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Abstract
Approximately 350 million people are estimated to 
be persistently infected with hepatitis B virus (HBV) 
worldwide. HBV maintains persistent infection by 
employing covalently closed circular DNA (cccDNA), a 
template for all HBV RNAs. Chronic hepatitis B (CHB) 
patients are currently treated with nucleos(t)ide 
analogs such as lamivudine, adefovir, entecavir, and 
tenofovir. However, these treatments rarely cure 
CHB because they are unable to inhibit cccDNA 
transcription and inhibit only a late stage in the 
HBV life cycle (the reverse transcription step in the 
nucleocapsid). Therefore, an understanding of the 
factors regulating cccDNA transcription is required to 
stop this process. Among numerous factors, hepatocyte 
nuclear factors (HNFs) play the most important roles 
in cccDNA transcription, especially in the generation 
of viral genomic RNA, a template for HBV replication. 
Therefore, proper control of HNF function could lead 
to the inhibition of HBV replication. In this review, 
we summarize and discuss the current understanding 
of the roles of HNFs in the HBV life cycle and the 
upstream factors that regulate HNFs. This knowledge 
will enable the identification of new therapeutic targets 
to cure CHB.
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Core tip: Hepatitis B virus (HBV) infection is the 
leading cause of chronic liver disease and death 
worldwide. Persistent HBV infection is a major risk 
factor for chronic hepatitis and is the leading cause 
of liver disease, including cirrhosis and hepatocellular 
carcinoma. In the HBV life cycle, hepatocyte nuclear 
factors (HNFs) play critical roles in covalently closed 
circular DNA transcription. Control of HNF expression 



transcription factors, IREs, and sex hormones. Because 
there are no drugs that can inhibit cccDNA function, a 
thorough understanding of the mechanism of cccDNA 
transcription by cellular or viral factors will be useful for 
the development of drugs targeting cccDNA. This review 
will focus on the host factors, mainly HNFs, related 
directly or indirectly to the expression and regulation of 
HBV genes.

SHORT OVERVIEW OF THE HBV LIFE 
CYCLE
HBV is a prototype virus of the Hepadnaviridae family. 
According to the Baltimore classification, HBV is a 
Group Ⅶ virus, i.e., a double-stranded DNA virus that 
replicates through a single-stranded RNA intermediate. 
HBV has a complex life cycle involving reverse 
transcription. The genomic structure of HBV is unique 
and is referred to as circular partial duplex DNA, 
consisting of circular double-stranded DNA (dsDNA) 
with one strand that is only partially complete. The 
HBV life cycle has more complicated stages than 
most other viruses; these stages are explained below 
in a simplified form. A graphical scheme of the HBV 
life cycle is depicted in Figure 1. For more detail, the 
reader is referred to a comprehensive review of the 
HBV life cycle[1].

HBV infects hepatocytes but not hepatoma cell 
lines such as HepG2 or Huh7. This lack of a suitable 
cell infection system has hampered the study of the 
mechanism of virus entry (and other infection steps), 
and, therefore, the development of entry inhibitors. 
The recent identification of sodium-taurocholate 
cotransporting polypeptide, also known as NTCP, as a 
functional receptor for HBV entry has opened the door 
for the study of the molecular mechanisms of HBV 
infection[11,12]. NTCP is a transporter involved in the 
uptake of bile salts, and the preS1 domain of the viral 
large envelope protein (L-HBsAg) interacts directly with 
NTCP as an essential step for viral entry; therefore, 
poorly differentiated hepatocytes such as Huh7 or 
HepG2 cells, which express negligible amounts of 
NTCP, are not susceptible to HBV infection[13,14].

A unique feature of L-HBsAg is myristoylation at 
its N-terminus, which enables its association with 
the plasma membrane. The highly conserved motif 
9-NPLGF(F/L)P-15 in the receptor-binding region of 
L-HBsAg is also crucial for viral infection[15,16]. Although 
there is limited information regarding the processes 
of plasma membrane fusion and endosomal migration 
after HBV binding, several studies have demonstrated 
that the virus enters cells via clathrin-mediated 
endocytosis[17-19].

