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ABSTRACT
Using a murine Salmonellamodel of colitis, we recently reported that mice receiving a community of
defined gut microbiota (MET-1) lost less weight, had reduced systemic inflammation and splenic S.
typhimurium infection, and decreased neutrophil infiltration in the cecum, compared to vehicle
controls. In addition, animals receiving MET-1 exhibited preserved tight junction protein expression
(Zonula occludens-1, claudin-1), suggesting important effects on barrier function. In this addendum,
we describe additional in vitro experiments examining effects of MET-1, as well as in vivo
experiments demonstrating that MET-1 is protective in a DSS model of colitis after administration of
antibiotics. Placed in the context of our findings and those of others, we discuss differences in our
findings between the Salmonella colitis and DSS colitis models, provide speculation as to which
bacteria may be important in the protective effects of MET-1, and discuss potential implications for
other GI diseases such as IBD.
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Introduction

The number of bacteria present in the gut eclipses the
total number of eukaryotic cells in the human body by
many fold, and the vast majority of these live in the
nutrient rich environment of the intestinal lumen where
they can thrive as a community. Commensal bacteria
are beneficial to gastrointestinal health, thus the manip-
ulation of the gut microbiota to increase commensals or
optimize microbial communities has been an area of
active interest with regards to disease management.1 An
extension of this concept has been the use of fecal micro-
bial therapy (FMT) to treat infectious colitis from
pathogens such as Clostridium difficile.2,3 FMT entails
transplanting healthy donor fecal material containing
commensal bacteria into the colon of a patient to recon-
stitute a healthy microbial community, and has proven
very successful for the treatment of recurrent C. difficile
infection (CDI).4,5 However, FMT has a poorly defined
and non-reproducible composition and carries risks of
unintended infectious organisms.

Work in our laboratories has attempted to create a
defined Microbial Ecosystem Therapeutic (MET)6,7

with known organisms, in order to make a safe, repro-
ducible therapy that simulates the beneficial effects of
FMT. The mixture, designed to replace a dysfunc-
tional, damaged ecosystem with a healthy ecosystem
composed of ‘native’ intestinal bacteria, is known as
“Repoopulate” or MET-1. The composition of MET-1
is shown in Table 1. It consists of 33 strains of com-
mensal bacteria isolated from the stool of a healthy
human donor, as previously described.8 Strains were
selected based on antimicrobial resistance profiles, as
well as on their ability to grow as a robust community
in vitro in a continuous culture chemostat.9 Additional
information on the functional and metabolic capabili-
ties (or “metabolome”) of MET-1 has been described
elsewhere.10 MET-1 has been used successfully in 2
patients to cure recurrent C. difficile infection that was
refractory to standard antibiotic therapies.8

In addition to protecting against C. difficile, there is
increasing evidence that the gut microbiota play an
important role in protecting the host against the delete-
rious effects of other intestinal pathogens, including

CONTACT Elaine O. Petrof eop@queensu.ca M.D. Queen’s University, Dept. Medicine, GIDRU wing Kingston General Hospital, 76 Stuart Street, Canada,
ON K7L 2V7, Canada.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kgmi.
© 2016 Taylor & Francis

GUT MICROBES
2016, VOL. 7, NO. 4, 353–363
http://dx.doi.org/10.1080/19490976.2016.1188248

http://www.tandfonline.com/kgmi
http://dx.doi.org/10.1080/19490976.2016.1188248


Salmonella.11 Certain shifts in the gutmicrobiota (some-
times referred to as dysbiosis) contribute to this phe-
nomenon. In animals, for example, treatment with a
single dose of streptomycin will result in loss of coloni-
zation resistance, rendering mice more susceptible to
developing Salmonella infection.12 The effect is similar
regardless of whether streptomycin-sensitive or strepto-
mycin-resistant strains of Salmonella are used, indicat-
ing that the antimicrobial susceptibility of the pathogen
itself is of little importance.13 This observation has also
been reported in humans, where exposure to antibiotics
used to treat other infections increases the risk of devel-
oping Salmonella infection, with either Salmonella-
resistant or Salmonella-sensitive strains.14,15

