14–16) revealed that municipal activated sludge
contained a bacterial core that was largely dominated by the phylum
Proteobacteria, followed by members of Firmicutes, Bacteroidetes,
and Actinobacteria. Interestingly, this core appeared to be distrib-
uted with similar proportions across municipal wastewater treat-
ment plants (WWTPs) regardless of reactor size, configuration,
and operation mode and was consistent across continents (13). In
contrast, industrial activated sludge exhibited more varied pat-
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terns, quite different from those found in municipal activated
sludge, suggesting that influent wastewater characteristics have a
strong influence on bacterial community composition (17, 18).
According to a meta-analysis of microbial communities of 78 an-
aerobic digester samples, differences in substrate type also have
prevailing effects on the phylogenetic structure, which largely ex-
ceed the effects caused by variations in any other operating con-
ditions (19).

Because studies based on the 16S rRNA gene do not necessarily
reflect the metabolic capabilities of populations, we reasoned that
the molecular functions encoded in the metagenome could
improve our ability to understand how taxonomic profiles are
shaped by environmental variables and operational parameters in
activated sludge. Although challenging because of the large vol-
ume of data and the reliance on incomplete databases available for
annotation, shotgun metagenomics offers the possibility of reveal-
ing unknown genetic content of complex microbial communities
in an unprecedented way. From one of the first reports that char-
acterized the genetic diversity of a wastewater treatment plant us-
ing 454 sequencing technology (20) to the more recent studies that
employed ultradeep Illumina sequencing (21, 22), the shotgun
metagenomics approach has allowed cataloging of many func-
tional capabilities of activated sludge, including components of
relevant catabolic pathways that are key in the wastewater treat-
ment process (23, 24). However, none of the previous studies was
designed specifically to discriminate the different samples accord-
ing to the observed molecular functional traits.

The ability to relate variations in gene category abundance to
differences in environmental conditions was previously demon-
strated in metagenomic comparisons of widely different biomes
(25, 26). It is unclear, however, whether shotgun sequencing data
sets could be valuable for classifying communities from ecosys-
tems that are functionally similar, such as activated sludge ecosys-
tems. This is a major question, given the recent suggestion that
functional classification does not provide more discriminatory
power than that obtained from taxonomic profiles derived via
amplicon sequencing analysis of human microbiome data (27).

Our previous investigation showed that industrial activated
sludge samples exhibited unique bacterial community composi-
tions at high taxonomic ranks (17). In the present study, massive
shotgun sequencing was performed with activated sludge samples
from four full-scale industrial wastewater treatment plants (WWTPs)
and two municipal WWTPs, to determine the functional potential
encoded in sludge metagenomes. To strengthen our analysis, we in-
cluded six metagenomic data sets from activated sludge samples ob-
tained by other laboratories. The aims of this work were (i) to test
whether shotgun metagenomics can complement taxon-based anal-
yses in the task of discriminating microbial communities involved in
wastewater treatment systems and (ii) to determine which functional
traits could be used to elucidate drivers of microbial community as-
sembly in activated sludge.

MATERIALS AND METHODS
Sample description. Samples were taken from the end of the aeration
basins of six well-performing full-scale wastewater treatment plants lo-
cated in Argentina, including four industrial WWTPs (textile dyeing, pe-
troleum refining, whey processing, and polymer synthesis) and two sew-
age treatment plants. Data on plant configuration, population equivalent,
and time of sampling are given in Table S1 in the supplemental material.
The six activated sludge plants included in this study were previously

analyzed in our amplicon sequencing studies (17, 28) and were chosen on
the basis of the different characteristics of the influent receiving streams.
Although qualitative in nature, information regarding the raw materials
used in the manufacturing processes of the specific industries describes
crucial characteristics of the type of wastewater being treated by each
WWTP. Petroleum refinery wastewater (labelled P1) contained aliphatic
and aromatic hydrocarbons, phenolic compounds, and high ammonia
concentrations (on the order of 100 mg/liter). The polymer wastewater
treatment plant (labelled P2) received wastewater containing monomers
(alkanes, alkenes, and other aliphatic hydrocarbons) from the manufac-
turing of basic plastics (polyethylene) and performance plastics (polyure-
thane). Wastewater from textile dyeing (labelled T) was characterized by
the presence of unreacted dyestuffs and auxiliary chemicals such as or-
ganic acids, fixing reagents, antifoaming agents, and redox reagents, as
well as high salinity due to neutralization of the high levels of sodium
hydroxide. The milk whey processing plant (labelled W) discharged
wastewater containing mainly lactose and milk serum proteins from the
automated cleaning-in-place (CIP) systems used for cleaning of equip-
ment and pipelines for the filtering process. Features of the WWTPs,
including the plant capacity, chemical oxygen demand (COD) and bio-
chemical oxygen demand (BOD) loading rates, sludge age, mixed liquor
concentration, and type of process, are presented in Table S2 in the sup-
plemental material. The concentration of dissolved oxygen (DO) was ob-
tained in each WWTP from the online monitoring and recording equip-
ment. Operational parameters are given as ranges or averages for the
month prior to sampling, because it is expected that bacterial communi-
ties are shaped over a long time. For the particular case of dissolved oxy-
gen, we preferred the use of an average value over the range between
minimum and maximum values, because the latter form of computing
would have been considerably biased by nonrepresentative short-term
fluctuations.

