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ABSTRACT Extensive research over the last couple
of decades has made it obvious that mycotoxins are
commonly prevalent in majority of feed ingredients.
A worldwide mycotoxin survey in 2013 revealed 81%
of around 3,000 grain and feed samples analyzed had
at least 1 mycotoxin, which was higher than the 10-
year average (from 2004 to 2013) of 76% in a total of
25,944 samples. The considerable increase in the num-
ber of positive samples in 2013 may be due to the im-
provements in detection methods and their sensitivity.
The recently developed liquid chromatography coupled
to (tandem) mass spectrometry allows the inclusion of
a high number of analytes and is the most selective,
sensitive, and accurate of all the mycotoxin analytical
methods. Mycotoxins can affect the animals either in-
dividually or additively in the presence of more than
1 mycotoxin, and may affect various organs such as
gastrointestinal tract, liver, and immune system, essen-
tially resulting in reduced productivity of the birds and

mortality in extreme cases. While the use of mycotoxin
binding agents has been a commonly used counteracting
strategy, considering the great diversity in the chem-
ical structures of mycotoxins, it is very obvious that
there is no single method that can be used to deacti-
vate mycotoxins in feed. Therefore, different strategies
have to be combined in order to specifically target in-
dividual mycotoxins without impacting the quality of
feed. Enzymatic or microbial detoxification, referred to
as “biotransformation” or “biodetoxification,” utilizes
microorganisms or purified enzymes thereof to catabo-
lize the entire mycotoxin or transform or cleave it to less
or non-toxic compounds. However, the awareness on the
prevalence of mycotoxins, available modern techniques
to analyze them, the effects of mycotoxicoses, and the
recent developments in the ways to safely eliminate
the mycotoxins from the feed are very minimal among
the producers. This symposium review paper compre-
hensively discusses the above mentioned aspects.
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INTRODUCTION

The term “mycotoxin” is derived from “mykes”
meaning fungi and “toxicon” meaning poison. Mycotox-
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ins are secondary metabolites of low molecular weight
produced by a wide range of fungi, principally molds.
There are over 200 species of molds that produce my-
cotoxins. Aflatoxins (AF), zearalenone (ZEN), ochra-
toxin A (OTA), fumonisins (FUM), trichothecenes
such as deoxynivalenol (DON), and T-2 toxin are some
of the mycotoxins that can significantly impact the
health and productivity of poultry species (Figure 1).
Fungal growth and subsequent mycotoxin formation is
dependent on a range of factors including seasons, loca-
tion of grain cultivation, drought and time of harvest.
Long term analysis of grain and feed samples world-
wide has indicated that it is possible to have grains
with extremely high concentrations of mycotoxins, al-
though the overall mycotoxin contamination is low,
(Streit et al., 2013a). These data also revealed that
mycotoxin contaminated grains typically contain more
than just a single mycotoxin.
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Figure 1. Chemical structures of most prevalent mycotoxins. A: Aflatoxin By, B: Deoxynivalenol, C: Zeralenone, D: Ochratoxin A, E: Fumonisin

B;.

Mycotoxins produce a variety of diseases, collectively
called “mycotoxicoses,” directly or in combination with
other primary stressors such as pathogens (Raju and
Devegowda, 2000). These diseases are exhibited by
symptoms and lesions, which can be used to clinically
diagnose the presence of mycotoxins although these
symptoms are not just straightforward. When AF and
OTA are co-contaminants of poultry feed, they interact
in a synergistic manner (Huff and Doerr, 1981). During
dual exposure of these toxins, OTA prevents the ma-
jor effects of AF (i.e., fatty, yellow, enlarged and friable
liver). This reduces the ability to diagnose aflatoxico-
sis in the field and the target organ in this interaction
appears to be the kidney. The combination of AF and
T2 toxin is the same as the interaction between AF
and OTA, and exhibit synergistic toxicity (Huff et al.,
1988a). Acute cases caused by ingestion of high levels

of mycotoxins may result in mortality and a marked
decline in the productivity of poultry characterized by
obvious clinical signs and post-mortem lesions. How-
ever in most cases, mycotoxicoses is chronic and caused
by low-level ingestion of fungal metabolites, resulting in
measurable decline in performance and the occurrence
of nonspecific changes, including subcutaneous hem-
orrhage in broilers and immunosuppression (D’mello
et al., 1999). Under field conditions, suboptimal per-
formance in the absence of an obvious infectious, en-
vironmental or management factor, or a nutritional
deficiency suggest the possibility of mycotoxicoses.
However, analysis of feed for mycotoxins is impera-
tive in order to diagnose mycotoxicoses in these chronic
cases, apart from the evaluation of history, clinical and
post-mortem evaluation of flocks and microscopic ex-
amination of tissues (Schiefer, 1990).
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The recognition that mycotoxins affect health and
productivity of poultry has led to intensive research
on counteracting methods over the last few decades,
including detection and elimination or detoxification
of mycotoxins. Although enzyme-linked immunosorbent
assay (ELISA) based detection methods were used in
the past, recent developments in the analysis and de-
tection of mycotoxins in feed and feed ingredients im-
proved the scenario considerably. The use of high per-
formance liquid chromatography (HPLC) has been one
such development which initiated the path to detect
multiple mycotoxins simultaneously in a sample (Schu-
macher et al., 1997). The latest technique using liquid
chromatography coupled to (tandem) mass spectrom-
etry (LC-MS/MS) increased this potential phenome-
nally to detect hundreds of mycotoxins simultaneously
in a sample (Malachova et al., 2014). This new develop-
ment has also led to the detection of masked and emerg-
ing mycotoxins, which are neither routinely screened
nor regulated by legislations (Berthiller et al., 2013).

The most well-known approach for detoxification of
mycotoxins involves the use of nutritionally inert ad-
sorbents with the capacity to bind and immobilize my-
cotoxins in the gastrointestinal tract of animals, thus
reducing their bioavailability (Magnoli et al., 2011). Al-
though this approach successfully eliminates the risk of
certain mycotoxins such as the AF, it does not work
comprehensively on all of the mycotoxins relevant to
the poultry industry. Biotransformation has been one
of the proven approaches for the detoxification of the
non-adsorbable mycotoxins by altering their molecular
structure into non-toxic metabolites which are excreted
(Grenier et al., 2013). Therefore suppression of myco-
toxicoses requires an integrated approach from detec-
tion to detoxification. The objective of this paper is to
discuss in detail the determination and prevalence of
mycotoxins, effects of mycotoxicoses and recent devel-
opments in the strategies to counteract mycotoxins.

MYCOTOXINS RELEVANT IN POULTRY
NUTRITION

Aflatoxins

Aflatoxins, a class of mycotoxins produced by fun-
gal species of the genus Aspergillus (flavus and para-
siticus), are often found in feed ingredients used for
poultry rations. Most prevalent forms of AF include
By, By, Gy, and Go, with aflatoxin By (AFB;) being
the most common and biologically active component
(Busby and Wogan, 1981). Aflatoxins cause a variety
of effects in poultry, including decreased weight gain,
poor feed efficiency, reduced egg production and egg
weight, increased liver fat, changes in organ weights, re-
duction in serum protein levels, carcass bruising, poor
pigmentation, liver damage, decreased activities of sev-
eral enzymes involved in the digestion of starch, protein,
lipids, and nucleic acids, and immunosuppression (Edds
and Bortell, 1983; Leeson et al., 1995; Devegowda and
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Murthy, 2005). Evidence suggests that immunosuppres-
sion caused by AF results in many disease outbreaks,
vaccination failures, and poor antibody titers (Deveg-
owda and Murthy, 2005). At necropsy, livers are usually
pale and enlarged, as a result of aflatoxicosis. Histologi-
cally, liver lesions include congestion of the hepatic sinu-
soids, focal hemorrhages, centrilobular fatty cytoplas-
mic vacuolation and/or necrosis, biliary hyperplasia,
and nodular lymphoid infiltration (Leeson et al., 1995).
Osborne et al. (1982) found that AF, at levels that did
not affect growth, produced a malabsorption syndrome
characterized by steatorrhea, hypocarotenoidemia, and
decreased concentrations of bile salts and pancreatic li-
pase, trypsin, amylase, and RNase.