After entering the cell, the virus undergoes 
uncoating and core disassembly, and its genome 
enters the cell nucleus[20]. Nuclear import is mediated 
by nuclear localization signals of capsid proteins, 
and nuclear entry of the encapsidated, deproteinized 
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and function could regulate HBV replication. Therefore, 
understanding the upstream cellular factors or signals 
involved in the regulation of HNFs is important for 
controlling HBV replication.
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INTRODUCTION
Chronic hepatitis B virus (HBV) infection is responsible 
for global public health problems and greatly increases 
the risk of liver diseases, including chronic hepatitis B 
(CHB), liver cirrhosis, and hepatocellular carcinoma 
(HCC). Although effective vaccination and approved 
nucleos(t)ide analog (NA) drugs have greatly con-
tributed to reducing the number of newly infected 
individuals and the development of HBV-related liver 
diseases, sustained clearance of HBsAg or HBV DNA 
in liver tissues of CHB patients is rarely achieved using 
current NA drugs because of the inability of NAs to 
inactivate covalently closed circular DNA (cccDNA), a 
template for all HBV RNAs.

The HBV genome has four open reading frames 
(ORFs: PreC/C, P, preS1/S2/S, and X), which encode 
the precore and core proteins, polymerase, surface 
proteins, and HBx, respectively[1]. A unique feature 
of the HBV genome is the conversion of the 3.2-kb 
partially double-stranded relaxed circular DNA (rcDNA) 
into cccDNA in the nucleus[2,3], where five types of 
HBV RNAs are transcribed from the cccDNA. The 
production of HBV mRNAs is effectively regulated by 
complex interactions with various transcription factors. 
For example, transcription factors such as hepatocyte 
nuclear factors (HNFs) and CCAAT/enhancer binding 
protein (C/EBP) are critical for viral RNA production; 
these factors bind to HBV enhancers and promoters[4-7]. 
Interferon regulatory elements (IREs), which are present 
in the enhancer I (Enh I) region, regulate HBV gene 
expression[8]. Estrogen can suppress HBV Enh Ⅰ activity 
by up-regulating estrogen receptor-α (ER-α), which 
binds to the enhancer region of HBV cccDNA and 
alters HNF4α binding[9]. By contrast, the androgen 
receptor binds to androgen-responsive elements 
present in HBV enhancers and thereby increases the 
transcription of HBV mRNAs[10]. The opposite effects 
of these two representative sex hormone receptors 
could explain the gender differences in HBV infection 
(males are more vulnerable than females to HBV-
related HCC development). Accumulating evidence 
has indicated that the transcription of HBV genes 
is regulated by precise and ordered recruitment of 
chromatin modifiers and various host factors, including 



relaxed circular (rc) DNA uses the importin-α/importin-β 
receptor pathway[21]. Although the size of the genome-
containing nucleocapsid of HBV is close to the functional 
diameter of the nuclear pore complex, the capsid was 
suggested not to release the viral genome before 
nuclear import. Unlike the capsids of other viruses, 
such as herpes virus, adenovirus, and influenza virus, 
the HBV capsid enters the nuclear basket in its intact 
form[22]. Only capsids with a mature genome enter the 
basket and consequently liberate the genome through 
the interaction with nucleoporin 153 (Nup153) in the 
nuclear basket of the nuclear pore complex[23].

Inside the nucleus, rcDNA is repaired (see below) 

by the host repair system to form cccDNA, which 
is stable and difficult to remove throughout HBV 
infection and therefore plays an important role in 
viral persistence and recurrence[24]. The cccDNA acts 
as a transcriptional template for five types of viral 
RNAs: the pregenomic RNA (pgRNA) and precore RNA 
(both 3.5-kb), 2.4-kb and 2.1-kb HBsAg RNAs, and 
0.7-kb HBx RNA. The precore RNA is the template for 
the production of HBeAg; the core and polymerase 
proteins are translated from pgRNA, which also serves 
as a template for reverse transcription to produce the 
HBV DNA.

Packaging of the pgRNA and polymerase protein 
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Figure 1  The life cycle of hepatitis B virus. Hepatitis B virus (HBV) binds to the surface receptor NTCP and enters hepatocytes, and its genome is released into the 
nucleus. The relaxed circular HBV genome (rcDNA) is repaired and forms covalently closed circular DNA (cccDNA), which serves as a template for the transcription 
of viral mRNAs (pregenomic (pg), precore, HBx, PreS1, and PreS2/S RNA). The HBV mRNAs are translated into the large (L), middle (M), and small (S) surface, 
precore, core, polymerase (pol), and HBx proteins. pgRNA and pol are encapsidated into the capsid, and viral DNA is reverse-transcribed. Assembled HBV virions are 
secreted from hepatocytes.