Because replication of full-scale WWTPs is rarely feasible and the goal
was to obtain a descriptive metagenomic data set for each WWTP, rather
than to interpret detailed individual snapshots, each WWTP was sampled
at two different times over a range of 1 to 4 years. This alternative ap-
proach to biological replicates allowed us to assess the variability of bac-
terial communities within each treatment system. The two samplings at
each WWTP were performed in different seasons (see Table S1 in the
supplemental material). Mixed liquor temperatures in the four industrial
WWTPs were largely unaffected by the time of sampling.

In addition, two technical replicates were analyzed for each time point,
to evaluate the variability in sampling and sequencing, yielding a total of
24 metagenomic samples (i.e., six WWTPs, two time points, and two
technical replicates). Six additional data sets taken from the literature
were included in our downstream analysis, making, in conjunction with
our data, a total of 32 metagenomic samples. These data sets corresponded
to all metagenomes from industrial and municipal full-scale WWTPs that
had been sequenced with the Illumina HiSeq platform and were publicly
available at the time of the analysis. Two WWTP samples corresponded to
a petrochemical complex in western India that had been sampled at two
different times (29), and four samples were from Chinese municipal fa-
cilities. One of the latter was published previously (30), whereas the other
three are available in the NCBI SRA database (see Table S1 in the supple-
mental material).

Composite samples from local WWTPs were subjected to determina-
tion of total proteins with the Bradford assay, total carbohydrates with the
anthrone reagent (31), and total volatile fatty acids with the titration
method described by Ripley et al. (32). These measurements can be con-
sidered representative of the typical influent composition received by each
WWTP, although it must be noted that they were not performed at the
time of the sampling but at a later time.

DNA extraction and sequencing. Sludge samples were transported to
the laboratory in plastic flasks with a large air chamber and were stored at
�20°C until further processing. One milliliter of sludge was centrifuged,
and the pellet was washed in 1 ml of TE buffer (Tris 10 mM, EDTA 1 mM,
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pH 8.0). DNA extraction was performed with the FastDNA Spin kit for
soil (MP Biomedicals, Inc.), as described by the manufacturer.

Each DNA sample was split into two technical replicates and sent to
the Instituto de Agrobiotecnología Rosario (Rosario, Argentina) for Nex-
tera DNA library preparation (fragment lengths, 300 to 1,000 bp), cluster
generation, and sequencing. A rapid run was carried out in two lanes of
the Illumina HiSeq 1500 system, yielding 319 million reads (150 bp long;
47.9 Gbp), with 8.7 million to 16.3 million reads per sample (1.30 to 2.44
Gbp) (see Table S3 in the supplemental material).

Data analysis. Fastq format files were uploaded to the Metagenome
Rapid Annotation using Subsystem Technology (MG-RAST) server (see
the identification numbers in Table S3 in the supplemental material) and
analyzed with its standard quality filtering and annotation pipeline, using
default parameters (33). Results for separate paired-end reads exhibited
minimal differences. Therefore, the results for forward (R1) unassembled
reads are shown. Briefly, artificial replicates and low-quality sequences
were removed according to a minimum Phred score of 15 and a maximum
number of 5 bases with the minimum Phred score. Preliminary organism
abundance profiles were inferred from all metagenomic shotgun reads
using the best hit classification alignment procedure against the M5
nonredundant protein database (M5nr) (34). A minimal alignment of 15
nucleotides, with an E value of �1 � 10�5 and at least 60% identity, was
set as threshold.