At a cellular level, chicks fed 1.0mg/kg AFB; had
decreased hepatic gene expression of superoxide dis-
mutase, glutathione S-transferase, and epoxide hydro-
lase and increased gene expression of Interleukin 6
and cytochrome p450 1A1 and 2H1 (Yarru et al.,
2009a). In chicks fed 2.0mg/kg AFB;, various hepatic
genes associated with energy production and fatty acid
metabolism (carnitine palmitoyl transferase), growth
and development (insulin-like growth factor 1), antioxi-
dant protection (glutathione S-transferase), detoxifica-
tion (epoxide hydrolase), coagulation (coagulation fac-
tors IX and X), and immune protection (interleukins)
were downregulated, whereas genes associated with cell
proliferation (ornithine decarboxylase) were upregu-
lated (Yarru et al., 2009b).

Ochratoxins

Ochratoxins are a group of structurally related
metabolites that are produced by fungi belonging to the
genera Aspergillus and Penicillium, and Ochratoxin A
(OTA) is the most prevalent mycotoxin of this group.
Signs of OTA toxicity in poultry include weakness, ane-
mia, decreased feed consumption, reduced growth rate
and egg production, poor feathering, and excessive mor-
tality at high dietary concentrations (Hamilton et al.,
1982; Gibson et al., 1989; Huff et al., 1988b). Patho-
physiological changes include decreased urine concen-
tration and glomerular filtration rate, impairment of
proximal tubular function, and degeneration and ul-
trastructural alterations in renal integrity (Huff and
Hamilton, 1975; Glahn et al., 1988, 1989). Increases in
the relative weights of liver, spleen, pancreas, proven-
triculus, gizzard, and testes have also been reported
in poultry fed OTA (Gibson et al., 1989; Huff et al.,
1988b).

Ochratoxin A consists of an isocoumarin moiety
linked through the T7-carboxy group to the amino
acid L-0O-phenylalanine. At a cellular level, OTA in-
terferes with DNA, RNA, and protein synthesis by
inhibiting the enzyme phenylalanine-tRNA synthetase
(Marquardt and Frohlich, 1992). Ochratoxin A also
affects renal carbohydrate metabolism through a
reduction of the remal mRNA coding for phospho-
enolpyruvate carboxykinase (PEPCK), a key enzyme
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in gluconeogenesis (Leeson et al., 1995). The effects of
OTA on DNA, RNA, and protein synthesis are thought
to be due to the phenylalanine moiety of the toxin
competing with phenylalanine in the enzyme catalyzed
reaction (Marquardt and Frohlich, 1992). Ochratoxin
A also causes hypocarotenidemia in broilers (Huff and
Hamilton, 1975) that is more severe than that caused
by AF (Osborne et al., 1982; Schaeffer et al., 1987).

Fumonisins

The FUM are a group of mycotoxins that were
first isolated from cultures of Fusarium wverticil-
lioides (moniliforme) and chemically characterized by
Gelderblom et al. (1988). Six different FUM have been
identified (A, Ay, By, Bs, B3, By) and their structures
elucidated (Bezuidenhout et al., 1988; Cawood et al.,
1991; Plattner et al., 1992). However, fumonisin B,
(FB1) has been reported to be the predominant form
produced by Fusarium verticillioides (Norred, 1993).
Several other Fusarium species and a species of Al-
ternaria have also been found to produce FB1 (Chen
et al., 1992).

In comparison to horses and swine, 2 susceptible
species, chicks and turkeys, are relatively resistant to
the toxic effects of FB;. Mild to moderate toxicity
was reported in chicks, ducks, and turkeys fed rations
containing 75-400 mg FB; /kg for 21 days (Bermudez
et al., 1995; Brown et al., 1992; Ledoux et al., 1992;
Weibking et al., 1993, 1995). The primary changes in
chicks, ducks, and turkeys were decreased body weight
gain and liver pathology (Bermudez et al., 1995; Brown
et al., 1992; Ledoux et al., 1992; Weibking et al., 1993,
1995). Hepatic changes in chicks were multifocal hep-
atic necrosis and biliary hyperplasia (Ledoux et al.,
1992; Weibking et al., 1993). Hepatocellular hyperpla-
sia and increased extramedullary hematopoiesis were
also noted in 1 study (Weibking et al., 1993). The pri-
mary liver pathology observed in ducklings and turkeys
fed FB; was diffuse hepatocellular hyperplasia, with
biliary hyperplasia evident in turkeys fed 150-300 mg
FB,/kg (Weibking et al., 1995) and in ducklings fed
400 mg FB, /kg (Bermudez et al., 1995). In studies de-
signed to evaluate the chronic effects of FB;, chick per-
formance up to 7 weeks was not affected by up to 50 mg
FB;/kg diet, whereas turkeys fed 50mg FB;/kg diet
had lower feed intakes than birds fed 0 or 25 mg FB; /kg
diet (Broomhead et al., 2002).

The mechanism by which the FUM cause toxic-
ity in animals appears to be due to the disruption
of sphingolipid metabolism (Wang et al., 1991). Cur-
rent evidence indicates that the FUM are specific in-
hibitors of ceramide synthase (sphinganine/sphingosine
N-acyltransferase), a key enzyme required for the syn-
thesis of ceramide and more complex sphingolipids. In-
hibition of this enzyme system leads to an increase in
tissue concentrations of the sphingolipids sphingosine
(SO) and sphinganine (SA), and a change in the SA:SO
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ratio. An increase in the SA:SO ratio, has been observed
in tissues of broilers, turkeys, and ducklings fed FB;
(Weibking et al., 1993; Bermudez et al., 1995; Ledoux
et al., 1996; Broomhead et al., 2002; Tran et al., 2005).

Trichothecenes

Trichothecene mycotoxins are a group of fungal
metabolites with the same basic backbone structure
and include T-2 toxin, HT-2 toxin, diacetoxyscirpenol
(DAS), monoacetoxyscirpenol (MAS), neosolaniol,
8-acetoxyneosolaniol, 4-deacetylneosolaniol, nivalenol,
4-acetoxynivalenol (Fusarenone-X), DON (vomitoxin),
and 3-acetyldeoxynivalenol (Leeson et al., 1995). Tri-
chothecenes are the most potent small molecule in-
hibitors of protein synthesis known and the main
toxic effect at the cellular level appears to be a pri-
mary inhibition of protein synthesis followed by a sec-
ondary disruption of DNA and RNA synthesis (Leeson
et al., 1995). Toxic effects of trichothecenes include oral
lesions, growth retardation, abnormal feathering, de-
creased egg production and egg shell quality, regres-
sion of the bursa of Fabricius, peroxidative changes
in liver, abnormal blood coagulation, leucopoenia and
proteinemia, and immunosuppression (Leeson et al.,
1995; Danicke, 2002). Concentrations of T-2 that cause
oral lesions are lower (0.4mg/kg) than concentrations
reported to decrease chick performance (3—4mg/kg;
Leeson et al., 1995). In a comprehensive review, Dan-
icke (2002) concluded that broiler performance is af-
fected at dietary concentrations of 3-4mg/kg of T-2
toxin, whereas ducks were affected when the dietary
concentration was as low as 0.4 mg/kg.

Deoxynivalenol is less toxic than T-2 toxin, and the
level of DON that affects chick performance is still de-
bated, with some researchers (Huff et al., 1986; Kubena
et al., 1988, 1989) reporting toxic effects at 16 mg/kg
diet, whereas others (Moran et al., 1982) report no toxic
effect until dietary concentrations exceeded 116 mg/kg
of DON. Danicke et al. (2001) summarized results of
49 studies with DON and concluded that a dietary
concentration of 5mg/kg had no negative effects on
performance. Deoxynivalenol has also been reported to
have both immunosuppressive and immunomodulating
effects in poultry (Danicke, 2002). Recent studies in-
dicate that DON at concentrations ranging from 1 to
7mg/kg diet significantly alters several key functions
of the intestinal tract including decreasing villus sur-
face area available for absorption and altering the per-
meability of the intestinal tract (Awad et al., 2011;
Osselaere et al., 2013).