Kim DH et al . Hepatocyte nuclear factors in HBV infection



during HBV infection of permissive hepatoma cells 
and does not prevent intracellular amplification of 
duck hepatitis B virus cccDNA[34]. Intriguingly, the 
knockdown of TDP2 increases the formation of HBV 
cccDNA[34]. Although several host enzymes, such as 
TDP2 and topoisomerase[35], were suggested to be 
involved in cccDNA biogenesis, the mechanisms of 
rcDNA repair and the host factors associated with 
cccDNA formation are largely unknown. Further studies 
aimed at revealing these steps are highly warranted.

Role of HBx in cccDNA function
HBx is essential for cccDNA transcription; therefore, 
the inhibition of HBx prevents HBV replication[36]. 
Accumulating evidence suggests that cccDNA trans-
cription is epigenetically controlled. cccDNA forms 
a minichromosome in the nucleus and associates 
with histones, including H2A, H2B, H3, and H4. 
HBV transcription and replication is regulated by the 
acetylation status of cccDNA-bound histones and non-
histone proteins[37]. Our understanding of the role of 
HBx in viral replication was considerably advanced 
by the finding that nuclear HBx binds to cccDNA and 
modifies the epigenetic regulation of cccDNA function. 
HBx recruits chromatin regulators such as P300 and 
other acetyltransferases to cccDNA and enhances 
viral transcription[38]. Conversely, if HBx is mutated 
so that it is unable to recruit acetyltransferases, 
cccDNA acetylation is reduced by histone deacetylases 
(HDACs), and the level of viral transcription and 
replication is reduced[38]. Moreover, occult HBV infection 
is demonstrated by epigenetic inactivation of cccDNA, 
and reactivation of cccDNA from this state is controlled 
by the epigenetic function of HBx[32].

Elimination or inactivation of cccDNA
Complete cure of HBV infection requires the elimination 
of cccDNA in liver tissues. Several studies have 
attempted to eliminate cccDNA by applying genome 
editing technologies. A zinc finger nuclease (ZFN) 
that was genetically designed to bind specifically to 
HBV cccDNA was shown to inhibit viral replication[39]. 
Engineered transcription activator-like effector 
endonucleases (TALENs) efficiently inactivated the 
HBV genome[40]. The RNA-guided clustered regularly 
interspaced short palindromic repeats (CRISPR/Cas9) 
system has been employed to cleave cccDNA[41]. 
However, genome editing technologies have numerous 
unresolved issues, including the in vivo delivery of 
genome editing molecules to HBV-infected hepatocytes, 
which is the key hurdle for clinical application of this 
technology.

Cytokines were recently shown to play an important 
role in the control of cccDNA. APOBEC3A and 3B, 
which are induced by high doses of interferon-alpha 
(IFN-α) or by the activation of lymphotoxin-β receptor, 
cause cytidine deamination in HBV cccDNA, which is 
subsequently degraded by a cellular endonuclease[42].

into the viral capsid is initiated by a cis-acting 
element called epsilon, which acts as the packaging 
signal[25]. The epsilon, polymerase, and core proteins 
form the nucleocapsid. This process is referred to 
as encapsidation; when encapsidation is completed, 
polymerase begins reverse transcription of the pgRNA 
to generate the minus-strand DNA. The template 
pgRNA is simultaneously degraded by RNase H 
activity of polymerase before the synthesis of the plus-
strand begins. After several rounds of strand transfer, 
formation of the circular genomic DNA is complete[26]. 
Genome-containing nucleocapsids interact with the 
envelope proteins in the ER-Golgi complex and form 
enveloped mature virions. The preS1, preS2, and S 
domains of surface proteins have different functions 
according to their transmembrane topology. The preS1 
domain is located partially at the surface and partially 
on the internal side during virion maturation. The 
internal side of PreS1, which slightly overlaps with the 
PreS2 domain, interacts with core particles necessary 
for envelope formation[27], whereas the surface side 
of PreS1 interacts with a cellular receptor for virus 
entry. The infectious mature virions, known as Dane 
particles, exit the cell via the ER and Golgi apparatus, 
although the details of this process have not yet been 
completely revealed.

cccDNA AS A TEMPLATE FOR HBV 
TRANSCRIPTION
cccDNA plays a central role in HBV transcription and 
replication. cccDNA forms a minichromosome in the 
nucleus and becomes the source for pgRNA and 
other viral RNAs production, and virus replication 
occurs through reverse transcription of the pgRNA 
into rcDNA. NA drugs can inhibit reverse transcription 
and are currently used as a treatment for HBV[28,29]. 
However, these drugs are unable to affect cccDNA, 
which is upstream of the NA target site. To inhibit 
cccDNA transcription and to prevent the production of 
viral mRNAs, it is important to better understand how 
cccDNA is produced and functions.

