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Abstract

This work is concerned with understanding common population-level effects of stroke on motor 

control while accounting for possible subject-level idiosyncratic effects. Upper extremity motor 

control for each subject is assessed through repeated planar reaching motions from a central point 

to eight pre-specified targets arranged on a circle. We observe the kinematic data for hand position 

as a bivariate function of time for each reach. Our goal is to estimate the bivariate function-on-

scalar regression with subject-level random functional effects while accounting for potential 

correlation in residual curves; covariates of interest are severity of motor impairment and target 

number. We express fixed effects and random effects using penalized splines, and allow for 

residual correlation using a Wishart prior distribution. Parameters are jointly estimated in a 

Bayesian framework, and we implement a computationally efficient approximation algorithm 

using variational Bayes. Simulations indicate that the proposed method yields accurate estimation 

and inference, and application results suggest that the effect of stroke on motor control has a 

systematic component observed across subjects.
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1 Introduction

Stroke is the leading cause of long-term disability in the United States, with an incidence of 

over 795,000 events each year (Go et al., 2013) – a rate that is expected to grow to over one 

million by 2025 (Broderick, 2004). Disability induced by stroke is manifested in many 

activities including motor control, speech, 1 and cognitive performance. Between 30–66% of 

stroke patients have clinically apparent motor deficits involving the upper extremity at 6 

months (Kwakkel et al., 2003). Because of this, there is a great need for development of 

neurorehabilitative therapies to improve arm movements after stroke. One of the challenges 

in developing and testing therapeutic interventions to promote motor recovery after stroke is 

that it remains unclear to what extent these motor deficits are idiosyncratic (or subject-

specific) rather than common across affected patients, and how these deficits vary according 

* jeff.goldsmith@columbia.edu. 

HHS Public Access
Author manuscript
J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
J R Stat Soc Ser C Appl Stat. 2016 February ; 65(2): 215–236. doi:10.1111/rssc.12115.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the severity of motor impairment. A better understanding of these factors would allow for 

therapies that target the specific motor deficits that are shared by stroke patients, but perhaps 

to also tailor therapies based on individual characteristics, such as stroke severity.

In this current study we focus on the effects of stroke on motor control, which we define as 

the ability to make accurate, goal-directed movements. We use a planar reaching task 

designed to test a fundamental level of motor control (Kitago et al., 2013), and explore the 

relationship between patients’ performance on this task and the Fugl-Meyer Upper 

Extremity Motor Assessment (FM-UE, Fugl-Meyer et al. (1974)), a clinical measure of the 

severity of arm motor impairment, in a population of chronic stroke patients with residual 

arm paresis. Elderly healthy controls are included as a reference group.

In the reaching task, observations at the subject level are repeated two-dimensional motion 

trajectories to eight target directions parameterized by time. Our analytical approach for 

these multilevel bivariate functional data is to jointly model main effects for motor 

impairment and target direction, subject-level random effects, and residual correlation in a 

Bayesian function-on-scalar regression.

1.1 Two-dimensional Planar Reaching Data

We now describe the scientific setting and data structure in more detail. Our study 

population consists of patients who had a first time ischemic or hemorhagic stroke six or 

more months in the past, and have residual paresis of the affected arm (FM-UE less than the 

maximum score of 66). Exclusion criteria include multiple stroke events, hemorrhagic 

stroke, traumatic brain injury, major non-stroke medical illness that alters brain function, 

orthopedic or neurological condition that interferes with arm function, or inability to give 

informed consent. Selected patients exhibit moderate to severe motor impairment in the 

affected arm. Healthy controls with an age distribution similar to that in stroke patients are 

included as a reference group.

As a measurement of upper extremity motor control, subjects make repeated center-out arm 

reaching movements to 8 targets in the following experimental design. After subjects are 

seated to align the shoulder, elbow, and hand in the horizontal plane, the trunk is 

comfortably secured and the wrist and hand are immobilized with a splint. The forearm is 

supported on an air-sled system to reduce the effects of friction and gravity, diminishing the 

impact of strength deficits on motions and isolating motor control. Subjects make reaching 

movements from a central starting point to eight targets arranged equidistantly on a circle of 

radius 8cm around the starting point. The center-out reaching movements required can be 

performed by all but the most severely impaired subjects. Before data acquisition, a short 

introductory period familiarizes subjects with the experiment configuration. These data were 

collected as part of baseline assessments for two longitudinal stroke intervention studies 

(Kitago et al., 2013; Huang et al., 2012) and a study of cerebral blood ow after stroke 

(unpublished data), which were approved by the Columbia University Medical Center 

Institutional Review Board.

Kinematic data are recorded for each motion made by each subject. That is, we observe the 

X and Y coordinate of the hand position for as a function of time giving bivariate functional 
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observations  for subjects i and motions j. Our dataset consists of 24 healthy 

controls, 25 mildly affected stroke patients (FM-UE 44 and above), and 8 severely affected 

stroke patients (FM-UE <44); all participants make 22 reaching motions with both their 

dominant and nondominant hands to each of the eight targets, giving 352 motions for each 

subject and roughly 20,000 overall bivariate functional observations (due to technical errors 

in recording, some motions are removed from the dataset). Although the data are inherently 

functional in nature, existing analyses have primarily focused on scalar summaries of 

observed trajectories including the deviation of endpoint from target, peak velocity, and 

curvature (Levin, 1996; Lang et al., 2006; Coderre et al., 2010).

Figure 1 shows the observed data for one healthy control in the top row and one severely 

affected stroke patient in the bottom row. In the left column are complete trajectories, 

illustrating the full path of each reaching motion colored according to target. There are clear 

differences comparing the healthy control and stroke patient, particularly in the average 

motion made to each target: for instance, for the target at 0° the stroke patient exhibits both 

overextension and increased curvature with respect to the control subject. The middle and 

right columns show the constituent functions  and  that make up the kinematic 

data for each trajectory – we will model these using a combination of population-level fixed 

effects, subject-level random effects, and curve-level FPCA effects. The stroke patient has 

unilateral tissue damage due to blockage of the right middle cerebral artery, which results in 

disrupted motor skill in the dominant arm.

Our goal in this analysis is to explore the extent to which the effects of stroke on motor 

control are shared across subjects or are subject-specific through a regression analysis using 

a combination of subject-level scalar covariates, such as the Fugl-Meyer measure of 

impairment severity, as predictors of interest. Evidence for systematic effects of stroke on 

motor control would indicate that the induced control abnormality is not entirely subject 

specific, but rather that disrupting the motor cortex or its descending pathways leads to 

predictable deficits in upper extremity motor control. The data structure necessitates 

correctly accounting for subject-level effects through the inclusion of random functional 

intercepts, and accurate inference depends on incorporating residual correlation. 