Interactions among Mycotoxins

In general, contaminated feeds usually contain more
than one mycotoxin. Grenier and Oswald (2011)
recently conducted a meta-analysis of publications
(>100) describing toxicological interactions among
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mycotoxins. In the analysis, the authors only explored
experiments with a 2 x 2 factorial design where individ-
ual and combined effects of the mycotoxins were evalu-
ated. Over half of the studies investigated the interac-
tions between AF and other mycotoxins, and over half
of the studies selected were poultry studies. Results in-
dicated that most of the studies showed a synergistic or
additive interaction on animal performance. However,
results with respect to other response variables indi-
cated that there were many types of interactions rang-
ing from synergistic to antagonistic for a same associa-
tion (Grenier and Oswald, 2011). Grenier and Oswald
(2011) also observed from their review that a combina-
tion of mycotoxins, at concentrations that individually
should not cause negative effects, may negatively affect
animals.

CURRENT STATUS OF MYCOTOXIN
ANALYTICAL TOOLS

Analytical Methods

Valid determination

of mycotoxins and their metabolites is a crucial step
in any intervention, mitigation, or remediation strat-
egy to cope with the deleterious effects of mycotoxins to
livestock. The determination of mycotoxins follows gen-
eral trends in analytical chemistry. This includes — be-
sides faster and more sensitive methods — the concur-
rent determination of a larger number of toxins in single
measurements. Formerly, the most prominent mycotox-
ins such as AF, DON, FUM, OTA, or ZEN were mon-
itored on a regular basis, the latest multi-mycotoxin
analytical methods have enabled the determination of
the so called “emerging” mycotoxins. Examples include
the Fusarium toxins: moniliformin, fusaproliferin, or en-
niatins (Jestoi, 2008). The soluble plant metabolites
of mycotoxins or the so called “masked” mycotoxins
(Berthiller et al., 2013) can also be monitored. A promi-
nent example is deoxynivalenol-3-glucoside (D3G), the
most common plant metabolite of DON, which, in
single cases, can even exceed the concentration of
the native toxin in cereals and often results in high
DON concentration in beers (Varga et al., 2013a).

In general, methods for mycotoxin determination can
be divided into chromatographic methods, immuno-
chemical methods and “other” methods, which include
direct spectroscopic methods. The most selective, sensi-
tive, and accurate of all these methods are often based
on LC-MS/MS, which also allows the inclusion of a
high number of analytes. Further reasons for multi-
mycotoxin analytical methods are to quantify toxins
in feed mixtures rather than single matrices, to use 1
method rather than many different ones and to moni-
tor changes in regional mycotoxin patterns due to cli-
mate change. The power and necessity of such LC-
MS/MS based multi-method has been highlighted by
Streit et al. (2013b), showing the detection of 139 dif-
ferent (mostly fungal) secondary metabolites in a vari-
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ety of feedstuffs. In a different experiment, 26 different
mycotoxins were detected in a single hazelnut sample
using the LC-MS/MS based multi-method (Varga et al.,
2013b).

LC-MSIMS-Based Multi-Methods

In order to develop successful LC-MS/MS based
multi-toxin detection methods, several obstacles have
to be overcome. A major challenge is still the collec-
tion of a representative (cereal) sample taking into ac-
count the heterogeneous distribution of mycotoxins in
a lot. However, the sample variability can be minimized
through increasing the size of samples and subsam-
ples and decreasing the particle size (Whitaker, 2006).
Mycotoxins are chemically diverse substances, ranging
from very polar (e.g., moniliformin, nivalenol) to non-
polar (e.g., beauvericin, enniatins), while their solubil-
ity in liquid solvents also varies extensively. Typically
acidified mixture of water with organic solvents such as
methanol, acetone, or acetonitrile are used to extract
a large amount of different toxins within a single pro-
cedure (Sulyok et al., 2006). It should be noted that
the extraction of a multitude of different compounds
with a single solvent mixture has to be a compromise
as better suited solvents are available for the determi-
nation of single analytes. Also, extract clean-up options
are restricted due to the chemical diversity of myco-
toxins. While some methods rely on phase separation
of acetonitrile-water mixtures by the addition of salts
(QuEChERS-like methods; Desmarchelier et al., 2010),
most modern methods simply dilute the raw extract be-
fore measurement to decrease the matrix load. As only
ions can be detected in a mass spectrometer, the ioniza-
tion process for neutral analytes is an important next
step, usually achieved by electrospray interfaces. While
powerful and constantly under development, electro-
spray devices are prone to matrix effects, which could
lead to signal suppression or enhancement of analytes
co-eluting with matrix compounds (Malachova et al.,
2013). A very elegant, efficient, and cost-effective ap-
proach to compensate matrix effects is the use of sta-
ble isotope-labelled mycotoxins as internal standards
(Varga et al., 2012). Further possibilities include ma-
trix matched calibration, standard addition, or correc-
tion of the measured concentrations for the recovery
after careful validation of each matrix. The most recent
methods are capable of quantifying around 300 fungal
metabolites in a variety of different food and feedstuffs
(Malachova et al., 2014).

Analysis of Biomarkers for Mycotoxins

A different strategy to assess the exposure of indi-
vidual animals to mycotoxins is the use of biomarker
methods. Such methods are mainly based as well on
LC-MS/MS and determine the concentration of myco-
toxins, their metabolites (biomarkers of exposure), or
other affected endogenous substances (biomarkers of
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effect) in biological fluids such as blood or urine. In
addition to exposure assessment, biomarker methods
are used in mycotoxin metabolization studies and to
verify the effect of mycotoxin deactivation in vivo. For
example, a multi-biomarker LC-MS/MS method was
developed to assess human exposure to mycotoxins by
assaying the urine (Warth et al., 2012). In urine sam-
ples obtained from Cameroon, biomarkers of exposure
for up to 5 mycotoxins (OTA, DON, nivalenol, AF, and
FB;) were detected simultaneously. Masked mycotoxins
can be potentially reactivated by cleavage of the conju-
gate and liberation of the native toxin in the digestive
tract of animals. Deoxynivalenol-3-glucoside was read-
ily hydrolyzed to DON during digestion, thus proving
its status as a masked mycotoxin. In this context, urine
and feces from rats were analyzed by a validated LC—
MS/MS biomarker method to study the metabolism of
D3G, after application of the masked mycotoxin (Nagl
et al., 2012). While in the case of rats most liber-
ated DON was excreted in feces, very recently a higher
amount of liberated DON was found in urine of piglets
fed with D3G indicating species specific metabolism
(Nagl et al., 2014). A good example for a biomarker
of effect is the ratio of the sphingolipid compounds
(SA:SO), which increases in the serum and tissue of
animals after FUM exposure (Riley et al., 1993). This
marker was used in serum along with the measurement
of hydrolyzed FUM in urine and feces of treated pigs to
prove the efficacy of FUMzyme (Biomin GmbH, Aus-
tria), an enzyme capable of degrading FUM and used
as a feed additive (EFSA, 2014). The rise of mass spec-
trometry has led to many applications regarding my-
cotoxins over the last decade. The selectivity, sensitiv-
ity, and speed of modern LC-MS instruments not only
results in the detection of novel toxins and quantifica-
tion of known mycotoxins but is also a key to assess
exposure to mycotoxins and the efficacy of mycotoxin
deactivators.