Host factors involved in cccDNA formation
HBV rcDNA is converted to cccDNA via an intermediate 
form, protein-free rcDNA[30,31]. This process is referred 
to as repair; following plus-strand DNA synthesis by 
gap-filling, viral polymerase and short RNA oligomers 
(also called RNA primers) attached to the 5’-termini 
of minus-strand and plus-strand DNA should be 
removed[32]. Identification of the host factors involved 
in rcDNA to cccDNA conversion will provide potential 
new therapeutic targets to prevent cccDNA formation. 
A recent in vitro study suggested that host tyrosyl-
DNA-phosphodiesterase 2 (TDP2) is involved in the 
removal of viral polymerase covalently linked to the 
5’-end of minus-strand DNA[33]. However, knockout 
of the TDP2 gene does not block cccDNA formation 
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Because cccDNA is epigenetically regulated by 
HBx[38] and by the host antiviral factor IFN-α[43], the 
control of epigenetic factors that control cccDNA 
transcription may also be used to inactivate cccDNA. 
Epigenetic changes in cccDNA alter the binding of 
various liver-enriched transcription factors to its 
enhancer region. Therefore, understanding the 
interaction between transcription factors and enhancers 
will be important for cccDNA inactivation.

Structure of enhancers in HBV cccDNA and their 
regulatory transcription factors
Although HBV has a small genome, it has a large 
number of transcriptional regulatory sequences 
that have various roles. Genome transcription and 
replication can be stimulated or suppressed by the 
association or dissociation of numerous host factors. In 
particular, HNFs are the host factors that are present 
in hepatocytes in high concentrations, interact with 
viral components and play important roles in viral 
replication.

The HBV genome has four overlapping ORFs and 
contains several promoters, enhancers, a polyadeny-
lation sequence, and an encapsidation signal. Four 
promoters are responsible for the transcription of the 
four ORFs. Two regions in the HBV genome, called 
Enh Ⅰ and Enh Ⅱ, have gene enhancer activity. Enh I 
is a region of approximately 300 nucleotides located 

between the ORFs S and X[44]. Enh Ⅱ is a region of 
approximately 200 nucleotides, is located before the 
core promoter and overlaps with the core upstream 
regulatory sequence.

General transcription factors that bind to HBV 
promoters or enhancers include nuclear factor 1 
(NF1), specificity protein 1 (SP1), activator protein 1 
(AP1), TATA-binding protein (TBP), prospero-related 
homeobox protein 1 (PROX1), c-AMP-response 
element-binding protein (CREB), nuclear factor-kappa 
B (NF-κB), octamer transcription factor 1 (OCT1), and 
nuclear respiratory factor 1 (NRF1). 

The hepatotropic nature of HBV infection is 
primarily mediated by hepatocyte-restricted expression 
of the viral receptor NTCP; however, the liver-enriched 
transcription control factors also play essential roles in 
the life cycle of HBV. Representative examples include 
hepatocyte nuclear factor 1α (HNF1α), hepatocyte 
nuclear factor 3β (HNF3β), hepatocyte nuclear factor 
4α (HNF4α), hepatocyte nuclear factor 6 (HNF6), and 
CAAT enhancer-binding protein (C/EBP). A detailed 
description on these factors is provided in Table 1, and 
the binding sites of these factors to HBV enhancers 
and promoters are depicted in Figure 2.

REGULATION OF HBV GENE EXPRESSION 
BY HNFs AND miRNAs
Host factors that regulate HBV gene expression include 
transcription factors and microRNAs (miRNAs). Host 
transcription factors, especially liver-enriched factors, 
regulate the transcription of HBV cccDNA by binding 
to viral enhancers and promoters, whereas liver-
enriched miRNAs regulate HBV gene expression post-
transcriptionally.

HNFs are typical examples of liver-enriched 
transcription factors; they are highly expressed in the 
liver in comparison with other organs and affect viral 
transcription and the production of a number of liver 
proteins that are essential to maintain liver function 
and homeostasis. HNFs regulate cccDNA transcription 
by directly interacting with HBx, which enhances the 
DNA-binding activity of HNFs[4,45,46].

DNase Ⅰ protection analysis revealed that several 
distinct ubiquitous and liver-specific cellular factors 
bind in concert to the HBV enhancer regions[5]. 
Transcription factors interact with the cognate HBV 
DNA sequences, and multiple transcription factors 
might bind competitively to the same DNA sequence 
region[6]. Such competitive binding can occur when 
transcription factors share their consensus binding 
motif. Several transcription factors sometimes 
physically interact with each other to form dimers or 
multimers, resulting in regulation of the transcriptional 
activity of target genes[47,48]. 