Throughout, our outcome is the bivariate kinematic function for hand position over time.

1.2 Statistical Methods

Conceptually, we observe functional data  for subjects i = 1, …, I and 

visits j = 1, … Ji for a total number of observations n = ∑i Ji. In our application 

are the X and Y position curves indexed by time t ∈ [0, 1] and wi = [wi1, …, wip] is a length 

p vector of scalar covariates. We propose the model

(1)
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where  are fixed effects associated with scalar covariates,  are 

subject-specific random effects, and  are potentially correlated residual curves. 

Penalized splines are used to estimate fixed and random effects; although many options are 

possible, we will use a cubic B-splines basis with a combined zeroth and second derivative 

penalty throughout. All parameters are modeled in a Bayesian framework that allows the 

joint modeling of the mean structure (through fixed and random effects) and residual 

correlation (through the error covariance matrix) in a single Gibbs sampler. Importantly, a 

variational Bayes algorithm provides a computationally efficient and accurate approximation 

to the full sampler. Model 1 is analogous to a standard mixed model with subject-level 

random intercepts; the identifiability of fixed and random effects will depend on the prior 

specification, hyperparameter selection and sampling framework, which we discuss in 

Sections 2.1 and 2.3.

In practice, observations are not truly functional but are observed as structured discrete 

vectors. For notational simplicity, we assume functional observations lie on a dense grid of 

the domain [0, 1] with D elements, and that this grid is common to all subjects. In our 

application, trajectories are observed at 120Hz. Although efforts were made to ensure 

uniform motion times of approximately .5 seconds, motions take different times to complete 

and we use a linear registration to obtain a common, evenly-space observation grid of length 

D = 25 prior to analysis. After registration, motions are observed from t = 0 to t = 1 with 0 

and 1 indicating the beginning and end of the motion, respectively. Despite being observed 

as vectors, objects that are functional in nature will be denoted as f(t) where appropriate to 

emphasize the structure underlying the data.

There is a large body of existing work for the analysis of functional outcome models. We 

broadly consider two methodological categories, the first of which consists of approaches 

that seek to estimate each curve in the dataset. Brumback and Rice (1998) posed a function-

on-scalar regression in which population-level coefficients and curve-level deviations are 

modeled using penalized splines; for computational convenience, intercepts and slopes for 

curve-level effects were treated as fixed effects. Guo (2002) extended this approach by 

formulating curve-specific deviations as random effects. Due to the difficulty in estimating 

all curves using penalized splines, these approaches can be computationally intensive for 

large datasets. Functional principal component methods for cross sectional data (Yao et al., 

2005), as well as recent extensions for multilevel (Di et al., 2009), longitudinal (Greven et 

al., 2010), and spatially correlated data (Staicu et al., 2010), have modeled curve-specific 

deviations from a population mean using low-dimensional basis functions estimated from 

the empirical covariance matrix. These methods did not focus on the flexible estimation of 

the population mean surface; moreover in assessing uncertainty these methods implicitly 

conditioned on estimated decomposition objects, which can lead to the understatement of 

total variability (Goldsmith et al., 2013).

Alternatively, one can view individual curves as errors around the population- or subject-

level mean of interest. This approach is described in (Ramsay and Silverman, 2005, §13.4), 

in which fixed effects at the population level are estimated using penalized splines but 

individual curves are not directly modeled. Reiss et al. (2010) built on this approach by 

Goldsmith and Kitago Page 4

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



taking advantage of the inherent connection between penalized splines and ridge regression 

to develop fast methods for leave-one-out cross validation to select tuning parameters. 

Scheipl et al. (2013) proposed a very flexible class of functional outcome models, allowing 

cross sectional or multilevel data as well as scalar or functional predictors and estimating 

effects in a mixed model framework; a robust software implementation of this method is 

provided in the refund R package (Crainiceanu et al., 2012). A drawback of these 

approaches is the assumption that error curves consist only of uncorrelated measurement 

error despite clear correlation in the functional domain. One alternative, proposed by Reiss 

et al. (2010), is an iterative procedure to estimate the mean structure and then, using this 

mean, the residual covariance matrix followed by a re-estimation of the mean using 

generalized least squares. Doing so necessarily increases the computational burden and does 

not allow joint estimation of the mean and covariance; additionally, coverage properties of 

this approach have not been presented.

Several Bayesian methods for function-on-scalar regression exist in the literature. Morris et 

al. (2003) developed wavelet-based functional mixed models (FMMs) assuming residual 

curves consist of independent measurement errors; Morris and Carroll (2006) extended this 

to allow correlated residual curves. Both approaches used a discrete wavelet transform 

(DWT) of the observed data and model coefficients in the wavelet domain using spike-and-

slab priors. It was assumed that errors in the wavelet domain are independent, justified 

heuristically by the whitening property of the DWT. After modeling using MCMC, the 

inverse DWT provided estimates in the observed space. A penalized spline approach for 

FMMs was taken in Baladandayuthapani et al. (2007), while Baladandayuthapani et al. 

(2010) used a piecewise constant basis; in both cases, correlated residual curves are 

explicitly modeled rather than treated as errors around the mean. For cross-sectional 

functional data observed sparsely at the subject level, Montagna et al. (2012) developed a 

Bayesian latent factor model in which predictors are incorporated at the latent factor level; a 

potentially large number of factors are allowed, and sparsity is induced through a shrinkage 

prior on the basis coefficients. The computation burden of the Bayesian procedures can be 

prohibitive for data exploration and model building even for moderate datasets, which has 

contributed to the slow adoption of Bayesian methods in functional data analysis. As an 

example, a comparison of the Bayesian penalized spline method in Baladandayuthapani et 

al. (2007) to an FPCA-based method on simulated data found computation times of five 

hours versus five seconds (Staicu et al., 2010).

This paper presents several methodological advancements. We develop a Bayesian 

framework for penalized spline function-on-scalar regression, allowing the joint modeling of 

population-level fixed effects, subject-level random effects and residual covariance. 