The GC content per sequence was measured on the whole set of qual-
ity-filtered reads with the infoseq function (http://emboss.open-bio.org),
and results were binned in the R environment (version 3.0.2) with the hist
function, in the interval range of 2%. To test the hypothesis that nucleo-
tide compositions were affected by environmental differences (35), GC
contents were calculated for each individual phylum represented in all
samples, and Spearman’s test was used for rank correlation of the binned
average GC content of each phylum with the average GC content of the
metagenomic data set (excluding the reads binning to the corresponding
phylum) for each WWTP sludge sample.

Functional diversity was quantified utilizing the hierarchical structure
of the SEED (a comparative genomics environment with curated subsys-
tems) (36), particularly level 1 (general metabolic functions) and level 3
(specific metabolic pathways and cellular functions). Functional richness
was computed on rarefied samples as the number of level 3 subsystems
represented (1,127 categories across the 32 samples, rarefied at 2,018,487
counts).

Reads corresponding to rRNA genes were filtered (minimum length,
100 bp), and 16S rRNA reads were classified with mothur v1.33.3 (37),
against the RDP database, training set 9 (38), with a 50% cutoff value. The
MG-RAST pipeline identified 1.1 � 105 to 6.9 � 105 reads as probable
fragments of the 16S rRNA gene (70% identity), of which only 2.3 � 103

to 21.5 � 103 remained after length filtering. Taxonomic richness was
estimated on the basis of the abundance of bacterial genera rarefied at 776
counts (810 genera across the 32 samples).

Differences in taxonomic and functional diversity between municipal
and industrial activated sludge communities were verified using unpaired
t tests. Principal-component analysis (PCA), principal-coordinate analy-
sis (PCoA), and correspondence analysis (CA) were performed in the R
environment with the vegan package (Department of Statistics, Iowa State
University, Ames, IA, USA). For Table S5 in the supplemental material,
PCA and CA were based on SEED subsystems at level 3. Their correspond-
ing ordination loadings were sorted by PCA1 and CA1 (main contributing
axes), and the top 10 and bottom 10 functions were listed in order to
retrieve the 20 most relevant drivers of both ordinations. Relative loading
values are reported, together with the proportion of variance explained by
each main axis.

Comparison of functional traits between metagenomes of samples
from municipal and petrochemical WWTPs was performed with STAMP
v2.0.9 software (39), using a two-sided t test. Technical replicates and
samples belonging to different sampling dates were averaged in this anal-

ysis. To correct for potential false-positive results, the Benjamini-Hoch-
berg false discovery rate was used for multiple test correction.

To statistically evaluate the association of operational parameters with
communities’ functional structures, permutation tests based on 1,000 it-
erations were performed using the vegan envfit function for level 1 sub-
system PCA, using WWTPs for the strata option, which allows the inclu-
sion of replicates. Samples that were not sequenced in this study were not
included, because of the incompleteness of the available metadata. In
order to avoid overfitting, only variables that had been previously evalu-
ated with respect to their roles in shaping the structure of these activated
sludge communities (17) were included in the fitting analysis.

Assembly of metagenomic reads. Raw read files of technical replicates
were merged, and low-quality reads were filtered out with Trimmomatic
v0.35 (40), using the recommended parameters for paired-end reads to
remove low-quality or undetermined bases (http://www.usadellab.org
/cms/index.php?page�trimmomatic). For assembly of paired-end
reads, Velvet v1.2.10 (41) was utilized to build de Brujin graphs, which
were subsequently decomposed with MetaVelvet v1.2.01 (42), setting
the k-mer coverage peaks manually. The average insert length was set
at 350 bp, and contigs shorter than 1 kb were excluded. A range of
k-mer lengths (51 to 101 bp) was tested for each sample, and the
optimal k-mer length was chosen after evaluation of four basic param-
eters of the final assembly, namely, size (base pairs), number of scaf-
folds, maximal length, and N50.

Assembled metagenomic data sets were processed through the MG-RAST
annotation pipeline in its mode for assembled contigs. For the recovery of
population genomes from metagenomic data, binning of contigs was per-
formed on the basis of differential coverage, using samples from two dif-
ferent time points, combined with taxonomic affiliation, followed by tet-
ranucleotide frequency PCA assisted by GC content visualization (43).
Estimation of the relative abundance of recovered genomes was assessed
by mapping all reads with Bowtie2 (44) (see Table S7 in the supplemental
material). Taxonomic classification using bidirectional best hits and func-
tional annotation of each recovered genome were performed on the RAST
server (45).

Accession number(s). Raw sequence files were deposited in the NCBI
SRA under accession number SRP060024 (see Table S3 in the supplemen-
tal material).