PREVALENCE OF MYCOTOXINS

The conditions under which fungi and mycotoxins
are produced in agricultural commodities depend highly
on environmental factors such as water availability and
temperature but also slightly elevated COs concentra-
tion may stimulation the growth of mycotoxigenic fungi
(Magan et al., 2011). Extreme weather situations, pre-
cipitation, and drought lead to plant stress and hence
they become more vulnerable for fungal infection (Wu
et al., 2011). A primary challenge is that fungi, e.g.,
Fusarium species, are capable of producing different
mycotoxins with diverse toxigenic potentials. The com-
bination of multiple mycotoxins in feed can cause more
adverse effects than a single mycotoxin due to additive
or even synergistic interaction (CAST, 2003). Another
challenge is the global trade of agricultural raw mate-
rials used as feed ingredients, which can result in the
distribution of mycotoxins across the world (Bryden,
2012). Hence as part of a proper mycotoxin risk man-
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Table 1. Worldwide mycotoxin survey results in feed and feed
ingredients from 2004-2013.1

Parameters AF ZEN DON FUM OTA
Number of tests 15,614 20,696 23,625 14,919 10,832
Positive samples 4,230 7,912 13,577 8,143 2,770
Average (ug/kg) 13 94 553 863 3
Median of positive (ug/kg) 8.2 70 427 722 2.5
Maximum (ug/kg) 6,323 26,728 50,289 77,502 1,589

!Sample origin and sample type refer to the samples containing the
highest detected concentration of the respective mycotoxin.

2AF = the sum of aflatoxin By, aflatoxin By, aflatoxin G; and aflatoxin
Go; ZEN = zearalenone; DON = deoxynivalenol; FUM = the sum of
fumonisin By and fumonisin By; OTA = ochratoxin A.

agement, surveying the mycotoxin occurrence is very
important to allow feed and animal producers to assess
the risk of using certain feed ingredients or feeds from
different regions.

Worldwide Mycotoxin Survey from
2004-2013

To evaluate the extent of mycotoxin contamination
in feeds and feed ingredients on a global basis, an an-
nual worldwide mycotoxin survey program was started
in 2004. Results of this survey have been reported in
a number of peer-reviewed publications (Binder et al.,
2007; Griessler et al., 2010; Rodrigues et al., 2011; Ro-
drigues and Naehrer, 2012; Streit et al., 2013a; Schatz-
mayr and Streit, 2013). More than 85,000 individual
analyses were conducted, on a total of 25,944 samples,
for the most important mycotoxins in terms of agricul-
ture and animal production: AF, DON, FUM, OTA,
and ZEN. The details of sample collection and analyt-
ical procedures are reviewed elsewhere (Rodrigues and
Naehrer, 2012; Schatzmayr and Streit, 2013).

Overall, 76% of the samples contained detectable
amounts of at least 1 mycotoxin. Deoxynivalenol was
the most dominant, as 57% of the samples tested pos-
itive, followed by FUM (55%), ZEN (38%), AF (27%),
and OTA (26%) (Table 1). Clear yearly variations were
observed in mycotoxin prevalence and contamination
levels. In some cases, this was evident due to unusual
weather conditions. Over the years, there were dif-
ferences with regard to the prevalence of mycotoxins
worldwide. For example, DON was most frequently de-
tected in North Asia, North America, and Central Eu-
rope with the percentage of positive samples exceeding
the global average of 57%. Exploring the results of only
the finished feed samples, 69% of were found to be pos-
itive for FUM (Table 2). Other Fusarium toxins, DON
and ZEN, were also highly prevalent at 59% and 52%,
respectively.

Mycotoxin Occurrence in 2013

As part of the annual mycotoxin survey, the 2013
results revealed DON and FUM presence in more
than half of finished feed and feed ingredient samples
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Table 2. Worldwide mycotoxin survey results in finished feed
from 2004-2013.2

MURUGESAN ET AL.

Table 4. Worldwide mycotoxin survey results in finished feed in
2013.!

Parameters AF ZEN DON FUM OTA Parameters AF ZEN DON FUM OTA
Number of tests 5,090 6,319 6,907 4,911 3,720 Number of tests 1,006 1,163 1,296 945 799
Positive samples 1,986 3,263 4,087 3,376 1,478 Percent positive (%) 40 48 60 72 36
Average (ug/kg) 11 92 408 695 5 Average (ug/kg) 7 43 280 687 5
Median of positive (ug/kg) 8 55 328 567 2 Median of positive (jug/kg)? 4 30 257 535 1,995
Maximum (pg/kg) 2,454 5,791 32,893 77,502 1,589 Maximum (pg/kg) 1,165 2,667 9,903 10,282 595

!Sample origin and sample type refer to the samples containing the
highest detected concentration of the respective mycotoxin.

2AF = the sum of aflatoxin By, aflatoxin Bs, aflatoxin G; and aflatoxin
Gg; ZEN = zearalenone; DON = deoxynivalenol; FUM = the sum of
fumonisin By and fumonisin By; OTA = ochratoxin A.

Table 3. Worldwide mycotoxin survey results in feed and feed
ingredients in 2013.

Parameters AF ZEN  DON FUM OTA
Number of tests 2,839 3,470 3,931 2,699 2,459
Percent positive (%) 30 37 59 55 23
Average (ug/kg) 10 49 458 78 2
Median of positive (ug/kg)? 4 41 351 665 2
Maximum (ug/kg) 1,563 5324 29267 26,828 595

'AF = the sum of aflatoxin By, aflatoxin B,, aflatoxin G; and aflatoxin
Go; ZEN = zearalenone; DON = deoxynivalenol; FUM = the sum of
fumonisin By and fumonisin By; OTA = ochratoxin A.

2Median of all samples above the limit of detection.

analyzed (Table 3). Over one-third of all tested sam-
ples were contaminated with ZEN and compared to the
previous year while the number of samples positive for
AF increased by 5% to a total of 30%. In 2013, 81%
of all samples contained at least 1 mycotoxin and more
than 1 mycotoxin were found in 45% of the samples.
Asia was the region with maximum contamination for
most of the tested mycotoxins (AF, ZEN, DON, and
FUM), where the maximum concentration for all my-
cotoxins analyzed was 29,267 pg/kg of DON in a barley
sample from China. The highest average AF concen-
tration was observed in the samples from Europe. The
incidence of OTA in Europe was lower compared to
2012; however, the average values were about 3 times
higher (16 ug/kg). In North America, FUM remains the
most common mycotoxin, although the incidence was
23% lower compared to the previous year. Samples from
South America had the highest global average of ZEN
at 221 ug/kg.

In finished feeds, the major contaminant throughout
all regions was FUM followed by DON (Table 4). In
comparison with previous years, analyzed FUM and AF
percent positives as well as average levels were slightly
higher. A significant outcome to note is the maximum
contamination levels found in samples from different re-
gions: 1,165 ppb AF and 2,667 ppb ZEN in China; 9,903
ppb DON and 595 ppb OTA in Spain; and 10,282 ppb
FUM in Italy. All these levels exceeded the EU rec-
ommendation and guideline levels for the presence of
mycotoxins in animal feed for various species (EC 2002
and 2006). Out of more than 1,400 finished feed sam-
ples, 60% showed the presence of more than 1 different
mycotoxin. Simultaneous exposure to these high levels

'AF = a sum of aflatoxin By, aflatoxin Bs, aflatoxin G; and afla-
toxin Go; ZEN = zearalenone; DON = deoxynivalenol; FUM = a sum of
fumonisin B; and fumonisin By; OTA = ochratoxin A.

>Median of all samples above the limit of detection.

of toxins represents an additional challenge for animals’
health due to the mycotoxins’ potential to synergistic
interactions.

MYCOTOXICOSES

Mycotoxicoses on the Gastrointestinal Tract

Recent literature has implicated physiological and
immunological effects of mycotoxins at lower and more
common levels of contamination. As many of the my-
cotoxins and their metabolites inhibit protein synthe-
sis, tissues with high levels of protein synthesis and
turnover, such as those within the gastrointestinal tract
(GIT) can be particularly susceptible to their toxic ef-
fects. In particular, the GIT is repeatedly exposed to
mycotoxins at concentrations likely higher than other
organ systems. However, there is increasing evidence
that there are effects on the functionality of the GIT at
realistic and occasional doses (Table 5) of mycotoxins
(Grenier and Applegate, 2013).