Dramatic computational improvements compared to the fully Bayesian and, surprisingly, to 

a frequentist mixed model approaches are obtained through a variational Bayes 

approximation that is fast and accurate. This algorithm enables model selection and 

comparison, which for large datasets is infeasible with competing approaches. Novelly in 

multilevel function-on-scalar regression, we consider bivariate functional data as the 

outcome of interest. Finally, the size and structure of the motivating dataset – which consists 
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of nearly 20,000 trajectories, nested within subjects and depending on target, impairment 

severity and affected hand as covariates – is unique in the functional data analysis literature.

The remainder of the paper is organized as follows. We discuss the model formulation and 

the variational Bayes approximation in Section 2. In Section 3 we conduct simulations 

designed to mimic the motivating data. Section 4 presents the analysis of the complete 

dataset. We close with a discussion in Section 5. The web-based supporting materials 

present the complete Gibbs sampler and variational Bayes algorithm. R implementations of 

all proposed methods and complete simulation code are publicly available.

2 Methods

We begin by focusing on a simplification of model (1) for univariate functional data in 

Sections 2.1, 2.2 and 2.3. These Sections develop our methodology for estimating fixed 

effects, random effects, and residual covariance when a single functional response is 

observed. Once this is established, we consider the bivariate model in Section 2.4.

2.1 Full Model

For now, assume data are [Yij(t),wi] for subjects i = 1, …, I and visits j = 1, … Ji, giving a 

total of n = ∑i Ji functional observations. Univariate functional outcomes Yij(t) are observed 

on a regular grid of length D for all subjects and visits. We pose the outcome model

(2)

where yij is the 1 × D observed functional outcome; wi and zij are fixed and random effect 

design vectors of size 1 × p and 1 × I respectively; β and b are fixed and random effect 

coefficient matrices of size p × D and I × D, respectively; and εij is a 1 × D vector of 

residual curves distributed N[0, Σ] where Σ is a D × D covariance matrix. Errors εij are 

conditionally independent given fixed effects and subject-specific random effects, and are iid 
across subjects and visits.

We express the functional effects in the rows of β and b using a spline expansion. Let Θ 
denote a D × Kθ cubic B-spline evaluation matrix with Kθ basis functions. Further let BW 

and BZ denote the matrices whose columns are basis coefficients for β and b respectively, so 

that β = [ΘBW]T and b = [ΘBZ]T. (This notation is drawn from Ramsay and Silverman 

(2005, Section 13.4.3) and Reiss et al. (2010); readers should note potential conicts in 

notation, particularly with Montagna et al. (2012) and references therein.)

Penalization is a commonly-used technique to avoid overfitting and induce smoothness in 

functional effects. For spline coefficients in the kth column BW,k of BW and ith column BZ,i 

of BZ, we assume that  and . P is a known penalty 

matrix shared across fixed and random effects to enforce a common penalty structure. 

Variances  are unique to each coefficient function to allow unique levels of 

smoothness, and  is shared across random effects so that they are draws from a common 
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population. Notationally, the “zeroth” column BW,0 of BW and the variance  correspond 

to the intercept β0(t). The connection between this prior specification and a quadratic 

roughness penalty well known; see Ruppert et al. (2003, Ch. 4.9) for a detailed treatment. 

The choice of penalty matrix P is discussed in Section 2.3. In this penalized spline 

framework, the number and position of knots is typically unimportant provided that the 

number is sufficient to model the complexity of the coefficient functions (Ruppert, 2002). 

Using this specification, model (2) can be expressed as

(3)

which has a form similar to a traditional mixed model.

The variance components  are assigned inverse-gamma priors, and our model 

specification is completed using an inverse Wishart prior for the residual covariance matrix 

Σ. Although these priors are convenient for the development of a straightforward Gibbs 

sampler and for the derivation of the variational approximation in Section 2.2, they have 

been criticized by several researchers (Gelman, 2006; Yang and Berger, 1994). Inverse-

gamma priors can be sensitive to the choice of hyperparameters a and b, especially for 

“uninformative” values like a = b = .001 that place a large prior mass near zero, and inverse-

Wishart priors may not shrink eigenvalues as expected. In Section 2.3 we suggest using the 

data to help choose hyperparameters in a reasonable way, but emphasize the need for 

sensitivity analyses to these choices.

Following Gelfand et al. (1995), we pursue an alternative parameterization of model (3) to 

improve sampling performance through hierarchical recentering. For a simple example of 

this idea, consider the (non-functional) model yij = μ + bi + εij with priors for μ and bi 

having mean zero; alternatively one could let Yij = ηi + εij with the prior for ηi having mean 

α and the prior for α having mean zero. The latter parameterization often results in better 

behavior of the posterior chains and increased identifiability of fixed and random effects. For 

our function-on-scalar regression model, let Y be an n × D matrix of row-stacked functional 

outcomes, Z be the random effects design matrix, W be the fixed effects matrix constructed 

by row-stacking the wi, and ⊗ represent the Kronecker product operator. Using hierarchical 

recentering, we reparameterize model (3) using
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(4)

Full conditionals for all model parameters are straightforward to obtain using vector notation 

and Kronecker products. For matrix M and vector c, let vec (M) be the vector formed by 

concatenating the columns of M and diag (c) be the matrix with elements of c on the main 

diagonal and zero elsewhere. Further let “rest” include both the observed data and all 

parameters not currently under consideration. As an example of the full conditional 

distributions resulting from model (4), it can be shown that

where

and

Additionally, we have that

Complete derivations of this and all other full conditional distributions are provided in the 

web-based supplementary materials.

Model (4) contains a large number of parameters, particularly in the spline coefficient 

matrices BW and BZ. Typically the available data for estimation in the n × D outcome matrix 

Y will dwarf the number of parameters in BW and BZ, meaning these can be well-estimated. 
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However, in some cases it may be necessary to use a low-dimensional spline basis or other 

parametric approach for the estimation of fixed and random effects. This is possible using a 

simplification of model (4), but it should be noted the choice of parametric form will be an 

implicit tuning parameter that replaces the explicit penalization implemented above. When 

the number of observed points per curve D is large the covariance matrix Σ will also be 

large, and the number of parameters in this matrix could be substantial; again, a modification 

of model (4) to use a parametric form for Σ is possible and perhaps advisable in this case, 

although the caveats regarding the introduction of a parametric structure still apply. In our 

motivating dataset n is large (≈ 20000) while D is modest (50 for bivariate curves), and 

model (4) is reasonable.