RESULTS
Wastewater treatment plant performance. At the time of sam-
pling, all WWTPs showed good stable performance, with BOD
removal efficiencies in the range of 85 to 95%. None of the
WWTPs was designed for nutrient removal. Phosphorus defi-
ciency in the petrochemical WWTPs and nitrogen deficiency in
the textile dyeing wastewater were corrected by the addition of
phosphoric acid and urea, respectively. The available metadata, in
terms of the capacity of all WWTPs, chemical oxygen demand,
biochemical oxygen demand, BOD loading rates, sludge age,
mixed liquor concentrations, and system configurations, are
shown in Tables S1 and S2 in the supplemental material. Data
varied substantially among different WWTPs treating similar
types of wastewater, such as municipal or petrochemical WWTPs.

Shotgun sequencing overview. Over 85 to 93% of the reads
obtained from the two municipal and four industrial wastewater
treatment plants sampled by our laboratory passed the quality
control tests (see Table S3 in the supplemental material). The
filtered data set contained 34 to 60% predicted proteins with
known functions and 27 to 53% reads that were annotated as
unknown proteins. Taxonomic classification of unassembled
metagenomic reads showed dominance of the domain Bacteria
(96.6 to 98.9%), followed by small proportions of reads from Ar-
chaea (0.4 to 1.1%), Eukarya (0.6 to 2.3%), and viruses (0.02 to
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0.07%). Interestingly, the analysis of the sequence composition
of the individual reads in each data set according to GC content
indicated that samples from each WWTP, taken at different
time points, were distinguished by a characteristic profile, sug-
gesting phylogenetic relatedness of microbial communities
over time (Fig. 1). In addition, GC content patterns of samples
from WWTPs treating different types of wastewater were very
different. Samples from municipal activated sludge displayed two
main peaks, with maxima at 35% and 70% GC, whereas samples
from activated sludge treating petrochemical wastewater exhib-
ited mostly a dominant peak with a high GC content (Fig. 1). It is
clear from Fig. S1 in the supplemental material, representing the
empirical cumulative distribution function of GC percentages in
metagenomic reads, that municipal and petrochemical WWTPs
have very different GC content patterns, with medians of 51 to
61% and 63 to 65%, respectively.

Because the mean GC contents differ among phyla (see Fig. S2
in the supplemental material), the observed differences in nucle-
otide composition could be explained, in principle, by the ob-
served taxonomic differences between microbial communities
from the different WWTPs (17). The GC contents of individual
phyla were distributed over various ranges (see Fig. S2), however,
and thus the environment could also contribute to the variation in
GC contents by selecting bacteria with certain nucleotide compo-
sitions within each phylum. To test the latter possibility, the asso-
ciation between the average GC content of each phylum and the
average GC content of the entire metagenomic data set, excluding
the phylum being evaluated, was computed using Spearman’s
rank correlation. Table 1 shows that the GC contents of 7 of the 11
most represented phyla followed significantly similar rank orders,
compared with the average GC contents of the remaining phyla in
each WWTP data set (see Table S4 in the supplemental material).
This was also true when the highly dominating Proteobacteria phy-
lum was removed from the metagenomic data set.

Taxonomic and functional richness of activated sludge sam-
ples. The distribution of bacterial taxa determined from shotgun
reads corresponding to the bacterial 16S rRNA gene was similar to
the distribution previously detected using amplicon sequencing
(17). Actinobacteria and candidate phylum TM7 were found at

higher percentages, i.e., 31.1% and 7.4%, respectively, in activated
sludge samples from the whey processing industry, while Plancto-
mycetes and Verrucomicrobia exhibited relatively high abundance
levels, i.e., 8.5% and 8.0%, respectively, in wastewater sludge from
the textile dyeing plant. Chlorobi was associated with plants treat-
ing petrochemical wastewater, although with low abundance (see
Fig. S3A in the supplemental material).

The taxonomic richness of municipal activated sludge was sig-
nificantly greater than that of industrial activated sludge (t test,
P � 0.003) (Fig. 2). Similarly, activated sludge treating municipal
sewage exhibited greater functional richness than did sludge treat-
ing industrial wastewater (P � 0.001) (Fig. 2). Importantly, the
functional richness was significantly correlated with the measured
taxonomic richness (Pearson’s r � 0.87, P � 0.001) (see Fig. S4 in
the supplemental material).