The level of HBV transcription varies with the extent 
of transcription factor binding to HBV DNA, which can 
be altered by mutations in the HBV genome. When a 
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Table 1  Hepatocyte nuclear factors and other transcription 
factors involved in hepatitis B virus transcription

Factor Binding site Effect on viral enhancers/promoters Ref.

HNF1α PreS1 Activation [60]
Enh Ⅱ Activation 

(interaction with hB1F)
[61]

Enh Ⅱ Suppression 
(mutant HBV core promoter)

[50]

Enh Ⅱ Activation [62]
Enh Ⅱ Activation 

(mutant HBV core promoter)
[49]

HNF3β Enh Ⅰ Activation 
(interaction with STAT3)

[48]

Enh Ⅰ Suppression (HepG2)/
Activation (SK-Hep1)

[68]

Enh Ⅱ Suppression [67]
Enh Ⅱ Activation [66]

HNF4α EnhII/PreS1 Activation [73]
Enh Ⅱ Activation [130]

HNF6 PreS2 Suppression [78]
C/EBP Enh Ⅰ Suppression [83]

Enh Ⅱ Activation [81]
Enh Ⅱ Activation [46]
Enh Ⅱ Activation [80]

FXR/RXR Enh Ⅱ Activation [99]
HLF Enh Ⅱ Activation [6]
NF1 PreS2 Activation [101]

Enh Ⅰ Suppression [102]
SP1 Enh Ⅱ Activation [104,105]

PreS1 Activation [106]
PreS2 Activation [107]

HBV: Hepatitis B virus.
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new mutation allows a transcription factor to bind to a 
new region in HBV DNA, HBV replication is stimulated, 
resulting in progression to fulminant hepatitis[49]. A 
naturally occurring double nucleotide mutation in the 
HBV core promoter was shown to convert a nuclear 
receptor binding site to an HNF1 binding site, resulting 
in the suppression of RNA transcription via interactions 
between HNF1 and the mutant HBx[50].

miRNAs play a number of essential roles as biological 
regulators[51-53] and are involved in various biological 
processes[54-56], disease progression, and pathogen 
infection[56-59]. miRNAs are short RNAs (approximately 
20 nucleotides) that are processed by Drosha and 
Dicer. By binding to the untranslated or coding regions 
of the target transcripts, miRNAs induce mRNA 
degradation or inhibit translation. A large number of 
miRNAs are involved in the transcription and replication 
of HBV and can cause HBV pathogenesis. When 
hepatocytes are infected with HBV, the expression 
of cellular miRNAs increases, and they regulate HBV 
gene expression directly by targeting viral mRNAs, or 
indirectly by controlling epigenetic factors such as DNA 
methyl transferase (DNMT) or HDAC[44].

Understanding the relationship among transcription 
factors, miRNAs, regulatory sequences, and the 
functional consequences of their binding is very important 
for understanding HBV-mediated pathogenesis.

HNF1α
Although there is some controversy regarding the 
role of HNF1α in the regulation of HBV genes, HNF1α 

is known to affect HBV transcription by controlling 
most of the HBV regulatory elements, including preS1 
promoter, core promoter, HBx promoter, and Enh Ⅱ, 
in cccDNA. HNF1α has been reported to stimulate viral 
transcription by 7-fold in Huh7 cells through binding 
to the preS1 promoter[60]. HNF1 up-regulates Enh 
Ⅱ activity by interacting with either the hB1F[61] or B 
element in Enh Ⅱ[62]. In the absence of HNF1α, the 
concentration of HBV pgRNA is decreased, resulting 
in decreased genome replication[63]. The emergence 
of new binding sequences for HNF1 by mutation 
in transplant-transmitted HBV was able to lead to 
increased viral replication and fulminant hepatitis[49].

In contrast to these observations, HNF1α does 
not interact with the wild-type viral core promoter, 
although it binds a mutant HBV core promoter, which 
has an HNF1α-binding sequence, and reduces precore 
RNA transcription[50,64]. HNF1α has no effect on the 
HBx promoter or core promoter[61]. In HNF1α-null 
HBV transgenic mice, the levels of intracellular viral 
replication intermediates are increased several fold[65]. 
It is evident that HNF1α plays important roles in the 
regulation of HBV transcription, although the authentic 
role of HNF1α during the natural course of HBV 
infection remains unclear.