2.2 Variational Bayes

Variational Bayes methods are regularly used in the computer science literature, and to a 

more limited extent in the statistics literature, to provide approximate solutions to intractable 

inference problems (Jordan, 2004; Jordan et al., 1999; Titterington, 2004; Ormerod and 

Wand, 2012). These tools have also been used somewhat rarely in functional data analysis 

(Goldsmith et al., 2011; McLean et al., 2013; van der Linde, 2008). Here we review 

variational Bayes only as much as needed to develop an iterative algorithm for approximate 

Bayesian inference in penalized function-on-scalar regression; for a more detailed overview 

see Ormerod and Wand (2010) and Bishop (2006, Chapter 10). We emphasize that the 

variational Bayes approach is not intended to supplant a more complete MCMC sampler, but 

rather is an appealing computationally efficient approximation that is useful for model 

building and data exploration.

Let y and ϕ represent respectively the full data and parameter collection. The goal of 

variational Bayes methods is to approximate the full posterior p(ϕ|y) using q(ϕ), where q is 

restricted to a class of functions that are more tractable than the full posterior distribution. 

From the restricted class of functions, we wish to choose the element q* that minimizes the 

Kullback-Leibler distance from p(ϕ|y). Divergence between p(ϕ|y) and q(ϕ) is measured 

using , the q-specific lower bound on the marginal log-likelihood log 

p(y); maximizing Lq across the class of candidate functions gives the best possible 

approximation to the full posterior distribution. To make the approximation tractable, the 

candidate functions q(ϕ) are products over a partition of ϕ, so that , and 

each ql is a parametric density function. It can be shown that the optimal  densities are 

given by

where, again, rest ≡ {y, ϕ1, …, ϕl−1, ϕl+1, …, ϕL} is the collection of all remaining 

parameters and the observed data. In practice, one sets initial values for each of the ϕl and 

updates the respective optimal densities iteratively, similarly to a Gibbs sampler, while 

monitoring the q-specific lower bound Lq for convergence.

For the function-on-scalar regression model shown in Equation (4), we assume
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where the functions q are distinguished by their argument rather than by subscript l. The 

additional factorization

is induced by the conditional independence properties of the joint distribution (see Bishop 

(2006, Sec. 10.2.5); a directed acyclic graph of our model appears in Figure A.1). Using this 

factorization, it can be shown that the optimal density q*(vec (BW)) for is N 

[μq(BW),Σq(BW)], where

and

In the above, the notation μq(ϕ) and Σq(ϕ) indicate the mean and variance of the density q(ϕ). 

Thus, the optimal density q*(vec (BW)) is Normal with mean and variance completely 

determined by the data and the parameters of the remaining densities. Similar expressions 

are obtained for all model parameters. Together, these forms suggest an iterative algorithm in 

which each density is updated in turn using the parameters from the remaining densities; 

convergence of this algorithm is monitored through Lq, the q-specific lower bound of the 

marginal log-likelihood. The iterative algorithm and the form for Lq are provided in the web-

based supplementary materials.

2.3 Choice of penalty matrix, hyperparameters, and initial values

In both the Gibbs sampler presented in Section 2.1 and in density updates for the variational 

Bayes algorithm described in 2.2, it is not necessary that the penalty matrix P be of full rank: 

although this introduces improper priors for the functional effects, the posteriors are proper. 

However the lower bound Lq, used to monitor convergence of the variational Bayes 

algorithm, contains a term of the form log(|P−1|), thus requiring P to be full rank. For this 

reason, we propose to use P = αP0 + (1 − α)P2, where P0 and P2 are the matrices 

corresponding to zeroth and second derivative penalties. The P2 penalty matrix is commonly 

used in functional data analysis and enforces smoothness in the estimated function, but is 

noninvertible. The P0 penalty matrix is the identity matrix, induces general shrinkage and is 

full rank. Details on the construction of P0 and P2 are available in Eilers and Marx (1996). 

Selecting 0 < α ≤ 1 balances smoothness and shrinkage, and results in a full rank penalty 

matrix. There is can be some sensitivity to the choice of α, with large values shrinking 
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estimates toward 0; we recommend a relatively small value (α = 0.01 or smaller) in keeping 

with the tendency to enforce smoothness rather than shrinkage.

We use the following procedure based on model (4) to choose hyperparameters. First, we 

estimate BZ using ordinary least squares from the regression  to obtain 

. We estimate the error covariance Σ using a functional principal components 

decomposition of the residuals from this regression to obtain Σ̂ (Yao et al., 2005), and use ν 
= ∑i Ji, Ψ = ∑i JiΣ̂ as hyperparameters in the prior for Σ. Next, we estimate BW using 

weighted least squares from the regression  with weight matrix P−1 to 

obtain . We choose

and

motivated by the form of the full conditionals for these variance components.

This procedure avoids the default “uninformative” choice az = bz = aW,k = bW,k = .001, 

which places a large prior mass near zero for all variance components. Such a choice favors 

overshrinkage of fixed and random effects toward zero. In our application, we found that 

using this default tended to result in the incorporation of subject-level random effects into 

the error variance Σ. Sensitivity to the choice of tuning parameters should be assessed in 

each application, and weakly informative priors used where possible; see Section 4.2 and the 

web-based supplementary materials for details of a sensitivity analysis for our application.

Initial values are sampled from a N[0, 100] for spline coefficients and from a Uniform[.1, 

10] for variance components. The starting value for Σ is σ2ID where σ2 is Uniform[.1, 10]. 

For other applications, different starting values may be needed.

2.4 Bivariate data

In the preceding we have focused on a univariate outcome for clarity of exposition while 

introducing methods. In this section we describe the bivariate outcome model. Only 

straightforward modifications to the Gibbs sampler and variational Bayes updates given in 

Sections 2.1 and 2.2, respectively, are needed for this setting. Similar extensions to three or 

more curves observed over a common domain proceed similarly.

Let Y = [Y1Y2] be the concatenation of two outcome matrices Y1 and Y2 (in our example, 

we concatenate the X and Y position curves so that Y = [PXPY]). Next, let 

 so that the columns of BW concatenate the fixed effect spline coefficients 

for Y1 and Y2. Similarly, let  so that the columns of BZ concatenate the 
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random effect spline coefficients for Y1 and Y2. Then  contains subject-

specific random effects for the overall outcome matrix Y. For spline coefficients in columns 

BW,k we assume that , so that fixed effects for Y1 

and Y2 are penalized separately and assumed independent a priori. A similar specification is 

used for the columns BZ,i, and variance components are assigned inverse-gamma priors. 