Meta-analyses of swine data suggests that mycotox-
icoses can result in up to 30% reduction in growth,
of which 15% is due to changes in maintenance with
the bulk of reductions (85%) attributable to inefficient
use of feed (Pastorelli et al., 2012 from studies includ-
ing feed contaminated with AF, DON, FUM, and/or
ZEN), whereas intestinal challenges (FE. coli) resulted
in 39.8% growth reduction, of which 74% is due to al-
terations in body maintenance and 26% from reduc-
tions in feed efficiency. Thus, while mycotoxicoses may
not cause direct changes to GIT maintenance costs as
readily as that of bacterial challenges, 4.5% of the 30%
reduction in growth was attributable to maintenance
costs of the animal, much of which can be linked to
altered intestinal functionality and maintenance. With
each of these challenges, it is important to realize that
they have different effective nutritional and energy re-
quirements due to tissues and systems they affect. Ad-
ditionally, due to their physiological effects, time to
recovery is inordinately different, in that recovery of
feed intake behavior is nearly 25% longer for intesti-
nal challenges versus that of mycotoxicoses (Pastorelli
et al., 2012).

As reviewed by Grenier and Applegate (2013), my-
cotoxin absorption (and on occasion conversion to



MYCOTOXINS AND CONTROL STRATEGIES IN POULTRY 1305

Table 5. Method used to categorize the experimental doses.

Fusarium toxins

DON T2 ZEA FB AF OTA
(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)
Realistic doses (RD)"
Representative of field conditions <5 <0.5 <1 <10 <0.3 <0.3
Occasional doses (OD)" >5 >0.5 >1 >10 >0.3 >0.3
Unfavorable weather conditions <25 <2 <5 <40 <2 <2
Unexpected doses (UD)1 <25 <92 S5 <40 S92 <92
Naturally irrelevant
EU Limits (EC guidance)?
Plg Cy'()llllg) 0.9 (09) no advisory or 0.25 (01) 5 (5) 0.02 0.05 (005)
Poultry 5 guidance levels - 20 0.02 0.1
established
Ruminant (young) 5(2) 0.5 (0.5) 50 (20) 0.02 (0.01) -
USA Limits (FDA guidance)®
Pig (young) 1 no advisory or no advisory or 10 0.1 (0.02) no advisory or
) ) - guidance levels guidance levels cnd guidance levels
Poultry (young) 0 established established 50 0.1(0.02) established
Ruminant (young) 5 30* 0.3 (0.02)

!The establishment of the three categories (RD, OD, UD) was based on recent worldwide surveys. The method used to set these categories
has been reviewed in Grenier and Applegate, 2013.

2EU limits in finished feed set according to the European Commission Recommendation 2006/576/EC and the European Commission Directive
2003/100/EC.

3USA limits in finished feed set according to the Food and Drug Administration Regulatory Guidance for Toxins and Contaminants.

‘In animals fed for slaughter.

either active or inactive metabolites) varies consider-
ably, but will ultimately determine systemic exposure
and tissue distribution. Focusing on the predominate
mycotoxins to which poultry are exposed to, AF is
readily absorbed in the proximal GIT (greater than
80%; Agence Francaise de Sécurité Sanitaire des Ali-
ments, 2009), while OTA is moderately absorbed (40%;
Ringot et al., 2006), and DON and FUM are minimally
absorbed (5 to 20 and 1%, respectively; Bouhet and
Oswald, 2007; Osselaere et al., 2013). Notably, entero-
hepatic cycling of DON, FUM, and OTA can occur and
increase the time and concentration of exposure along
the intestine.

The intestine can also serve as a site of metabolic ac-
tivation or deactivation for particular mycotoxins. For
example, the activation of AFB; to its toxic metabo-
lite AFBj-exo0-8, 9-epoxide (AFBO) takes place not
only in the liver, but also in the intestinal tract (Ser-
gent et al., 2008). Thus, rapidly dividing intestinal en-
terocytes with high protein turnover can become a
major target of AFBO. Notably, AFBO can inhibit
protein synthesis through interactions with RNA and
can interact with DNA forming DNA adducts causing
DNA breakage (Bbosa et al., 2013). AFBO can also
have epigenetic effects including DNA methylation, hi-
stone modifications, maturation of miRNAs, and daily
formation of single nucleotide polymorphisms (Bbosa
et al., 2013). Thus, the question remains as to whether
AFBO’s effect on DNA, RNA, and protein synthesis

in the GIT collectively affects enterocyte integrity, en-
dogenous nutrient loss, nutrient digestion and absorp-
tion, or other intestinal functions.

Mycotoxicoses on Nutrient Digestion and
Absorption

In order to put the breadth of scientific literature in
perspective, it is important to categorize this research
into realistic, occasional, and unrealistic doses (as de-
scribed in Table 5; Grenier and Applegate, 2013) to
realize any plausible influence of mycotoxins on intesti-
nal functionality. Additionally, research on nutrient and
energy usage by the animal must not be largely con-
founded by the effects of mold(s) (Aspergillus, Penicil-
lium, and/or Fusarium spp.) on the nutrient content of
the feed ingredients. For example, Dénicke et al. (2007)
noted increased jejunal and ileal viscosity in broiler
chicks fed wheat-based diets, whereas intestinal viscos-
ity was substantially lowered when the wheat was inoc-
ulated with Fusarium spp, and was not different from
the diets supplemented with an endo-1,4-(-xylanase.
This suggested that the Fusarium contaminated
wheat had altered non-starch polysaccharide content.
Additionally, the Fusarium wheat had 10% greater
CP concentration.

Beyond growth reductions, malabsorption was first
implied in AF contamination of broilers (Osborne,
1975). Interestingly, the “malabsorption” was implied
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from increased excreta fat content when birds were fed
unrealistic doses of 5 to 10 mg/kg. Concomitantly, they
noted reductions in pancreatic lipase above 0.625 mg/kg
and bile acid production above 2.5 mg/kg. Nevertheless,
the thought of mycotoxicoses having an effect on in-
testinal functionality, nutrient and energy digestibility
was introduced to the poultry science literature. Since
then, others have noted reductions in specific pancre-
atic enzyme activity at occasional doses of AF (Osborne
and Hamilton, 1981; Richardson and Hamilton, 1987),
which is partially or completely overcome by pancre-
atomegaly (Osborne and Hamilton, 1981). Conversely,
effects on specific maltase activity in the jejunal mu-
cosa, dramatically increased when hens were exposed
to occasional doses of AF (Applegate et al., 2009). Ad-
ditional reductions in nutrient transporters have been
noted, namely through realistic doses of DON reducing
intestinal expression of SGLT1, GLUT2 (Awad et al.,
2011), GLUTS5, and palmitate transporters (Dietrich
et al., 2012). At occasional doses of DON, (Awad et al.,
2004, 2005) reductions were noted in epithelial short-
circuit current, a measure of net ion transport, when
glucose was added to the luminal side of intestinal
explants.

These measured effects on pancreatic and intesti-
nal functionality translate to reduced crude protein di-
gestibility in ducks at realistic AF doses (Han et al.,
2008), and reduced apparent nutrient and energy di-
gestibility at occasional doses of AF (Kermanshahi
et al., 2007, Verma et al., 2007; Applegate et al., 2009).
Conflicting reports of Fusarium mycotoxins at occa-
sional doses have been documented, wherein Dénicke
et al. (2002) noted reductions in protein digestibility
while the same researchers (Dénicke et al., 2003) noted
increased protein digestibility and net protein utiliza-
tion. Thus, direct effects on digestibility and nutrient
absorption functionality have been mixed in studies.
Nevertheless, alterations to intestinal functionality have
been noted beyond just apparent nutrient utilization, in
particular those of barrier and innate immune respon-
siveness have been noted that may compromise intesti-
nal health.