We have demonstrated that MET-1 is protective
against Salmonella enterica serovar Typhimurium (S.
typhimurium) in a murine antibiotic model of Salmo-
nella colitis.16 C57BL/6 mice, pretreated with oral strep-
tomycin prior to receiving MET-1 or vehicle control,
were then gavaged with S. typhimurium. The S. typhi-
murium-infected mice receivingMET-1 lost less weight,
had reduced inflammatory cytokine levels in serum, and
decreased neutrophil infiltration in the cecum. MET-1
also preserved tight junction (TJ) protein expression
(Zonula Occludens-1, claudin-1) in the cecum, and
reduced metastatic spread of S. typhimurium infection
to the spleen compared to vehicle controls. MET-1 did
not appreciably kill Salmonella in vivo or decrease the
intestinal burden of Salmonella in the intestine,

suggesting thatMET-1 confers protection through other
mechanisms.

S. typhimurium and C. difficile are 2 different
pathogens with quite differing mechanisms of patho-
genicity. S. typhimurium relies heavily on host cell
invasion and C. difficile uses primarily a toxin-medi-
ated mechanism. Our discovery that MET-1 can pro-
tect against both of these organisms and both of these
mechanisms of pathogenesis offers insight into core
functions of healthy microbial communities. We will
discuss our work using defined microbiota in different
animal models of colitis, and describe additional data
implicating enhancement of barrier function as an
important mechanism of action. We are still exploring
multiple possible mechanisms of action for MET-1,
but in this addendum we will focus specifically on
effects on barrier function and microbial composition.
We will also discuss potential implications for other
GI diseases such as IBD.

Not just sitting on the fence: Gut microbiota protect
by enhancing gut barrier integrity

One common unifying theme of colitis is inflamma-
tion leading to loss of barrier function. Intestinal bar-
rier function is a key aspect of innate immunity,
designed to physically limit bacteria to the intestinal
lumen. Tight junctions between enterocytes at the api-
cal aspect of the epithelium are comprised of

Table 1. Composition of MET-1.

Strain Name % match Strain Name % match

Acidaminococcus intestinia 99% Eubacterium rectale - 3 99%
Bacteroides ovatus 99% Eubacterium rectale - 4 99%
Bifidobacterium adolescentis - 1 99% Eubacterium ventriosum 99%
Bifidobacterium adolescentis - 2 99% Fecalibacterium prausnitzii 99%
Bifidobacterium longum - 1 99% Lachnospira pectinoschiza 95%
Bifidobacterium longum - 2 99% Lactobacillus casei 99%
Blautia stercoris 99% Lactobacillus paracasei 99%
Clostridium cocleatum 92% Parabacteroides distasonis 99%
Collinsella aerofaciens 99% Enterobacter aerogenesc 99%
Dorea longicatena - 1 99% Roseburia faecisd 99%
Dorea longicatena - 2 99% Roseburia intestinalis 99%
Escherichia coli 100% Ruminococcus obeum 99%
Butyricicoccus pullicaecorumb 95% Blautia lutie 95%
Eubacterium eligens 99% Ruminococcus torques - 1 99%
Eubacterium limosum 97% Ruminococcus torques - 2 99%
Eubacterum rectale - 1 99% Streptococcus mitisf 99%
Eubacterium rectale - 2 99%

Note. Updated strain identification of MET-1 mixture, as determined by full-length 16S sequencing. Using BLAST, sequences were matched against Greengenes
database (July 2015).

aFormerly identified as Acidaminococcus intestinalis,
bFormerly identified as Eubacterium desmolans,
cFormerly identified as Raoultella ornithinolytica,
dFormerly identified as Roseburia faecalis,
eFormerly identified as Ruminococcus obeum,
fFormerly identified as Streptococcus parasanguinis.
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transmembrane proteins that confer size and charge
selectivity between the gut lumen and mucosa. In
other words, tight junctions seal the space between
adjacent epithelial cells. In addition to direct epithelial
cell invasion, enteric bacteria pathogens can hijack
host cell machinery by altering the structure and func-
tion of the TJ barrier. These effects may result from
direct modification of TJ proteins, such as occludin,
claudin and Zonula Occludens-1 (ZO-1), or by alter-
ation of the perijunctional actomyosin ring.17 S. typhi-
murium specifically increases access to the basolateral
compartment through disruption of the TJ complex
and TJ protein localization, resulting in increased par-
acellular permeability and membrane “leakiness.”18