Again using a hierarchical formulation, for bivariate data our complete model is

(5)

This model extends the univariate outcome model (4), but the Gibbs sampler and variational 

Bayes approximations can be directly modified for bivariate data. Similarly, the method for 

setting initial values and choosing hyperparameters given in Section 2.3 can be adapted to 

model (5).

This bivariate model is motivated by the data structure, in which X and Y position curves are 

observed concurrently for all motions – in that sense, the bivariate model is more faithful to 

the observed data than fitting separate univariate models. A bivariate model also explicitly 

models correlation in X and Y position error curves. In our application, this correlation may 

provide insight into sensory or visual feedback in reaching motions, or into the 

biomechanical processes involved. Nonetheless, it is possible to fit a bivariate model using 

two separate univariate models, especially if X and Y errors are uncorrelated or if this 

correlation is not scientifically meaningful.

3 Simulations

We demonstrate the performance of our method using a simulation in which generated data 

mimic the motivating application; all code needed to reproduce these simulations is available 
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on the first author’s website. Our simulations consider three groups: control subjects’ 

dominant hand; the affected dominant hand of moderately affected stroke patients; and the 

affected dominant hand of severely affected stroke patients. We therefore created a three-

level categorical predictor with Groups 1, 2, and 3 referring to controls, moderately affected 

subjects, and severely affected subjects.

Curves are observed on a common grid of length D = 25. Data are generated from the 

univariate outcome model yij = wiβ + bi + εij where wi is a length-3 binary vector indicating 

group membership for subject i, β is a 3 × D matrix whose rows are group average curves, bi 

is a length-D random effect, and εij is a residual vector. For each simulated dataset, the 

predictors wi are sampled from a multinomial distribution with probabilities set to the 

proportions of each group in the motivating data, random effects bi are drawn from a N [0, 

Σb] and residuals εij are drawn from a N[0,Σε].

The quantities β, Σb and Σε are chosen to resemble our motivating data. First, we focus on a 

subset of the full dataset that consists of the observed y-position curves from reaches to the 

target at 180°. In this subset, we find group-level average curves for each of the groups of 

interest; these become the coefficient functions in the rows of β. For each subject in our 

subset, we find the subject-level average curve and subtract the corresponding group-level 

mean, then calculate the covariance Σb of these curves. Finally, for each curve in our subset 

we subtract the subject-level mean, then calculate the covariance Σε of these curves. The 

number of subjects I is set to (a) 60, (b) 120, or (c) 180. In all cases, we fix the number of 

observations per subject to be Ji = 5. To illustrate the simulation design, Figure 2 shows the 

coefficient functions in the left panel. The middle panel of Figure 2 shows a complete 

simulated dataset with I = 60, and highlights data for three subjects.

For each sample size we generate 100 datasets. Parameters are estimated using the Gibbs 

sampler and variational Bayes algorithm described in Sections 2.1 and 2.2, respectively, with 

hyperparameters and initial values chosen as in Section 2.3. For the Gibbs sampler, we used 

chains of length 5000 and discarded the first 1000 as burn-in. To provide a frame of 

reference for our methods, we compare to the pffrGLS() function in the refund R 

package. This extends the the penalized function-on-function regression model assuming 

independent errors implemented in pffr() (Scheipl et al., 2013); generalized least squares 

is used to account for residual correlation in pffrGLS(), and a mixed model framework is 

used for parameter estimation. In a process similar to the GLS method described by Reiss et 

al. (2010) for cross-sectional function-on-scalar regression, we first fit the model assuming 

independence and use the residual curves to estimate the covariance matrix for use in 

pffrGLS(). Although it is not described in a manuscript or preprint at the time of writing, 

to the best of our knowledge pffrGLS() represents the current state-of-the-art in function-

on-scalar regression with subject-level random effects.

The left panels of Figure 3 show the integrated mean squared error IMSE = ∫ (β̂(t) − β(t))2 

dt for each coefficient function, estimation method, and sample size. IMSEs are 

indistinguishable for the Gibbs sampler and variational Bayes approaches, indicating that for 

posterior means the variational Bayes approximation is reasonable. As expected, IMSEs 

decrease as sample size increases. Both approaches are comparable to or outperform the 
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mixed model approach, sometime substantially. The right panel of Figure 3 shows the 

computation time for each sample size and approach (simulations were executed in parallel 

on a compute cluster with Intel Xeon CPUs running at 2.30GHz; memory usage was 2, 4, 

and 6 GB for I = 60, 120 and 180, respectively). Not surprisingly, the variational Bayes 

algorithm is substantially faster than the complete Gibbs sampler. However, there are also 

meaningful improvements in computation time comparing the variational Bayes algorithm to 

the mixed model: for i = 180, the median computation time for the variational Bayes 

approach was roughly 15 seconds, while the median computation time for the mixed model 

was nearly two hours. This discrepancy in computation time is in part due to the need to fit 

both two models (one using pffr() and one using pffrGLS()) for the mixed model; also, 

the code for the variational Bayes algorithm is tailored to the model at hand while 

pffrGLS() uses the more general mgcv package for estimating parameters. However, we 

also note that our implementation of pffrGLS() used 5 (rather than 10) basis functions. For 

I = 180, using 10 basis functions in pffrGLS() required 20,000 seconds – roughly 3.5 times 

longer than the Gibbs sampler.

Table 1 presents the average coverage probability of 95% pointwise confidence intervals 

constructed using the Gibbs sampler, the variational Bayes algorithm, and the frequentist 

mixed moedl for each coefficient function and sample size. For both of the proposed 

Bayesian approaches, coverage slightly exceeds the nominal level and is often between .96 

and .98. As expected, coverage improves as sample size increases. For the mixed model 

coverage is well below nominal levels for all coefficients and sample sizes; it is possible that 

the code is still under development and that future iterations may provide better inference. 

Although coverage for the variational Bayes approximation is reasonable in our simulations, 

we do not necessarily recommend basing inference in practice on this approach due to the 

difficulty in verifying the assumptions regarding the factorization of the posterior 

distribution. Rather, we favor the variational algorithm as a fast method for model building 

and base inference on a full Gibbs sampler.