Profiling of activated sludge samples according to functional
categories. We investigated whether functional traits detected
among the shotgun sequencing reads could provide useful dis-
criminatory power to differentiate activated sludge samples. To
this end, relative abundances of SEED subsystems at level 1 were
first subjected to principal-component analysis (Fig. 3). Each set
of technical replicates clustered closely together, indicating that
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TABLE 1 Spearman rank correlations of the GC contents of each
phylum across all samples (n � 12) and the average GC contents of all
reads, excluding the reads assigned to the corresponding phylum

Phylum � P

Acidobacteria 0.47 0.13
Actinobacteria 0.48 0.12
Bacteroidetes 0.48 0.12
Chlorobi 0.55 0.06
Chloroflexi 0.75 0.01
Deinococcus-Thermus 0.87 �0.01
Euryarchaeota 0.81 �0.01
Nitrospirae 0.63 0.03
Planctomycetes 0.90 �0.01
Proteobacteria 0.69 0.01
Verrucomicrobia 0.64 0.02
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sequencing was reproducible and that the distributions of gene
fragments were not distorted by random sampling from metag-
enomic data sets with low coverage. The first principal compo-
nent, which accounted for 55% of the total variance, separated
samples (including data sets generated in laboratories in India and

China) according to wastewater type. A t test of the first principal
component scores showed that there were significant differences
between samples from municipal and petrochemical WWTPs
(P � 0.003). Sludge samples from textile dyeing and whey pro-
cessing wastewater treatment plants were located on the opposite
side of the biplot. The two most influential subsystems in the
ordination were carbohydrates and metabolism of aromatic com-
pounds, which were associated mainly with the activated sludge of
whey processing and petrochemical plants, in accordance with the
typical chemical contents of the respective influent wastewater
(see Table S2 in the supplemental material). A third important
category was protein metabolism, which was associated with the
whey processing plant in the first principal component and with
the sewage facilities in the second principal component (Fig. 3).
This result was consistent with the high protein contents in such
wastewater (see Table S2).

In order to investigate which functional traits were responsible
for the separation along the first axis, we searched among the
highest loadings of both the principal-component analysis and the
correspondence analysis, based on level 3 SEED subsystems. We
found that sugar utilization genes, such as those for lactose and
galactose uptake and utilization, were more represented at the
whey processing treatment facility (PCA1 of �0 and CA1 of �0),
whereas acetophenone carboxylase 1 and n-phenylalkanoic acid
degradation, both part of the metabolism of aromatic com-
pounds, had greater prevalence at wastewater treatment plants
from petrochemical facilities (PCA1 of �0 and CA1 of �0) (see
Table S5 in the supplemental material).

Five operational variables (temperature, pH, mixed liquor sus-
pended solids [MLSS], solids retention time [SRT], and dissolved
oxygen [DO]), which were selected on the basis of the important
roles that these factors play in shaping the structures of activated
sludge microbial communities, were tested for their associations
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with the functional profiles of activated sludge. A procedure in-
volving permutations to fit the environmental variables to the
subsystem PCA at level 1 showed a significant P value only for
dissolved oxygen (see Table S6 in the supplemental material).

Taxa exhibited more variations than did functions across all
WWTPs (see Fig. S3 in the supplemental material). Although the
magnitude of the differences between WWTPs was lower at the
functional level than at the taxonomic level, functional categories
were able to achieve clear discrimination between activated sludge
communities according to influent wastewater type. Subsystem-
based PCoA clustered samples in a manner similar to that of 16S
rRNA-based ordination (Mantel test, R � 0.76, P � 0.0001), ex-
cept that the analysis based on functional genes was better able to
separate municipal plants from petrochemical WWTPs and ex-
plained a greater relative variance in the two most relevant axes
(see Fig. S5 in the supplemental material).

We focused particularly on samples from municipal and pet-
rochemical wastewater treatment plants, because the numbers of
plants receiving each type of wastewater in our data set (six plants
and four plants, respectively) allowed us to make statistical com-
parisons of functional profiles between the two groups of WWTPs.
Functional annotation (level 1 of SEED subsystems) showed that,
among all categories, seven were found to be significantly different.
Most of the annotations displaying significantly greater proportions
in samples from municipal WWTPs were related to nucleotide and
protein metabolism, whereas samples from petrochemical WWTPs
were relatively enriched in genes associated with membrane transport
and cofactor synthesis (Fig. 4). At level 3, of 21 categories exhibiting
significant differences, 14 were characteristic for petrochemical acti-
vated sludge, including sulfur and benzoate metabolism-related
genes; the other 7 were diverse traits related to general cellular func-
tions that were represented more in municipal activated sludge (see
Fig. S6 in the supplemental material).