Our Salmonella colitis study showed that compared
to saline pretreatment control, pretreatment with
MET-1 preserved localization of TJ proteins measured
(ZO-1, claudin-1), after Salmonella infection. We
additionally found decreased spread of Salmonella to
distant organ sites such as the spleen in infected
MET-1 animals compared to infected vehicle controls,
confirming preservation of barrier function by MET-
1. Interestingly, our findings showed that MET-1 had
minimal effect on Salmonella viability, and no effect
on direct Salmonella invasion of intestinal epithelial
cells.16 It thus appears that the mechanism by which
MET-1 attenuates systemic infection is by inhibiting
the ability of S. typhimurium to gain access to the sys-
temic circulation through the paracellular pathway;
MET-1 preserves the integrity of the TJ complex.

To examine this in more detail, we used an in vitro
model of altered barrier function in which T84 human
intestinal epithelial cell monolayers were grown on
transwell semi-permeable supports and co-cultured
with either S. tm/MET-1 or S. tm/vehicle control in the
presence of C. difficile toxin (which rapidly destroys the
integrity of the actin cytoskeleton); transepithelial elec-
trical resistance (TER) was used to measure barrier
integrity (Fig. 1A). In mice, intestinal inflammation
and neutrophil infiltration contribute to epithelial bar-
rier function disruption;19 however for the in vitro
experiment, C. difficile toxin was used as a tool to dis-
rupt the epithelial cell barrier. Whereas monolayers
treated with toxin alone or Salmonella C toxin had a
decrease in TER, in the MET-1 C Salmonella C toxin
samples the TER decreased only marginally, indicating
preserved barrier function with MET-1 compared to
saline control (Fig. 1B). In the toxin-treated group
receiving MET-1, fewer Salmonella bacteria were

recovered from the basolateral compartment of the
transwell compared to the vehicle control group
(Fig. 1C). This data further supports the proposed
mechanism that MET-1 enhances barrier function to
decrease Salmonella translocation via a paracellular
route.16

Next, we considered whether claudin-2 would be
affected by MET-1 pretreatment. Claudin-2 has been

Figure 1. MET-1 enhances barrier function and decreases Salmo-
nella translocation across epithelial cell monolayers via the para-
cellular pathway. (A) Schematic drawing of experimental design
of T84 intestinal epithelial cell monolayers grown to confluence
on transwell permeable supports and then treated with either
MET-1 (left) or saline vehicle control (right) for 4 hours, followed
by addition of S. typhimurium and C. difficile Tox A, to rapidly
induce a breach in the barrier function of the monolayer and
“open up” the paracellular pathway. (B) Measurement of transepi-
thelial electrical resistance (TER), an indicator of barrier function,
in T84 monolayers treated with various combinations of C. difficile
toxin, Salmonella, and MET-1, showing preserved barrier function
in MET-1 groups. (C) Quantification of the viable number of S.
typhimurium (Colony Forming Units, or CFUs) on the basolateral
side of the monolayer was determined by sampling the basolat-
eral compartment every 60 minutes for 4 hours, and plating serial
dilutions onto MacConkey plates.
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recently described as a “leaky” intestinal TJ protein
which plays an important role in water and solute reg-
ulation and is upregulated by S. typhimurium infec-
tion.20 MET-1/S. tm mice were observed to generally
produce more formed stool than VC/S. tm mice. As
shown in Figure 2A, claudin-2 expression in MET-1/
S. tm mice was confined primarily to the bottom of
the crypts and more closely resembled uninfected

controls (VC mice and MET-1 mice). In contrast (and
as has been previously reported),20 in VC/S. tm mice
the expression of claudin-2 was more diffusely spread
up the length of the crypts. This site specificity appears
important as the overall amount of claudin-2 in the
VC/S. tm mice and MET-1/S. tm mice was unchanged
(Fig. 2B). Taken together, these data indicate that even
during Salmonella infection MET-1 maintains the