4 Application

We now apply the developed methods to the motivating data described in Section 1.1. In our 

dataset affected patients exhibit arm paresis, a weakness or motor control deficit affecting 

either the dominant or non-dominant arm, due to a unilateral stroke. Patients experienced 

stroke more than 6 months prior to data collection, meaning that observed motor control 

deficits are not due to short-term effects but rather are chronic in nature. To quantify the 

severity of arm impairment we use the Upper Extremity portion of the Fugl-Meyer motor 

assessment, a well known and widely used clinical assessment of motor impairmen. Fugl-

Meyer scores were assessed for the affected arm only, and for upper extremity testing scores 

range from a 0 to 66 with 66 indicating healthy function. Controls were not scored and were 

assigned a Fugl-Meyer score of 66. Kinematic data collected for the left hand were reflected 

through the Y axis, and thus are in the same intrinsic joint space as data for the right hand 

(i.e., motions to the target at 180° reach across the body and involve both the shoulder and 

elbow).
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Our focus is the effect of the severity of arm impairment on control of visually-guided 

reaching, where impairment is quantified using the Fugl-Meyer score. In addition to 

impairment severity, we control for important covariates in our regression modeling. We 

adjust for target direction (with 8 possible targets, treated as a categorical predictor); hand 

used (dominant and non-dominant); whether the arm is affected by stroke (affected and 

unaffected); and, potentially, interactions between these variables. Interactions of 

impairment severity and other covariates are possible, and are likely for target direction: the 

effect of stroke may be greatest to the more biomechanically difficult targets that involve 

coordination of multiple joints.

Our data analysis proceeds in two parts and focuses on estimation of the bivariate model (5). 

First, we use the variational Bayes algorithm developed in Section 2.2 to explore several 

possible models that include different combinations of target, hand used, affectedness, and 

impairment severity as well as potential interactions. In all models, subject-level random 

effects are estimated for each target and hand; these effects are a priori assumed to be 

independent. The computational efficiency of the variational Bayes algorithm is crucial at 

this stage, allowing the fast evaluation and comparison of models. The assumptions that 

underly the variational algorithm make in unsuitable for inference in our real-data 

application, and comparisons are made on the basis of percent variance explained. 

Therefore, after identifying a plausible final model, we estimate all model parameters using 

the complete Gibbs sampler described in Section 2.1 and base inference for the effect of 

stroke on this analysis.

4.1 Exploratory analyses using variational Bayes

In the following, we are interested in estimated fixed effects using a variety of structures for 

the population mean. We select hyperparameters as described in Section 2.3 and estimate 

models using the variational approximation described in Section 2.2. Computation time was 

under 20 minutes for each model we consider; the importance of fast computation in the 

model building stage cannot be understated, since it allows the consideration and refinement 

of many candidate models.

As a reference for the more complex structures that follow, we began with a model that uses 

only target direction as a predictor. This model addresses directional variation only, but the 

eight fixed effects account for roughly 90% of observed variance in the outcome. Following 

this, several models that included the Fugl-Meyer score, hand used, and affectedness as 

predictors were considered. Table 2 provides the fixed effects used in each of the models we 

consider, the number of fixed effects for each model, and the percent of outcome variance 

explained by fixed effects. Percent variance explained is given relative to the target-only 

model using

(6)
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for models m ∈ 1, …, 7, where Y is the matrix of observed trajectories and Ŷm is the matrix 

of estimated trajectories based on fixed effects in Model m.

The poor performance of Model 1 compared to Model 2 indicates the importance of 

interaction between target and impairment severity, due to the target-specific direction of the 

effect of stroke and to differing levels of biomechanical difficulty. Models 3, 4 and 5 build 

on Model 2 by adding a quadratic effect of the Fugl-Meyer score and interactions with hand 

used and affectedness, respectively. The relatively small improvement of the quadratic 

model may support an assumption of linearity, and the comparability of Models 4 and 5 may 

be due to the fact that, in our dataset, the affected hand was more likely to be the dominant 

hand. Models 6 and 7 build on Model 5 by allowing a quadratic effect of the Fugl-Meyer 

score and an interaction with the hand used. Again, the improvement from using a quadratic 

term is models compared the effect of the added interaction. For all models, the fixed and 

random effects together explain roughly 50% of outcome variance; the remaining 50% is 

residual variance around subject-level means. This partitioning of variance usefully 

quantifies the extent to which motor control is explainable by covariates, subject-specific 

deviations, and trajectory-level variation. In Section 4.2 we discuss inference for Model 7.

Figure 4 compares the estimated fixed effects from Models 2, 5, and 7. For each model (in 

rows), we show the estimated mean trajectories in an affected dominant hand for Fugl-

Meyer scores 66, 51, 36, and 21 (in columns). In Model 2, the effect of increasing stroke 

severity is assumed to be the same in both the affected and unaffected hand. This is unlikely 

given that our data set consists of patients with unilateral stroke. Model 5 estimates separate 

effects of stroke severity for the affected and unaffected arm. Comparing Models 2 and 5 for 

an affected arm in Figure 4, Model 5 indicates large effects of increasing stroke severity; for 

an unaffected arm (not shown) Model 5 indicates small or no effect. Model 7 additionally 

separates the affected dominant from affected non-dominant hands, with the scientific 

interpretation that a stroke of the same severity could affect these limbs differently. The 

differences between Models 5 and 7 are subtle for affected dominant arms, but more 

noticeable for unaffected and non-dominant arms. An interactive version of Figure 4 is 

available on the first author’s website.

Estimates of subject-level effects are shown in Figure 5 for two subjects (separately by row) 

overlayed on the observed trajectories. Fixed effects estimates based on Model 7 are shown 

in bold solid lines and subject-level estimates including random effects are shown in bold 

dashed lines. In the top row is a control subject’s dominant hand; fixed effects and random 

effects estimates differ only slightly, indicating relatively little subject deviation from the 

population mean. In the bottom row is a severely affected (Fugl-Meyer 28) subject’s affected 

dominant hand. Here, fixed effects are noticeably curved for several targets indicating a 

systematic effect of stroke. Subject-level estimates differ from the fixed effects in some 

cases (particularly for targets at 0° and 180°), illustrating the idiosyncratic effects of stroke 

in this patient. Note that data for these patients is shown in Figure 1.

4.2 Full Bayesian analysis

After exploring several candidate fixed effects structures, we fit Model 7 using a fully 

Bayesian analysis to explore inferential properties of estimated coefficients. In particular, we 
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are interested in the target-and hand-specific systematic effects of the Fugl-Meyer score as a 

continuous covariate. For our final model, we used five chains with random starting values, 

setting chain length to 2,000 iterations and discarding the first 500 as burn-in. 

Hyperparameters and initial values were chosen as described in Section 2.3. Analyses 

assessing the sensitivity to hyperparameter values appear in the web-based supplementary 

materials. Computations took 2.5 days per chain on a Intel Xeon CPUs running at 2.30GHz 

with 8 Gb memory, which emphasizes the importance of a fast approximation for data 

exploration and model building.