The quantitative analysis derived from unassembled reads may
be affected by the low reliability of annotation afforded by such
short reads. In order to validate the accuracy of our approach, we
compared the relative abundance of functional categories across
assembled metagenomes, normalized using Z-scores (Fig. 5).
Clear differences were observed for key functional categories
related to wastewater composition. The genes involved in the
metabolism of aromatic compounds, fatty acids, lipids, and
isoprenoids, sulfur metabolism, and the stress response were en-
riched in activated sludge communities from the local petrochem-
ical WWTPs. In contrast, pathways related to the metabolism of
carbohydrates were augmented in the WWTPs from the whey

processing plant and, less prominently, the textile dyeing in-
dustry. These results are in accordance with the higher concen-
trations of hydrocarbons and carbohydrates, respectively, in
influent wastewater (see Table S2 in the supplemental mate-
rial).

In silico function-based analysis of recovered genomes. Ad-
ditional insight confirming the previous observations was ob-
tained from the recovered genome sequences extracted from met-
agenomic data. The assembly statistics for the extracted genomes
are presented in Table S7 in the supplemental material. A detailed
analysis of genomes recovered in all data sets is beyond the scope
of this work; we highlight the most relevant issues here.

Several partial genomes recovered from petrochemical facili-
ties belonged to bacteria specialized in either the metabolism of
aromatic compounds or sulfur metabolism. Among the former,
both petrochemical WWTPs contained bacteria classified in the
family Comamonadaceae (such as Alicycliphilus denitrificans),
which are capable of degrading alicyclic or aromatic compounds.
In accordance, a gene encoding phenol monooxygenase (46) was
annotated in the A. denitrificans genome. Gene sequences coding
for functions clustered in the subsystem involving fatty acids, lip-
ids, and isoprenoids were also overrepresented in the assembled
genome of A. denitrificans. Partial genomes recovered from the
petroleum refinery also included Mycobacterium vanbaalenii and
Aromatoleum aromaticum. For the former, the presence of two
genes annotated in a dioxygenase pathway is in agreement with
the reported ability of members of this species to degrade polycy-
clic aromatic hydrocarbons (47). A. aromaticum is an aromatic
compound-degrading bacterium belonging to the Azoarcus-
Thauera cluster within the Betaproteobacteria. Its recovered partial
genome contained the last enzyme of the pathway for the conver-
sion of ethylbenzene to benzoyl-CoA (48). Another genome re-
covered from the petroleum refinery metagenome matched the
autotrophic sulfur-oxidizing Proteobacteria species Thiobacillus
denitrificans, a species known to perform sulfur compound oxida-
tion (49).

Most of the recovered genomes (16/20 genomes) from the
WWTP in the whey processing industry had greater than average
percentages in the category related to the metabolism of carbohy-
drates (SEED subsystem level 1). This is consistent with the high
levels of carbohydrates in the influent wastewater (see Table S2 in the
supplemental material). Bidirectional best-hit classification revealed
that five of the extracted genomes belonged to the genus Propionibac-
terium. Finally, a number of recovered genomes in the Planctomy-
cetes-Verrucomicrobia-Chlamydiae superphylum distinguished the

FIG 4 Comparison of functional traits (level 1 SEED subsystems; cutoff value, 0.5% relative abundance) between metagenomes of petrochemical (n � 4) (blue)
and municipal (n � 6) (red) activated sludge samples. Technical replicates and data from the two different sampling times were averaged for each WWTP. Pr.,
prosthetic.
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WWTP treating textile dyeing wastewater (see Table S7 in the supple-
mental material). Pedosphaera parvula Ellin514 (50) shares the trait
of members of Verrucomicrobia of being specialized in the utiliza-
tion of sugars. Interestingly, the genome of Delftia acidovorans, a
bacterium that can degrade linear alkylbenzenesulfonate surfac-
tants (51), was also recovered from the metagenome of the textile
dyeing WWTP.

DISCUSSION

Wastewater type is a major determinant of the unique composi-
tion of bacterial communities of activated sludge. In this work, we
showed that shotgun metagenomics complemented taxon-based
analyses in the task of discriminating microbial communities in-
volved in wastewater treatment systems. Importantly, differences
in bacterial community structure between WWTPs were consis-
tent with underlying differences in the abundance of distinctive
sets of functional categories.

The issue of representativeness was an essential criterion of our
experimental design. Sampling each WWTP at two different
times, separated by 1 to 4 years, allowed us to assess the variability

of bacterial communities within each treatment system, providing
a feasible alternative to the use of actual biological replicates. Ad-
ditionally, the use of technical replicates confirmed that shotgun
sequencing was highly reproducible, with no bias resulting from
differences in fragment distributions related to random sampling
of data sets with low coverage.