Figure 2. MET-1 pretreatment prevented the disruption of claudin-2 localization in the cecum caused by S. typhimurium infection. (A)
Claudin-2 immunofluorescence staining (green) in ceca fixed in 10% formalin (400x magnification). Nucleic acid was stained using DAPI
(blue). White arrows in picture show the green staining of claudin-2. Uninfected mice were pretreated with vehicle control (VC) or MET-
1. Mice infected with S. typhimurium (S. tm) were also pretreated with either vehicle control (VC/S. tm) or MET-1 (MET-1/S. tm). VC/S. tm
mice had increased claudin-2 epithelial cell immunofluorescence at the crypt base as well as in the mid and upper crypt zones and on
the surface (compared to uninfected controls). This alteration in claudin-2 expression was attenuated in MET-1/S. tm mice. Scale bar rep-
resents 100 mm. (B) Expression of claudin-2 was measured by Western blot analysis of total cecal lysates (sample blot shown). Although
panel (A) showed differences in localization, densitometric values calculated for the ratio of claudin-2 to b-actin showed no statistically
significant difference between total expression of claudin-2 in MET-1/S. tm compared to VC/S. tm mice. Data were analyzed using a 1-
way ANOVA with Bonferroni correction. N D 6 for each group. NS D not significant.
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localization of claudin-2 at the bottom of the crypts,
where it is normally expressed under conditions of
intestinal homeostasis.

To further examine the effects of MET-1 on barrier
function we utilized another murine model of colitis
that disrupts barrier function, but does not involve
infection with a specific pathogen. Dextran Sulfate
Sodium (DSS) is a sulfated dextran molecule that can
be dissolved in the drinking water of mice, leading to
the development of colitis.21 DSS-induced colitis is
one of the most commonly used mouse models of IBD
and is thought to model human ulcerative colitis,
although the mechanism of the disease is not well
understood.22 It is thought that DSS can chemically
compromise barrier function and allow for infiltration
of microbes and luminal antigens to drive inflamma-
tion. The inability to maintain an intact barrier thus
contributes to excessive translocation and sampling of
intestinal microbes, resulting in a loss of homeostasis
and resultant inflammation.

For this model, mice were pretreated 24 hours
before MET-1 gavage with a combination of oral van-
comycin and streptomycin. Both of these antibiotics
are not absorbed into the circulation when taken by
mouth, remaining in the gut lumen. Therefore, this
combination of antibiotics has broad-spectrum effects
on the gut microbiota, effectively creating a niche for
other microbes to colonize. Following oral antibiotic
treatment MET-1 was administered in a pretreatment
regimen as described previously,16 and then mice were
given 3% DSS. The hypothesized rationale for the effi-
cacy of MET-1 pretreatment following oral antibiotics
in the DSS model was that a decrease in indigenous
microbes in the mouse colon would allow for stronger
colonization of MET-1 following oral gavage, and that
this microbial composition would be less conducive to
the development of colitis following DSS administra-
tion. As predicted, MET-1 treated mice were less sick
than control DSS mice (Fig. 3). Over the course of DSS
exposure, mice that received MET-1 following antibiot-
ics lost significantly less weight and displayed less histo-
logic injury than controls. Effects on the immune
response were further analyzed by measuring serum
cytokine secretion levels. A decrease was noted in the
average serum concentration for several inflammatory
cytokines, including IL-1, IL-6, MCP-1, and IL-12 in
antibiotic MET-1 DSS mice versus antibiotic saline
DSS mice (Fig. 3B). The greatest cytokine decrease
with DSS treatment occurred in chemokines important

for acute phase inflammation, and myeloperoxidase
(MPO) immunohistochemical staining also revealed
reduced neutrophil infiltration into the colon of mice
receiving MET-1 (data not shown). Both of these find-
ings are similar to what was observed in the Salmonella
colitis mouse model with MET-1.16