HNF3β
A binding motif for HNF3α and HNF3β was identified 
within Enh Ⅱ and the TGTTTGTTT sequence was 
mapped as an essential motif for the specific interaction 
between DNA and the HNF3 protein[66]. This motif is 
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critical for the regulation of Enh Ⅱ activity by HNF3, 
and the introduction of mutations into this motif 
alters Enh Ⅱ activity. Competitive binding of HNF3β 
and HNF4 to a region (positions 1650-1674) of HBV 
Enh Ⅱ was also observed[66]. HNF3 cooperates with 
other molecules such as NF1 and STAT3. Interleukin-6 
(IL-6) and epidermal growth factor (EGF) stimulate 
the cooperative interaction between HNF3 and STAT3, 
which leads to the activation of Enh Ⅰ[48].

The effect of HNF3 on HBV enhancer activity differs 
depending on the tested system. HNF3β inhibits 
HBV replication in mouse NIH 3T3 fibroblasts[67] and 
reduces enhancer activity in HepG2 cells, whereas 
it increases enhancer activity in SK-Hep1 cells[68]. In 
mice, HNF3β inhibits HBV replication[67,69]. It appears 
that HNF3 inhibits HBV replication in hepatocytes in 
cooperation with other molecules.

HNF4α
HNF4α exists as either a homo- or heterodimer and 
acts as a key regulator of approximately 40% of 
hepatocyte genes[70]. HNF4α can also bind to various 
HBV enhancer regions[4,44] and is the main activator 
of HNF1α expression through binding to the HNF1α 
promoter[71]. The inhibition of HNF4α using siRNA 
effectively reduces HBV transcription and replication 
in cells and in mice[72]. When HNF4α is absent, the 
level of HBV pgRNA is reduced, resulting in decreased 
replication[64]. The overexpression of HNF4α in HepG2.1 
cells increases the activity of the preS, preS2/S, 
and core promoters, but has no effect on the Enh 
I/X promoter[73]. The suppression of HBV replication 
by transforming growth factor-β1 (TGF-β1) can be 
restored by ectopic expression of HNF4α[74]. 

The effect of HNF4α on HBV replication appears to be 
clinically relevant. A retrospective study demonstrated 
that the HNF4α expression level was increased in CHB 
patients, whereas HNF3β was down-regulated[75]. The 
expression level of HNF4α was inversely correlated with 
the clinical outcomes of CHB patients[76]. Overall, HNF4α 
is a key transcription factor in the regulation of the HBV 
life cycle and in the maintenance of hepatocyte function.

HNF6
HNF6 is involved in liver homeostasis processes such 
as glucose metabolism, bile homeostasis, and liver cell 
proliferation[77]. HNF6 inhibits HBV gene expression 
and replication in HepG2 cells by suppressing the 
activity of the preS2/S promoter[78]. Interestingly, 
HNF6 is regulated by CYP2C12, which is expressed in 
a female-specific manner. Therefore, the regulation of 
HNF6 by CYP2C12 might explain why HBV replication 
is suppressed in females compared to males[79].

C/EBP
C/EBPα, a liver-enriched transcription factor, can form 
homodimers or heterodimers and plays critical roles in 
the regulation of hepatocyte-specific genes[45]. C/EBP 

binds to at least five regions of HBV promoters and 
enhancers (Figure 2). C/EBP promotes HBV transcrip-
tion by transactivation of Enh Ⅱ[80] and synergistically 
activates Enh Ⅱ through interaction with HBx[47]. 
Consistent with this finding, the anti-HBV effect of inter-
leukin 4 (IL-4) was attributed to the down-regulation 
of C/EBPα in Hep3B cells[81].

Low C/EBP concentrations increase the activity of 
the viral core promoter, whereas high concentrations 
suppress core promoter activity[82]. Similarly, C/EBP 
binds to HBV Enh Ⅰ and represses HBV transcription 
activity[83]. Although the role of C/EBP in HBV gene 
regulation is controversial, C/EBP appears to act 
as a proviral factor activating viral enhancers and 
promoters.

miRNAs related to HBV gene expression
miRNAs can regulate HBV replication either indirectly, 
by targeting cellular proteins that are essential for HBV 
replication, or directly, by targeting viral RNAs. miRNA-
18a prevents the expression of ER-α, which represses 
HBV transcription via interaction with HNF4α[84] Several 
miRNAs, including miRNA-1, 148a, 152, 210, and 
449a, are involved in the regulation of HBV replication, 
mainly by targeting host epigenetic regulators such as 
DNMT and HDAC[85-89].