The taxonomic and functional richness of municipal activated
sludge was significantly greater than that of industrial activated
sludge, an observation that is in agreement with our previous con-
clusions drawn from amplicon sequencing data (17). Based on a
metagenomic analysis of 16S rRNA amplicon and mRNA shotgun
reads from 10 full-scale wastewater treatment plants in Switzer-
land, Johnson et al. (22) reported a positive association between
the number of bacterial taxa and the number of functional cate-
gories and argued that the result was consistent with the ecological
theory prediction that richer communities encompass a broader
range of functions (52). It is unlikely that the greater diversity
observed in sludge from sewage treatment facilities could result
from the presence of nongrowing species introduced into the sys-
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tem through immigration from sewage, compared to industrial
wastewater, because this fraction makes only a small contribution
to bacterial richness (53). Rather, we speculate that municipal
sewage contains a much wider range of chemical constituents, in
comparison to industrial wastewater; therefore, microbial rich-
ness is strongly influenced by the diversity of carbon substrates
(54). However, some caution should be exercised in deriving con-
clusions on richness from the annotation of metagenomic se-
quence data alone, owing to the fact that activated sludge commu-
nity compositions vary among WWTPs and the potentially
uneven representation of taxa in databases used for massive anno-
tation could lead to biased richness estimation.

Community GC contents exhibited characteristic profiles,
which were conserved within treatment plants on a time scale of
years and between treatment plants sharing similar influent waste-
water. In contrast, GC contents of activated sludge from WWTPs
receiving different wastewater types were clearly distinct. It has
been suggested that the base composition of bacterial genomes
may be subject to selection at many sites (55), and the nucleotide
composition of complex microbial communities appears to be
largely influenced by both phylogeny and environment (56). As
previously observed from shotgun sequencing metagenomic data
sets taken from many different types of environments (35), the GC
contents of each phylum were distributed over different ranges
across all WWTP data sets. Therefore, we followed the hypothesis
that, if environmental forces influence the nucleotide composi-
tion, then each phylum would be ranked according to GC con-
tents in a correlated manner across all sludge communities (35).
The GC contents of 7 of the 11 most represented phyla were cor-
related significantly with the average GC contents of the remain-
ing phyla in each WWTP data set, indicating that the factors af-
fecting nucleotide composition acted similarly across taxa;
therefore, the variation in nucleotide contents is driven by envi-
ronmental differences between WWTPs (35). Since the GC con-
tents appeared to be related to wastewater type, with petrochem-
ical WWTPs showing the highest values (see Fig. S7 in the
supplemental material), we propose that the characteristics of in-
fluent wastewater likely represent one of the main environmental
drivers of the variations in nucleotide composition. The presence
of harsh environmental conditions found in specific industrial
wastewater (10) could potentially be added to the list of environ-
mental factors, such as UV exposure, high temperatures, and aer-
obiosis, which were assumed to drive changes in the base compo-
sition of microbial populations (57). However, mechanisms
explaining how or why these environments exert pressure that
would favor changes in GC contents are still lacking.

Taxa exhibited more variation than did functions across
WWTPs. Similar behavior has already been revealed by compar-
ative metagenomics for several body habitats from different hu-
man individuals (58). This is consistent with the existence of a
large core of genes that are essential for cellular and community
functions (i.e., encoding proteins involved in metabolic path-
ways). Although the magnitude of the differences between
WWTPs was smaller at the functional level than at the taxonomic
level, functional categories were able to achieve clear discrimina-
tion between activated sludge communities according to influent
wastewater type.

All samples, including data sets from municipal and petro-
chemical sludge samples generated in laboratories from India and
China (29, 30), clustered according to wastewater type. The capac-

ity of SEED subsystem-based annotations to detect differential
traits in related but distinct microbial ecosystems reported in this
work for activated sludge samples has been recognized in previous
studies. Lamendella and coworkers identified unique functional
elements that distinguished the gut of pigs from the gut of other
animals, such as cows, chickens, and fish (59). Differences were
also reported within separate environments of the human body
(58), where low-abundance pathways were consistently repre-
sented only at particular body sites. In permafrost soil, a metag-
enomic analysis allowed the detection of rapid shifts in functional
genes in response to thaw (60). This work demonstrates that shot-
gun sequencing can also be used to classify functionally similar
ecosystems.