In contrast, there was a relative preservation of
mucin-2 in the colons of antibiotic MET-1 DSS mice
compared to the other treatment groups, an effect not
observed with the Salmonella colitis model (Fig. 4).
Mucin-2 is the primary constituent of the secreted
mucous layers in the colon and it has a significant
impact on intestinal homeostasis, acting as a physical
barrier atop the epithelium. Loss of function of
mucin-2 results in the development of spontaneous
colitis23 and mucin-2 is reduced in the DSS colitis
model.24,25 The ability of the microbiota to regulate
the composition of the intestinal mucous has been
demonstrated in vivo.25,26 In vitro, the probiotic Lacto-
bacillus plantarum strain 299v was shown to upregu-
late mucin-2 mRNA in HT-29 cells.27 Upregulation of
mucin-2 by other probiotic Lactobacilli has also been
reported.28 In contrast, bacteria from Deferribactera-
ceae, and Verrucomicrobiaceae families, including an
increase in the mucin-degrading genera Akkermansia,
and Mucispirillum, are increased in DSS-treated
mice.29 The latter microbes are known inhabitants of
the gut that possess mucolytic ability. Taken together,
these findings suggest that specific microbes may con-
tribute to modulating the intestinal mucous barrier.

Not all MET are created equal: Gut microbiota
composition may be more important than we
appreciate

During DSS there are compositional changes in the
microbiota, including increases in a number of
different taxa. DSS results in an increase in the Proteo-
bacteria family Enterobacteriaceae,29 which is repre-
sented in low quantities in MET-1. Interestingly, this
family of microbes was seen to be disproportionately
high in 2 patients with CDI, but was almost
completely eradicated 6 months following treatment
with MET-1, suggesting that MET-1 inhibits growth
of this family.8

Also in support of the role that microbes play in
DSS-induced colitis is work demonstrating that cer-
tain probiotic organisms can curb disease progression.
Oral pretreatment with a probiotic mixture containing
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4 Lactobacillus spp. and four Bifidobacterium spp for
one week prior to the induction of DSS-induced colitis
was capable of significantly reducing weight loss and
histological damage in mice. These changes were also
correlated with restoration of certain microbes that
were altered during colitis.30 The probiotic mixture
VSL#3, comprised of 8 different strains belonging to
the bacterial genera Bifidobacterium, Lactobacillus,
and Streptococcus, was protective against DSS colitis
by mechanisms involving limiting apoptosis in the
colon and upregulation of tight junction proteins.31

The IL-10 knockout (Il-10¡/¡) mouse model is
another commonly used animal model for IBD.32,33

Changes to the microbiota that occur with progression
of intestinal inflammation have been reported in this
model. Increases in Proteobacteria and particularly in E.
coli, as well as decreases in Firmicutes, microbial rich-
ness and overall diversity occurring over time have been
described.34 These changes have also been reported in
UC andCDpatients.35 As with the DSSmodel, however,
it can be difficult to discern whether these alterations of
the enteric microbiota are a cause or effect of colonic