A number of miRNAs can directly target HBV 
transcripts. Among them, the most well-known miRNA 
is miRNA-122, which is abundant in hepatocytes and 
has received increasing attention because several 
studies have shown that it reduces the level of viral 
expression by binding to a highly conserved site in 
3.5-kb pgRNA[90-92]. miRNA-199a-3p and miRNA-210 
suppress HBV replication by binding to the 2.1-kb 
RNA and 2.4-kb RNA, respectively[93]. miRNA-125a-
5p inhibits HBV translation by binding to the 2.1-kb 
RNA[94]. Using a 3D array system, Kohno et al. found 
that miRNA-1231 suppresses HBV replication by 
targeting the core mRNA[95]. Bioinformatics analyses 
have suggested several putative miRNA-binding sites 
on HBV RNAs, including the following: miRNA-199a-
3p, 125a-5p, 210, and 345 are predicted to bind the 
3.5-kb RNA; miRNA-let7, 196b, and 511, 2.4-kb RNA; 
miRNA-433, 2.1-kb RNA; and miRNA-205, 0.7-kb 
RNA[93,94,96,97].

There is a report that viral RNA can target host 
miRNA. Viral HBx RNA directly down-regulates the tumor 
suppressor miRNAs miRNA-15a and miRNA-16-1[98]. This 
study suggests that HBV can induce HCC development 
by viral RNA-mediated down-regulation of specific tumor 
suppressor miRNAs. The various targets of miRNAs 
involved in HBV replication are shown in Figure 3.

Others
Nuclear receptors are known to regulate the activity of 
HBV enhancers and promoters. Farnesoid X receptor 
(FXR) and retinoid X receptor (RXR) are reported to form 
heterodimers and increase the activity of Enh Ⅱ and 
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the core promoter[99]. Peroxisome proliferator-activated 
receptors (PPARs) and RXRs form heterodimers and 
increase the activity of the Enh Ⅰ/X promoter[73,100].

Many nuclear factors have also been shown to 
be involved in HBV regulation. The binding of NF-1 
to the S gene promoter is essential for HBV surface 
RNA transcription[101]; however, NF-1 binding to 
Enh Ⅰ suppresses the activity of the HBV enhancer[102]. 
Nuclear factor Y (NF-Y) can activate the S promoter by 
binding to the CCAAT element[103]. SP1 binds to GC-rich 
DNA sequences on HBV enhancers and promoters 
and up-regulates the activity of Enh Ⅱ[104,105] and 
the PreS1[106] and PreS2[107] promoters. HLF binds to 
the Enh Ⅱ region and increases the transcription of 
pgRNA and precore RNA[6]. Testicular orphan receptor 
4 (TR4) reduces core promoter activity by blocking 
HNF4α binding through a protein-protein interaction[108]. 
Cysteine- and histidine-rich domain-containing 1 
(CHORDC1) binds HBV enhancers and activates 
gene transcription[109]. Other factors involved in HBV 
regulation include nuclear respiratory factor 1 (NRF1)[110], 
activator protein 1 (AP1)[111], TATA-binding protein 
(TBP)[112], CREB[113], and OCT1[45].

UPSTREAM FACTORS RELATED TO HNF 
REGULATION
Six families of liver-enriched transcription factors 
[HNF-1, HNF-3, HNF-4, HNF-6, C/EBP, and D-binding 
protein (DBP)] have been characterized to date. As 
discussed above, most of these factors, except DBP, 
are critically involved in HBV gene expression and 
replication. Therefore, understanding the upstream 
cellular factors or signals involved in the regulation 
of liver-enriched transcription factors is important 
to grasp the complicated cellular networks related 
to the HBV life cycle. For example, the activation of 
extracellular signal-regulated kinase (ERK) inhibits 
HBV replication by down-regulating HNF4α and up-
regulating HNF3β[114]. A detailed description of these 
factors and signals is presented in Figure 3 and Table 2.

Cellular factors and signaling pathway involved in HNF 
regulation
Extracellular signals such as cytokines can affect HBV by 
dysregulating liver-enriched transcription factors. IL-4 
suppresses HBV core promoter activity and inhibits 
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pgRNA synthesis by down-regulating C/EBPα[81]. 
IL-6 controls HBV replication by reducing the levels 
of HNF4α and HNF1α[115,116]. IFN-g also regulates the 
HNF4α and C/EBP levels and affects HBV replication[117]. 
Recently, we demonstrated that cytokine-mediated 
up-regulation of hepatocystin/80K-H impairs HBV 
replication by down-regulating HNF4α through the 
Ras/MAPK pathway[118] and also reported that p22-
FLIP, a cleavage product of c-FLIP formed upon TNF-α 
stimulation, reduces the HNF4α level but increases the 
HNF3β level via the ERK pathway, thereby strongly 
impairing HBV replication[115].