Process and environmental variables can be also important
factors in shaping the bacterial community structure. In particu-
lar, the influence of oxygen concentrations on the process perfor-
mance and community structure of biological treatment systems
has been addressed previously (17, 61, 62). Chapman et al. hy-
pothesized that deeper oxygen penetration inside the floc at high
dissolved oxygen concentrations (	6 mg/liter) could sustain
greater numbers of viable microorganisms within the system (63).
In this work, we found that dissolved oxygen concentrations were
significantly associated with functional profiles of activated sludge
but could not be used to group samples into meaningful bins.

By performing a statistical comparison between municipal and
petrochemical sludge samples, we observed that the former were
enriched in genes related to nucleotide and protein metabolism,
which may indicate the characteristic need for bacteria in munic-
ipal WWTPs to continuously process a larger variety of biological
products. In contrast, the enrichment of genes associated with
membrane transport in samples from petrochemical WWTPs
may reflect the fact that the passage of hydrophobic substrates
across the cell membrane is a first step in the biodegradation of
hydrocarbons (64). We initially used unassembled reads to extract
ecological information from the data sets. It might be argued that
the confidence in the annotation accuracy is greatly diminished
when the annotation is based on such short sequences, so the data
would be valid only at a very general level. To address this concern,
confirmation of the observed differences between wastewater
treatment plants receiving influent of different compositions was
obtained by a qualitative comparison of assembled metagenomic
sequences generated from local WWTPs (Fig. 5). Subsystems re-
lated to the metabolism of aromatic compounds, fatty acids, lip-
ids, and isoprenoids, sulfur metabolism, and the stress response
were enriched in communities from petrochemical wastewaters,
whereas communities from the whey processing plant invested
heavily in the metabolism of carbohydrates.

Results obtained from the comparison of unassembled reads
(Fig. 4) and from the comparison of assembled contigs (Fig. 5)
were in reasonable agreement. The comparison of assembled
reads indicated that communities from local municipal WWTPs
were enriched in genes related to nucleotide metabolism and pro-
tein metabolism. In contrast, petrochemical WWTP communities
contained a greater abundance of genes related to cofactors, vita-
mins, prosthetic groups, and pigments and a lesser representation
of genes related to protein metabolism. The few conflicting results
could be attributed to the fact that many reads either were not
included in contigs or were included in contigs shorter than 1 kb.
In addition, frequency information is partially missed when mul-
tiple reads are assembled into a contig (33). A third source of
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discrepancy could be the fact that unassembled reads were com-
pared using all municipal and petrochemical samples, whereas
assembled contigs were generated only from metagenomic DNA
extracted from local WWTPs. Thus, Fig. 5 showed that only one
of the two local petrochemical WWTPs displayed increased
abundance of the membrane transport category. Analogously,
assembled reads matching the categories of the stress response and
sulfur metabolism showed clear differences between local petro-
chemical and municipal plants, although the differences were not
significant when the complete unassembled data set was used for
comparison between groups. Still, the metagenomes of petro-
chemical activated sludge samples did show a significantly larger
proportion of genes matching sulfur oxidation (level 3 of the
SEED hierarchy), compared with samples from municipal plants
(see Fig. S6 in the supplemental material).

The inferred taxonomic and functional assignment of popula-
tion genomes recovered from each metagenome, using differen-
tial coverage as the primary binning method (43), could also be
related to the metabolic potential that would be expected accord-
ing to the source of the wastewater. Thus, petrochemical WWTPs
contained a large number of recovered genomes with hydrocar-
bon and sulfur metabolism potential, whereas metagenomes from
the whey processing WWTP were dominated by lactose-using
Propionibacterium genomes, and the textile dyeing WWTP was
characterized by genomes belonging to the Planctomycetes-Verru-
comicrobia-Chlamydiae superphylum. The recovered scaffolds in-
cluded relatively abundant microbial populations, corresponding
to 0.5% to 15.3% of relative metagenome abundance (see Table S7
in the supplemental material). A sequencing coverage higher than
the one used in this study would be required to assess the role of
less abundant members of the community.

We concluded that wastewater influent is an overriding factor
shaping the metagenomic composition of activated sludge. Al-
though this study included a limited number of WWTPs, these
findings are particularly exciting, given that the studied wastewa-
ter treatment plants have very different configurations and some
of the data were obtained in different laboratories and sequenced
under similar but not identical conditions. Our work highlights
the sensitivity of comparative shotgun metagenomics to achieve
considerable levels of discrimination of complex microbial con-
sortia having related functions in environmental biotechnology
processes. We expect that the availability of more WWTP meta-
genomes, together with richer and more comprehensive databases
and the continuing improvement in annotation methods, will al-
low a more complete interpretation of metagenomic data, which
in turn will lead to a more thorough understanding of microbial
assembly in biotechnological processes.
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