Mycotoxicoses on Intestinal Barrier
Function

Intestinal “health” encompasses both passive barri-
ers (mucin and other non-specific barriers, commen-
sal microflora, tight junction complexes between ep-
ithelia, epithelial sloughing/turnover, etc.), and active
immunological processes (gut-associated lymphoid tis-
sues, intra-epithelial lymphocytes, etc.) for self versus
non-self recognition and pathogen clearance. Gener-
ally, barrier function has been assessed through numer-
ous methods including passing of dextrans, evaluation
of presence, functionality, and production of RNA for
tight junction proteins, as well as through electrophys-
iological studies utilizing Ussing chambers (for review
see Grenier and Applegate, 2013). The majority of the
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work with poultry has been conducted by Awad and
co-workers from the University of Veterinary Medicine,
Vienna, Austria using intestinal segments from birds in
Ussing chambers. In their work, they have consistently
noted that the basal epithelial resistance of either the
intestinal tissues exposed to the equivalent of occasional
doses of DON ez vivo (Awad et al., 2005, 2007, 2008,
2009) or the tissues from birds fed occasional doses of
DON (Awad et al., 2004), was not altered with DON
exposure, however functionality of active transport of
glucose and amino acids were greatly inhibited. This in-
hibition is presumed to be through the effects of DON
on protein synthesis and thus on nutrient transporters,
as histomorphometry of the intestine to similar concen-
trations of DON is not substantially altered in the bird
(Xu et al., 2011). Differential effects, however, are noted
with AF exposure (ezx vivo), wherein active glucose up-
take is not readily affected in the bird, however, apical
anion (presumably chloride) is dramatically inhibited.

Altered functionality has also been noted in cytokine
expression within the intestine of mammals due to ex-
posure to DON in wvivo, ex wvivo, or in cell culture
models. Grenier and Applegate (2013) summarized a
consistent trend in pro-inflammatory cytokine markers
(IL-13, 1I-6, TIL-8, and TNF-«) being up-regulated with
or without exposure to a naive antigen as well as up-
regulation and/or steady production of Thl, Th2 and
T-regulatory signature cytokines when not exposed to
a naive antigen (INF-v, I1-12p40, IL-2, IL-4, IL-10, and
TGF-f3). Similar cytokine responses have been noted in
pigs exposed to FUM (Grenier et al., 2011; Bracarense
et al., 2012), plausibly due to FUM having lower ab-
sorption (and thus greater intestinal exposure) and a
greater effect on barrier functionality in the pig (Pinton
et al., 2012). The capacity to develop a similar synopsis
for poultry has not been possible due to the paucity of
reports with poultry as the experimental model. How-
ever, Xu et al. (2011) noted that although an intraperi-
toneal E. coli lipopolysaccharide (LPS) challenge up-
regulated the expression of IL-8, MUC2, TGF-3, and
TNFa-like factor 24 h after challenge, feeding of birds
an “occasional” dose of DON did not result in altered
responses to these cytokines with or without the LPS
challenge. Thus, the question remains as to whether my-
cotoxicoses influences the bird’s ability to mount an ef-
fective and timely immunological response to pathogen
challenges.

Mycotoxicoses on the Imnmune System

Aflatoxins are able to bind with both DNA and RNA
and inhibit macromolecular synthesis by interfering
with transcription and other aspects of protein synthe-
sis. Inhibition of protein synthesis is also a “trademark”
of trichothecenes including DON and T-2 toxin through
the binding to eukaryotic ribosomes, and as well as
OTA by blocking phenylalanine tRNA synthetase.
Other most prevalent mycotoxins have structural sim-
ilarity to biological compounds, such as FUM with the
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sphingoid bases SA and SO (disrupting the synthesis of
sphingolipids-containing cell membrane) and ZEN with
estradiol (the most important female sex hormone).
Although considerable work has been done to correlate
mechanisms of action and immunotoxicity, this aspect
is not fully understood yet and deserves further re-
search. However, it has been clearly demonstrated that
rapidly dividing and activated cells with a high protein
turnover (such as immune, intestinal, and hepatic cells)
are predominantly affected by mycotoxins. Some recent
work exemplifies this latter point where low doses of
mycotoxins were able to impair the proliferation of spe-
cific lymphocytes primed and activated by an antigen
(e.g., following vaccination), whereas no effect was ob-
served on the total non-specific (i.e., that does not rec-
ognize the antigen) population of lymphocytes (Grenier
et al., 2011). Mycotoxins do not possess immunogenic
properties, meaning they are not able to induce an im-
mune response unlike pathogens, but they do interfere
with signaling pathways (MAPKs) that are implicated
in cell growth, apoptosis or immune responses. As a
consequence, the processes leading to the establish-
ment of an efficient immune response are impaired and
render the animal more susceptible to infection.

Subclinical Doses of Mycotoxins

Poultry species are considered to be less sensitive to
mycotoxins, particularly toxins from Fusarium, com-
pared to other species, such as the pig. Many experi-
ments in poultry have reported toxic effects of myco-
toxins but at doses not expected in the field (Table 5).
However, recent research give evidence that at levels
lower than those that would cause overt clinical myco-
toxicoses (Table 5), mycotoxins modulate immune func-
tions and may decrease resistance to infectious disease.
In line with that, recent epidemiological data indicate
high correlation between outbreaks of Newcastle dis-
ease and AF contamination of broiler rations (Yunus
et al., 2011). Feeding broiler chickens 0.3 mg AF /kg of
feed significantly reduced antibody titres against New-
castle disease and infectious bursal disease (review in
Girish and Smith, 2008). Antibodies are produced by
B-lymphocytes, which are programmed in the bursa
of Fabricius. The reduced antibody concentration ob-
served in poultry fed AF-contaminated diet is most
likely related to lymphoid depletion and inhibition of
development and functional maturation of the bursa
of Fabricius, at doses as low as 0.1 mg AF/kg of feed.
Ducks and broilers fed with concentrations of DON
ranging from 3 to 12 mg/kg diet also had decreased an-
tibody titers to common vaccines (Newcastle disease,
infectious bronchitis) and a reduction in the mass of the
bursa of Fabricius (Awad et al., 2013). For both DON
and AF, the effects seen in the bursa of Fabricius, and
the subsequent impact on antibody, might be a direct
consequence of the inhibition of protein biosynthesis.

There is also growing evidence that, depending upon
the level and length of exposure to the toxins, a biphasic

1307

response is expected. For instance, AF follows a pattern
of hormesis, characterized by low-dose stimulation and
high-dose inhibition with regard to bird performance
(Diaz et al., 2008). Similarly, an initial increase followed
by a decrease in humoral response (antibody response)
with low doses of AF has been documented in poultry.
The underlying mechanisms for this temporary increase
are not known. In other animal models, DON at low
doses promoted the expression of several cytokines and
chemokines, whereas high doses exhibited immunosup-
pressive effects (Grenier and Applegate, 2013). There is
therefore a need to pay closer attention to the effect of
doses lower than those that would cause overt clinical
symptoms.