NF-κB suppresses HBV replication by inhibiting 
HNF4α[119,120]. The activation of ERK1/2 and stress-
activated protein kinase 1/c-jun NH2-terminal kinase 
(SAPK/JNK) also inhibits HBV replication through 
negative regulation of HNF4α[119,121]. ER-α suppresses 
HBV by physical interaction with HNF4α[9], which 
supports the observation that males are more vulnerable 
to HBV infection than females.

miRNAs involved in HNF regulation
As described above, miRNAs can directly regulate HBV 
by targeting viral RNAs. In this subsection, we provide 
a brief overview of the miRNAs that exert an indirect 
effect on HBV by controlling liver-enriched transcription 
factors that are involved in HBV replication. The control 
of HNF1α by miRNA-15b is reported to promote HBV 
replication[122], and the control of HNF1β by miRINA-372 
and 373 up-regulates HBV gene expression[123]. 
miRNA-122 is also able to control HBV replication by 
inhibiting HNF4α[124].

In addition to targeting HNFs, miRNAs can also 
target other nuclear factors. miRNA-26b inhibits 

CHORDC1 expression, thereby suppressing HBV 
enhancer activity[109]. miRNA-141 represses HBV 
replication by targeting PPARα, which binds and trans-
activates HBV enhancers[125]. Ectopic expression of 
miRNA-141 suppresses PPARα expression, decreasing 
viral transcription in HBV-transfected HepG2 cells. The 
expression of miRNA-130a is stimulated by NF-kB/p65 
and inhibits HBV replication by down-regulating 
PGC1α and PPARg[126]. The level of C/EBP is reduced by 
miR-155, the expression of which is increased by diet-
induced activation of NF-κB[127].

During HBV infection, host antiviral signaling can 
contribute to viral clearance via the induction of miRNAs 
transcription. Other miRNAs that have been reported 
to affect HBV replication by controlling cellular proteins 
other than liver-enriched transcription factors include 
miRNA-122 targeting cyclin G1[90], miRNA-501 targeting 
HBXIP[128], and miRNA155 targeting SOCS1[129].

CONCLUSION
Host factors, mainly HNFs, are indispensable for the 
survival and maintenance of HBV in hepatocytes. 
These factors regulate cccDNA transcription and 
mediate host antiviral responses. Although our 
knowledge of HBV-related host factors has increased, 
the overall understanding of the cellular networks 
related to cccDNA transcription is still very limited. 
Numerous recent studies have revealed that miRNAs 
play key roles in the HBV life cycle. Systematic un-
derstanding of the complex interactions between HBV 
and host miRNAs is needed. Currently, there is no way 
to eliminate cccDNA in infected hepatocytes, which 
would be required for complete CHB cure. Therefore, 

7025 August 21, 2016|Volume 22|Issue 31|WJG|www.wjgnet.com

Table 2  Upstream factors and signals involved in the regulation of hepatocyte nuclear factors and other factors related to hepatitis 
B virus replication

Regulating factor Target molecule Effect on target molecule Effect on HBV replication Ref.

TGF-β HNF4α Decrease Decrease [74]
ER-α - Decrease [9]
NF-κB Decrease Decrease [119,120]
MAPK Decrease Decrease [119,121]
TNF-α → Hepatocystin → MAPK Decrease Decrease [118]
TNF-α → P22 → MAPK Decrease Decrease [114]
IFN-g Decrease Decrease [117]
IL-6 → MAPK Decrease Decrease [116]
miRNA-122 Decrease Decrease [124]
IL-4 C/EBP Decrease Decrease [81]
IFN-g Decrease Decrease [117]
IL-6 HNF1α Decrease Decrease [116]
miRNA-15b Decrease Increase [122]
miRNA-372, miRNA-373 HNF1β Decrease Increase [123]
TNF-α → P22 → MAPK HNF3β Increase Decrease [114]
miRNA-26b CHORDC1 Decrease Decrease [109]
miRNA-141 PPARα Decrease Decrease [125]
NF-κB → miRNA-130a Decrease Decrease [128]
miRNA-122 Cyclin G1 Decrease Decrease [90]
miRNA-501 HBXIP Decrease Increase [128]
miRNA-155 → JAK/STAT SOCS1 Decrease Decrease [129]

HBV: Hepatitis B virus.
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understanding the molecular network that determines 
how cccDNA is activated by extrinsic and intrinsic 
factors will provide us a chance to inactivate or halt the 
cccDNA function until drugs that eliminate cccDNA are 
developed.
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