Figure 3. MET-1 treatment following oral antibiotics prevented DSS-induced weight loss and histological damage. (A) Female, 7 week
old C57BL/6 mice received MET-1 treatment following oral antibiotics (0.1 mg Vancomycin, 20 mg Streptomycin, or saline as vehicle
control), prior to acute exposure to 3% DSS. Data analyzed by 2 way ANOVA with Bonferroni correction, (� p < 0.001). (B) Serum cyto-
kine levels of IL-1b, IL-6, IL-12p70, and MCP-1 were significantly reduced in DSS mice pretreated with antibiotic C MET-1 compared to
DSS mice pretreated with antibiotic C vehicle control. Serum cytokine levels were measured using a Bio-Plex Pro mouse cytokine mag-
netic bead kit. Both groups received antibiotics prior to DSS. Data were analyzed by Student T-test (� p< 0.05). (C) Representative photo
of H&E staining of colons. DSS treatment resulted in a loss of mucosal architecture, and submucosal edema. MET-1 pretreatment follow-
ing oral antibiotics protected against histological damage. N D 4 for each treatment group (N D 5 for DSS group). Scale bar represents
100 mm.
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inflammation. In one Il-10¡/¡ study, the investigators
concluded that the observed changes in the microbiota
were secondary to the host immune response, although
they noted that the dysbiotic changes observed in the
composition of the microbiota may serve to further per-
petuate colonic inflammation by contributing to, and
perhaps even amplifying, the host inflammatory
response.34 Interestingly, FMT after ileocolic resection
(ICR) in Il-10¡/¡ mice seems to protect against ileal
inflammation post-operatively, but increase colonic
inflammation.36 The authors of this study concluded
that increased inflammatory cytokines could act in con-
cert with mucolytic pathobionts such as Klebsiella spe-
cies, shown to be increased in the colonic samples, to
culminate in the additive effect of increased bacterial
translocation, a phenomenon previously reported to
drive colitis and contribute to endotoxemia in this
model.36,37

It is interesting to examine the composition of MET-1
in comparison to those taxa thought to be important in
human IBD. The two major phyla in the healthy micro-
biota are consistently the Bacteroidetes and Firmicutes,
highly represented in MET-1, whereas IBD is associated
with an increase in Proteobacteria,35 present in very low
abundance in MET-1. The family Lachnospiraceae,
which are well represented in MET-1, also appear to be
significantly reduced in IBD microbiota. Clinically, we
have already successfully used MET-1 as treatment for 2
patients with refractory, chronic CDI.8 Treatment with
MET-1 stimulated expansion of Lachnospiraceae in
both patients that were treated for CDI, suggesting the
MET-1 community created a positive environment for
these beneficial bacteria.8 More specifically, the organism
Faecalibacterium prausnitzii, which we consider to be an
integral member of MET-1, has been shown to be
decreased in IBD patients suffering relapse, while its

Figure 4. MET-1 pretreatment following oral antibiotics attenuates DSS-mediated loss of Mucin-2 in the colon. (A) Representative pho-
tos of distal colons from antibiotic saline and antibiotic MET-1 pretreated mice, saline and MET-1 pretreated DSS mice and antibiotic
saline, antibiotic MET-1 pretreated DSS mice. Mucin-2 appears green, nuclei stained using DAPI (blue). Scale bar represents 100 mm.
Mucin-2 quantification data in (B) shows a statistically significant difference between Abx/DSS treatment and Abx/MET-1/DSS treatment,
with more Muc-2 in the MET-1 treatment group, N D 4 mice per group. Data were analyzed by ANOVA with Bonferroni correction
(���p < 0.0005).
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abundance is thought to be an important factor in dis-
ease remission38 and is present to a high degree in MET-
1.8 Conversely, taxa associated with the Proteobacteria
family Enterobacteriaceae appear to be highly abundant
in IBD39,40 but are represented by only 2 species in
MET-1, and were significantly reduced in the 2 patients
following MET-1 treatment.8 This is also true of Bacter-
oides and Desulfovibrio which are in high abundance in
IBD patients41,42 but low and not present in MET-1,
respectively.

The fact that there are a number of taxa increased in
DSS-induced colitis in mice, as well as in IBD in humans,
suggests that changes to these taxa may contribute to
development of disease. Furthermore, it appears as
though changes to the microbiota of mice in this model
occur at the onset of disease, hinting at causation.43 This
suggests that microbial transplant could be efficacious in
preventing or correcting dysbiosis. Many of these taxa
occur in low amounts or not at all in the MET-1 mixture
and abundance of some of these taxa was drastically
inhibited by MET-1 in humans, comprising only a very
small proportion of the community following treatment.
The opposite is also true; certain taxa which are known
to be decreased in IBD patients are very abundant in
MET-1 and flourish following transplant into a host.
These parallels provide a compelling link between
microbial contribution to the inflammatory disease state
and the potential efficacy of MET-1 treatment.