Susceptibility to Infectious Diseases

Unlike pathogen exposure, there are no visible clini-
cal signs of mycotoxin intoxication as most of the time
these fungal metabolites are normally found at low lev-
els. However, as previously mentioned, mycotoxins are
able to affect activated and proliferating cells, damage
epithelial tissue, increase intestinal permeability, and
therefore may result in a weakened immune system. As
a consequence, when a pathogen enters the organism,
an appropriate and efficient immune response cannot
be mounted, and eventually results in stronger clinical
signs. In an experimental necrotic enteritis (caused by
Clostridium perfringens) infection model, broiler chick-
ens fed a diet contaminated with 5 mg DON/kg of feed
were more prone to develop necrotic enteritis lesions
compared to chickens on a control diet (Antonissen
et al., 2014). In that case, DON acted as a predispos-
ing factor by damaging the intestinal mucosa, leading to
leakage of nutrients into the intestinal lumen, and there-
fore providing the necessary growth substrate for exten-
sive proliferation of C. perfringens. Another predispos-
ing factor to necrotic enteritis is mucosal damage caused
by coccidial pathogens. The interaction of toxins from
Fusarium with strains of Eimeria responsible for coccid-
iosis in poultry has been investigated. Realistic (Girgis
et al., 2008, 2010a) and occasional (Girgis et al., 2010b)
doses of Fusarium mycotoxins have also shown delayed
intestinal recovery, up-regulation of IFN-v, and delayed
recruitment of CD4" and CDS8" cells after Eimeria
challenges in chickens. Similarly, chickens challenged
with strains of Eimeria and fed with either individ-
ual dose of DON and FUM or in combination (1.5mg
DON/kg and 20mg FUM/kg diet) showed higher
occurrence of lesions in the GIT and more oocysts in the
jejunum and excreta compared to only Eimeria chal-
lenged birds on the control diet (Grenier et al., un-
published data). Further, high (and unrealistic) doses of
OTA to broilers (Koynarski et al., 2007a) and turkeys
(Koynarsky et al., 2007b) have resulted in more se-
vere lesion scores and greater incidence of bloody diar-
rhea after Fimeria challenge. Besides, typical upregula-
tion of pro-inflammatory cytokines following coccidial
infection was stronger in the jejunum of birds fed DON
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and FUM in combination, suggesting an exacerbation
of the inflammatory response that might lead to tis-
sue damage. Finally, it has been demonstrated that the
effectiveness of lasalocid (a coccidiostat) was impaired
when the levels of T-2 toxin exceeded 0.5 mg/kg in feed,
as depicted by the development of clinical coccidiosis in
birds (Varga and Vanyi, 1992).

MYCOTOXIN COUNTERACTING
STRATEGIES

It is commonly known that mycotoxins vary in their
chemical structures, which results in vast differences
regarding their chemical, physical, and biochemical
properties. While the biochemical properties define the
toxicity of mycotoxins, chemical and physical proper-
ties determine the methods that can be used to detox-
ify them. Considering the great variety of mycotoxin
structures it is very obvious that there is no single
method, which can be used to deactivate mycotoxins
in feed. Therefore, different strategies have to be com-
bined in order to specifically target individual myco-
toxins without impacting the quality of feed. The best
known method for mycotoxin deactivation is “binding”
with the use of binding agents, which are referred to as
mycotoxin binders, adsorbents, or enterosorbents. They
can be of organic (microbial) or inorganic (mainly clay
minerals) nature. Another method is “bio-protection,”
which uses different substances (algae, plant ingredi-
ents, etc.) that protect vulnerable organs such as the
liver and strengthen the immune system of animals.
Enzymatic or microbial detoxification, sometimes re-
ferred to as “biotransformation” or “biodetoxification”
utilizes microorganisms or purified enzymes thereof to
catabolize the entire mycotoxin or transform or cleave
it to less or non-toxic compounds.

Mycotoxin Enterosorbents or Binders

The inclusion of binding agents or “enterosorbents”
in the diet has been given considerable attention as
a strategy to reduce foodborne exposures to mycotox-
ins. The use of clay-based materials for toxin binding
is not new. For centuries, humans and animals have
been reported to eat clay minerals, a process known as
geophagy (Carretero, 2002). The consumption of edi-
ble clays for various purposes by people and animals
in developing countries (and the United States) is com-
mon and in most cases is considered to be beneficial
to health (Johns and Duquette, 1991; Diamond, 1999;
Ferguson and Keaton, 1950; Loggi et al., 1992). Thus,
the inclusion of non-nutritive clay minerals in the diet
of animals has been widely adopted for reducing toxin
bioavailability and exposure from contaminated feeds.
In groundbreaking work in the 1980s, using multiple
animal models and molecular assessment of sorption
mechanisms, Phillips et al. (1988, 1995, 2002, 2008) re-
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ported that a calcium dioctahedral smectite clay (No-
vaSil, NS) significantly prevented the adverse effects of
AF in animals via enterosorption in the GIT and a re-
sulting decrease in toxin bioavailability. Clinical inter-
vention studies indicate that refined NS (UPSN) can
significantly reduce biomarkers of exposure for AFB;
as well as FB; (Phillips et al., 2008; Robinson et al.,
2012, Mitchell et al., 2014). The molecular mechanism
for sorption of AF onto the surfaces of NS is thought to
involve chemisorption of toxin onto interlamellar sur-
faces of the clay with the planar orientation of the AF
molecule as the most stable configuration. The results
also indicate a good correlation between the magnitude
of partial positive charges on carbons C11 and C1 of
the (-dicarbonyl system and the strength of adsorp-
tion of planar ligands. Other potential mechanisms of
AFB; sorption to NS surfaces may involve the chela-
tion of interlayer cations (especially Ca’") and vari-
ous edge-site metals and/or the interaction with water
molecules in the interlayer (Grant and Phillips, 1998;
Phillips, 1999; Deng et al., 2010). NovaSil is a pro-
cessed calcium montmorillonite clay. Its discovery as
a high affinity and high capacity enterosorbent for AF,
its chemical composition, and its sorption mechanism
of AF at interlayer surfaces have been described in nu-
merous publications in the scientific literature (Phillips
et al., 2008; Robinson et al., 2012, Mitchell et al., 2014).
NovaSil contains more calcium than sodium and swells
less than sodium clay, hence it has restricted delami-
nation upon hydration. This is thought to be one of
the reasons for the preferential sorption of compounds
such as AF. Recent studies have confirmed the abil-
ity of AF to be tightly adsorbed onto “dioctahedral
smectite” clay surfaces (Phillips et al., 2002; Kannewis-
cher et al., 2006; Marroquin-Cardona et al., 2009; Deng
et al., 2010). This is not the case for other clay groups,
such as kaolinites, attapulgites, zeolites, mica, alumina,
and sand.

Due to low feed inclusion requirements and easy man-
agement of AF enterosorbents, the widespread accep-
tance of these products by the farm animal industry
has led to the introduction of a variety of diverse ma-
terials and /or complex mixtures for AF binding. These
have been labeled as mycotoxin enterosorbents, binders,
sequestrants, interceptor molecules, trapping agents,
adsorbents, toxin sorbents, and so on. These materi-
als (and/or mixtures) are reported to contain smec-
tite clays, zeolites, kaolinite, mica, silica, charcoal, and
various biological constituents including chlorophyllins,
yeast products, lactic acid bacteria, plant extracts, and
algae. Some contain smectite or zeolite minerals that
have been amended with natural or synthetic surfac-
tants resulting in hydrophobic organoclays or organoze-
olites (Lemke et al., 1998; Dakovic et al., 2008; Kensler
et al., 2013; El-Nezami et al., 2000; El-Nezami et al.,
2006; Diaz et al., 2004; Baptista et al., 2002; Fruhauf
et al., 2012; Avantaggiato et al., 2007; Cabassi et al.,
2005; Piva et al., 2005; Miller et al., 2014). There is
considerable evidence to indicate that smectite clays
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Figure 2. Adsorption capacity of mycotoxin binder products of different origins at pH 3.0 and pH 6.5 on Aflatoxin. M: Mineral; OC:

Organoclay; Y: Yeast.

are the most effective AF enterosorbents as explained
earlier.

In extensive studies in animals and humans, NS and
similar montmorillonite clays have been reported to sig-
nificantly decrease AF exposures and toxic effects fol-
lowing ingestion of doses up to 20 g/kg of diet. Research
with NS and other materials suggest that potential AF
enterosorbents should be rigorously evaluated in vitro
and in vivo. These should meet the following criteria:

* Favorable thermodynamic characteristics of sorp-
tion

* Tolerable levels of priority metals, dioxins/furans,
and other hazardous substances

» Safety and efficacy in multiple animal species

+ Safety and efficacy in long-term rodent studies

* Negligible interactions with vitamins, iron, and
zinc

Need for Alternative Counteracting
Strategies

The adsorption efficacy of binding agents or en-
terosorbents is limited to only a few mycotoxins, such
as AF, ergot alkaloids, and some other fungal toxins,
while binders have been shown to be ineffective for
trichothecenes (Huff et al., 1992; Kubena et al., 1993;
Ramos et al., 1996; Scott, 1998; Huebner et al., 1999;
Vekiru et al., 2007). These data are in line with re-
sults from the adsorption studies performed according
to a standard protocol for mycotoxin adsorption us-
ing binder products sold in different markets around
the world (Figures 2 and 3; Vekiru et al., 2007). While

most of the clay minerals at 0.2% inclusion level bound
more than 85% of 200 ug AF /L at pH 3.0 as well as pH
6.5, they resulted in less than 25% adsorption rate for
1,000 pg DON/L. On the other hand, organic materials
such as yeast products (with ash content less than 15%)
bound only less than 20% of AF and DON (Figures 2
and 3). Therefore, alternative approaches for efficient
detoxification of mycotoxins are required.