Figure 6 shows the estimated effect of a ten unit decrease in Fugl-Meyer score in a dominant 

hand affected by stroke for all target directions. The top and bottom rows show the marginal 

effect on the X and Y position curves, respectively. Panels show the posterior mean as a bold 

curve, and a sample from the posterior as translucent curves. These results show clear, 

significant effects to all targets, verifying that increasing stroke severity has a systematic 

effect on motor control. For motions to the target at 0°, increasing stroke severity leads to 

over-reach (increases in the X direction) as well as a vertical shift (increase in the Y 
position). Other targets can be interpreted similarly. The largest effects are generally in 

directions that require multi-joint coordination, and are thus more biomechanically difficult.

Figure 7 illustrates the quality and convergence of our Markov chains. The top row shows 

plots for a representative spline coefficient in a fixed effect function βk(t); the bottom row 

shows the variance component σW,k that controls the degree of penalization in this function. 

In each row, the left panel shows the five posterior chains for the parameter of interest, 

started from randomly chosen values with the burn-in period shaded; this shows that chains 

converge quickly and there is little sensitivity to the choice of starting value. An 

autocorrelation function is shown in the second panel and indicates low autocorrelation. The 

third panel of each row shows the convergence criterion of Gelman and Rubin (1992) as a 

function of iteration number. Values near 1 indicate convergence, which is typically attained 

after only a few hundred iterations. Finally, at right we show the posterior mean residual 

covariance surface to illustrate the correlation within X and Y position residuals and the 

correlation between them.

5 Concluding remarks

This manuscript has focused on the development of a regression framework for the analysis 

of kinematic data used to assess motor control in stroke patients. Our model allows flexible 

mean structures, subject-level random effects, bivariate outcomes and correlated errors. We 

develop a hierarchical Bayesian estimation framework; crucially, a fast and accurate 

variational Bayes approximation to the full Gibbs sampler allows extensive data exploration 

and model building before estimation with the full Bayesian approach. Implementations of 

both approaches and complete simulation code is publicly available.

Variational approximations are often quite inaccurate for the construction of credible 

intervals due to the factorization assumptions and use of parametric densities to approximate 

the posterior distribution. In that sense, the good inferential performance found in 

simulations is perhaps surprising. In part this performance is due to the hierarchical 
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recentering in model (4), in which observed curves are centered around subject effects, 

subject effects are centered around fixed effects, and fixed effects are centered around zero. 

This formulation helps to decrease the posterior correlation between fixed and random 

effects and improves the quality of the approximation (and, importantly, the mixing for the 

Gibbs sampler). A direct implementation of model (3), which centers observed curves 

around the combination of fixed and random effects and centers both fixed and random 

effects around zero, had similar estimation accuracy but much poorer inference. Despite 

these results, we recommend caution when using the variational approximation for 

inference, and prefer this method for model building, cross-validation of results, 

bootstrapping, or other computationally intensive procedures. Finally, we note that the good 

performance of the variational approximation suggests that other approximate methods 

might be suitable for this model and should be explored carefully.

The application of our developed methodology to the motivating data yields novel insights 

into the effect of arm impairment on control of visually-guided reaching. We demonstrate 

consistent, systematic effects of stroke on reaching trajectories using the Fugl-Meyer score 

as a continuous covariate that are direction-dependent. Our final model indicates that 

roughly 10% of variability in observed trajectories is due to systematic effects of impairment 

severity; subject-specific idiosyncrasies account for an additional 40%. Although not of 

primary concern here, our application also allows comparisons of dominant and non-

dominant hand among controls, as well as consideration of systematic effects in the 

unaffected hand following stroke. Additional work will examine the replicability of these 

findings in larger studies and quantify possible overfitting.

Future work may take several directions. In statistical methodology, additional exibility in 

the mean structure, for instance by allowing non-linear effects of covariates, could broaden 

the applicability of the model. Parameterizing the residual correlation structure as a function 

of impairment severity would more accurately reflect the disease process. Implementing and 

testing our methods for the case that curves are observed on a sparse grid would broaden the 

class of problems to which these methods can be applied. New general-purpose 

programming languages for Bayesian analysis (including sampling and optimization) will 

facilitate the implementation of more classes of prior distributions, potentially leading to 

better models and reducing the reliance on convenient priors (Stan Development Team, 

2013). In the applied setting, extension to three-dimensional kinematics will be necessary as 

experiments allow more complex reaching motions. Longitudinal experiments to explore 

treatment effects and describe the natural history of recovery are underway; accompanying 

methods will be needed to account for within-subject correlations over time.
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Appendices

This supplementary material consists of the following appendices: A, containing a graphical 

representation of our model and a brief discussion of induced factorings; B, containing 

sensitivity analyses for the choice of hyperparameters in our full Bayesian analysis; C, 

containing derivations of full conditional distributions for the Gibbs sampler; and D, 

containing derivations optimal densities for the variational Bayes algorithm. Throughout we 

consider the univariate model; for the bivariate outcome model presented in Section 2.4 

slight augmentations are necessary but straightforward. For completeness, we briey describe 
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the data and model of interest. The data are [Yij(t),wi] for subjects i = 1, …, I and visits j = 1, 

… Ji, giving a total of n = ∑i Ji observations. Univariate functional outcomes Yij(t) are 

observed on a regular grid of length D for all subjects and visits. We are interested in 

estimating the parameters in

(A.1)

In this model, BW is the matrix of coefficients for fixed effects and BZ is the matrix of 

coefficients for random subject effects; Σ is the residual covariance matrix, and the variance 

components n  control the amount of smoothness in the fixed and random effects. 

Additionally, Y, W, Z, Θ, and P are the observed outcomes, the fixed and random effect 

design matrices, the b-spline basis matrix, and the known penalty matrix, respectively.

A Graphical model

The joint distribution corresponding to (A.1) is

Here we omit hyperparameters for the densities for the covariance matrix Σ and variances 

. Also note that the “zeroth” column of BW and the variance  correspond to 

the intercept β0(t). A graphical representation of this model is shown in Figure A.1.
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Figure A.1: Graphical illustration of model (A.1). Shaded nodes represent observed data; 

blank nodes denote inferred parameters; rectangles or plates denote indexing over a set of 

variables. For example, the plate surrounding only Yij indicates that for subject i, 
observations are indexed by j and are independent given parameters outside this plate.