In addition to MET-1, other groups have similarly
demonstrated that engineered communities can be
used to treat human disease. For example, Tvede and
Rask-Madsen44 created a mixture of 10 strains of gut-
derived bacteria grown in pure culture and then
administered these, resuspended in saline, by enema to
treat C. difficile infection. The mixture was comprised
of Clostridia (C. innocuum, C. ramosum, C. bifermen-
tans), Bacteroides (B. ovatus, B. vulgatus, B. thetaiotao-
micron), Enterococcus faecalis (previously named
Streptococcus faecalis), Ruminococcus productus (previ-
ously named Peptostreptococcus productus), and 2
strains of E. coli. Of the 6 recurrent CDI patients in the
study, one received FMT, 4 received their defined mix-
ture, and one patient who did not respond to FMT
subsequently received the defined mixture, with good
response. This study was performed in 1989 before the
emergence of hypervirulent strains of C. difficile but it
was nevertheless effective in achieving cure, demon-
strating the feasibility of a defined gut microbiota
approach. Using an animal model, an even more

narrowly defined mixture of 6 strains of bacteria
(Staphylococcus warneri, Enterococcus hirae, Lactobacil-
lus reuteri), and 3 novel species (Anaerostipes sp. Bac-
teroidetes sp and Enterorhabdus sp.) was shown to be
effective in protecting mice against C. difficile infec-
tion.45 Finally, as mentioned previously, defined probi-
otic mixtures such as VSL#3, which contains 8
different strains of bacteria, have shown some efficacy
for other GI inflammatory conditions such as
pouchitis.46,47

It is important to remember, however, that the
compositional structure of a given microbiota tells
only half the story – the abundance profiles of certain
taxa may not always be correlated to their significance
within a community48,49 and the mere presence or
absence of certain species is likely less important than
the net functional output of the ecosystem members.
In addition, secreted products from the bacteria likely
contribute significantly to their protective effects. Bac-
teria are not static beings, but instead respond rapidly
to their environment and secrete a plethora of chemi-
cal compounds, some of which are used as signaling
molecules both among microbes, and between
microbes and host. Production of small molecules,
such as short chain fatty acids, by the gut microbiota
is heavily influenced by ecosystem structure and avail-
able nutrients, and also by the inflammatory environ-
ment of the gut itself.50 The same concept applies to
organisms that can be found in a “dysbiotic” commu-
nity. For example, E. faecalis secretes gelatinase, a met-
alloprotease which both degrades the epithelial
junctional protein E-cadherin51 and acts on PAR-2 to
increase intestinal permeability, an effect recapitulated
by supernatants from ulcerative colitis patient fecal
samples.52 Therefore, as we begin to unravel the mech-
anisms of protection by therapeutic ecosystems such
as MET-1, a thorough understanding of the microbial
ecosystem metabolome, and the influence of this on
the host, is warranted. Such a study will be complex
since the same microbes may respond differently to
exposure to different ecosystems.53

Future directions

Dysbiosis may contribute to a variety of other gastroin-
testinal diseases and diseases in other organs. To better
grasp the complexities of ecosystem function, future
areas of study should focus on investigating effects of
ecosystem members, on the bacterial metabolites
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released by these microbiota, and on the barrier func-
tion-enhancing capacity of defined microbiota, to deter-
mine which members of the community are critical for
this important function. Further research in this area
may lead to defined therapies that provide an optimally
enhanced barrier function with the potential to protect
against multiple other diseases, where barrier function
disruption may play a critical role.

Abbreviations and acronyms
Abx Antibiotics
CDI Clostridium difficile infection
CFU Colony Forming Unit
DSS Dextran Sulfate Sodium
FMT Fecal Microbial Therapy
H&E Hematoxylin and Eosin staining
IBD Inflammatory Bowel Disease
ICR Ileocolic resection
LPS Lipopolysaccharide
LTA Lipoteichoic Acid
MET Microbial Ecosystem Therapeutic
MET-1 Microbial Ecosystem Therapeutic Mix

(“Repoopulate”)
S. tm Salmonella typhimurium
TLR Toll-like receptor
VC Vehicle control
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