The approach to use microorganisms and their en-
zymes to detoxify specific mycotoxins not only works
for non-adsorbable mycotoxins, but for all other tox-
ins for which respective microbes can be isolated from
the nature. This approach has been known for a long
time, even longer than the binder concept. Within few
years after the discovery of AF, the first report on a
bacterium capable of detoxifying AF by catabolization
was published (Ciegler et al., 1966). Since then, many
microorganisms were isolated from different habitats
such as the GIT of animals, soil, mycotoxin contam-
inated materials (e.g., grains) and insects feeding on
such materials. The ability of various bacteria, yeast,
fungi, and enzymes in detoxifying mycotoxins by trans-
formation, cleavage and catabolization, has been re-
cently reviewed (Karlovsky, 2011; McCormick, 2013).
However, only a few of these organisms were useful or
further investigated for practical applications in animal
nutrition. Such microorganisms or enzymes have to ful-
fill many different requirements before they can be used
for gastrointestinal detoxification of mycotoxin in ani-
mals such as:

* The microorganism and its reaction products have
to be non-toxic and safe
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Figure 3. Adsorption capacity of mycotoxin binder products of different origins at pH 3.0 and pH 6.5 on deoxynivalenol (DON). M: Mineral;

OC: Organoclay; Y: Yeast.

* High detoxification reactivity

* Good technological properties (fermentation,
downstream processing, stabilization)

* High stability in feed and during feed processing

* No negative impact on feed (ingredients)

* Compatibility and stability in the GIT

* Detoxification reaction in the GIT has to be fast
and as complete as possible

Recent Advances in Microbial and
Enzymatic Mycotoxin Deactivation

One of the microorganisms which has been further
developed into practical application is Trichosporon
mycotorinivorans, a yeast strain capable of detoxify-
ing OTA and ZEN (Schatzmayr et al., 2003; Molnar
et al., 2004; Vekiru et al., 2010). Application of this
yeast in poultry diets has been proven to detoxify OTA
(Politis et al., 2005). Another organism has been an
anaerobic rumen bacterium BBSH 797 (Genus novus of
family Coriobacteriacae, formerly Eubacterium) which
was isolated and developed as a trichothecene detox-
ifying feed additive (Fuchs et al., 2002; Schatzmayr
et al., 2006b). The BBSH 797 detoxifies trichothecenes
by cleavage of the 12, 13 epoxide ring resulting in de-
epoxy trichothecenes. Several microorganisms, mainly
aerobic bacteria but also yeasts, with FUM degradation
properties were also explored and isolated in order to
detoxify FUM (Schatzmayr et al., 2006a). However for
various reasons, none of these microorganisms were use-
ful as a mycotoxin deactivating feed additive. Therefore,
the catabolic pathway of FUM degradation was investi-

gated and the gene coding for the key enzyme of FUM
detoxification (FUMzyme) was identified, cloned and
expressed in a yeast strain (Heinl et al., 2010; Hartinger
and Moll, 2011). FUMzyme (carboxyl-esterase) was fur-
ther developed and tested in swine for gastrointesti-
nal detoxification of FUM by cleaving the tricarballylic
side chains of FUM leading to the non-toxic metabolite
hydrolyzed FUM (HFBj; Grenier et al., 2012; Grenier
et al., 2013).

Regulatory Perspectives for Mycotoxin
Binders and Deactivators

Many pellet binding products and flowing agents
(clay minerals) or feed materials (yeast and their deriva-
tives) with the claim of mycotoxin binding and or detox-
ification have been used in animal feeds worldwide.
However, regulations for mycotoxin binders and deac-
tivators have not been implemented in many parts of
the world for various reasons. This negates the guar-
antee on the safety and efficacy of the product to the
user. Therefore it is important to have guidelines in
place which prove safety and efficacy of such additives
under different in vitro and in vivo conditions. To over-
come this unsatisfactory legal situation, recently the
European Commission established a new group of tech-
nological feed additives for the reduction of mycotoxins
in feed. In 2010, the European Food Safety Author-
ity (EFSA) published guidelines with stringent require-
ments, e.g. the binding capacity must be demonstrated;
mycotoxin degradation products must be safe for tar-
get animals and consumers; minimum 3 in vivo studies
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with significant efficacy at the lowest recommended
dose; relevant biomarkers of each individual mycotoxin
have to be used to demonstrate the efficacy of the prod-
uct, for the evaluation of mycotoxin deactivating prod-
ucts (EFSA, 2010).

The bacterial strain BBSH 797 and the purified
FUMzyme were the first ones for which dossiers were
submitted to EFSA to get the approval as mycotoxin
biotransforming agents in animal feeds. A comprehen-
sive set of toxicity assays had to be performed for both
components such as Repeated Dose 90-Day Oral Toxic-
ity Study in Rodents (OECD 408; 1998), Acute Dermal
Irritation/Corrosion (OECD 404; 2002), Acute Eye Irri-
tation/Corrosion (OECD 405; 1997), Skin Sensitization
(OECD 406; 1992), Mammalian Erythrocyte Micronu-
cleus Test (OECD 474; 1997), Bacterial Reverse Mu-
tation Test (OECD 471; 1997), In Vitro Mammalian
Chromosome Aberration Test (OECD 473; 1997) and
Tolerance test in target species up to 100-fold dose
level. Furthermore, in vitro, ex vivo, and in vivo ex-
periments were also carried out. The in vitro experi-
ments comprised buffer tests and different cell based
assays to prove the reduction of toxicity of the metabo-
lites formed (Schatzmayr et al., 2006b). For the ez vivo
experiments, pieces of different parts of the intestine
were collected and inoculated with the bacterium and
the enzyme, respectively, together with the mycotox-
ins for a short period, before samples were taken and
analyzed for residual toxins and the non-toxic metabo-
lites. Feeding experiments were conducted to demon-
strate the mode of action of the bacterium and enzyme
and biomarker analyses were performed to investigate
the effect in animals. It has to be noted that per-
formance parameters alone are not sufficient for this
class of additives to prove effectiveness. In case of
trichothecenes and the group’s main representative
DON, the biomarker of exposure is the mycotoxin it-
self (DON) and/or its metabolite (DOM-1) in blood
serum, urine or faces of the animals. Also for FUM, the
biomarker of exposure is FUM itself and the metabo-
lites in the GIT of poultry while the biomarker of ef-
fect is the SA:SO ratio. Compared to a group of poul-
try only receiving mycotoxin contaminated diet, both,
BBSH 797 and FUMzyme were able to significantly re-
duce the biomarkers of exposure as well as the biomark-
ers of effects when added together with the mycotoxins
(unpublished data). Based on these results provided to
EFSA, individual approvals were issued for BBSH 797
(EFSA, 2013) and FUMzyme (EFSA, 2014).

In conclusion, understanding the occurrence and
prevalence of mycotoxins and their individual as well
as additive negative effects on birds has become im-
perative. The usage of latest analytical techniques such
as LC-MS/MS will increase the precision on the de-
termination of the concentrations of multiple mycotox-
ins present in agricultural commodities, at once. Latest
enzymatic deactivation technologies help to eliminate
the mycotoxins that cannot be bound by using binder
products.
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