Our variational approach assumes that the posterior distribution 

 can be approximated using

where the functions q are distinguished by their argument rather than by subscript l. The 

additional factorizations  and 

 follow from the result

and Figure A.1. In particular, the columns of BZ are conditionally independent given BW and 

the variance components are all conditionally independent given the remaining model 

parameters. These observations lead to our final factorization:

B Sensitivity Analyses

In Section 2.3 of the manuscript, we describe a procedure for choosing hyperparameters. 

This procedure is based on an analysis of the data, and is developed to avoid default 

“uninformative” choices like az = bz = aW,k = bW,k = .001, which places a large prior mass 

near zero for all variance components and can lead to overshrinkage of fixed and random 

effects toward zero. However there is the potential for sensitivity to these choices, and in this 

section we repeat our full data analysis using other choices for hyperparameters.

Goldsmith and Kitago Page 22

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this analysis, we set az = 10, bz = 2.5, and aW,k = bW,k = 1 for all k as the hyperparameters 

for inverse-gamma densities. We set ν = 10 and Ψ = 10I, where I is an identity matrix. For 

reference, in the analysis presented in the manuscript, we set az = 4250 and bz = 2600, aW,k 

was set to 5 and bW,k ranged between .001 and 100, with typical values near .05; we set ν = 

19053 and Ψ was constructed using an FPCA decomposition. The choices of 

hyperparameters in this appendix result in more diffuse priors and encode relatively little 

information. Using these hyperparameters, we repeated our analysis by using five chains 

with random starting values, with each chain consisting of 2,000 iterations and discarding 

the first 500 as burn-in.

Figure A.2 shows the estimated effect of a 10-unit change in Fugl-Meyer score in a 

dominant hand affected by stroke for all target directions; this recreates Figure 6 from the 

main manuscript. Estimates of effects are very similar in both analysis, indicated that 

choices of hyperparameters can relax the degree of prior information with relatively little 

effect on estimation. The posterior sample in all panels of Figure A.2 tends to be more 

variable than the corresponding panel of Figure 6 in the manuscript, but not dramatically so.

Figure A.2: Estimated effect of a 10-unit decrease in Fugl-Meyer score in an affected 

dominant hand. Effects to eight targets appear in columns; the effect in the X and Y 
positions appear in rows. Posterior means are shown as bold curves; a posterior sample is 

shown as translucent curves. Figure is based on hyperparameters chosen for a sensitivity 

analysis.

Figure A.3 recreates Figure 7 in the main manuscript using the hyperparameter choices 

given above. The top row shows plots for the same representative spline coefficient in a fixed 

effect function βk(t) as in Figure 7; the bottom row shows the variance component σW,k that 

controls the degree of penalization in this function. In each row, the left panel shows the five 

posterior chains; the second panel shows an autocorrelation function; and the third panel of 

each row shows the convergence criterion of Gelman and Rubin (1992) as a function of 

iteration number. Convergence is somewhat slower using the current hyperparameters, but is 

still reasonable. As seen in Figure A.2, distributions are a bit more variable, likely due to the 

spreading of prior mass for variance components.
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Figure A.3: Diagnostic and convergence criteria for representative parameters are show in 

the grid on the left. The top row shows a spline coefficient in a fixed effect function and the 

bottom row shows the variance component associated with that coefficient function. The 

columns in this grid show, from left to right, the five chains with random start values, the 

autocorrelation function, and Gelman and Rubin’s diagnostic criterion. The plot at right 

show the residual covariance surface. Figure is based on hyperparameters chosen for a 

sensitivity analysis.

C Gibbs Sampler

In this section we provide derive full conditional distributions for the parameters in model 

(A.1). Let 1m be a length m vector of 1’s and Yi denote the rows of Y for subject i. Also 

recall that  is the total number of observations.

• The full conditional distribution p(BZ,i|rest) is

where

and

Thus [BZ,i | rest] follows a multivariate normal distribution with mean and 

variance as described above.

• Derivation of the full conditional distribution p(vec (BW) |rest) follows 

very similarly to the above.

In particular,
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where

and

Thus [vec (BW) | rest] follows a multivariate normal distribution with 

mean and variance given above; the conditional distribution of BW is given 

by inverting the vec (·) operation.

• The full conditional distribution  is

Thus  is distributed 

.

• The derivation of the full conditional distribution for each of the  is the 

same, and is similar to that of . For any k, the full conditional 

 is
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Straightforward computation shows that  is distributed 

.

• For a given value of BZ, let  be the matrix containing 

residual curves evaluated over the discrete grid of observation points such 

that Rij contains the jth residual vector for subject i. The full conditional 

distribution p(Σ|rest) is

Note that . 

Combining terms, the full conditional is

so that [Σ | rest] is distributed 

.

D Variational Bayes Algorithm

In this section we derive the optimal densities and the iterative algorithm in the variational 

Bayes approximation to the full posterior of model (A.1). Additionally, we provide the q-

specific lower bound Lq used to monitor convergence of the algorithm.

First, we recall that given a partition {ϕ1, …, ϕL} of the parameter space ϕ, the explicit 

solution for q(ϕl), 1 ≤ l ≤ L has the form

(A.2)

where rest ≡ {Y, ϕ1, …, ϕl−1,ϕl+1, …, ϕL}. Notationally, for a scalar random variable ϕ, let
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be the mean and variance with respect to the q distribution. For a vector parameter ϕ, we use 

the analogously defined μq(ϕ) and Σq(ϕ)

• For BZ,i, we use the full conditional derivation in Section C to find that

where

and

Thus the optimal density q*(BZ,i) is multivariate normal with mean and 

variance as specified above.

• The derivation for BW is similar to that for BZ,i; specifically, we use the 

full conditional derivation in Section C to find that

where

and

Thus the optimal density q*(BW) is multivariate normal with mean and 

variance as specified above.

For , we find that
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where

Thus the optimal density  is . Note that the 

term  appearing in the optimal densities q*(BZ,i) and q*(BW) is 

equal to .

• The derivation for the  is similar to that of . Specifically,

where

Thus the optimal density  is . Note that the 

term  appearing in the optimal density q*(BW) is equal to 

.
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• For Σ, we have

where m indexes rows of Y and Z and has values between 1 and n. For any 

m, the expectation above is

where Σq(BZ,i*) is the covariance matrix defined in the update for BZ,i and 

subject i* is the subject to which row m corresponds. Taking the sum over 

m of this expectation we have that

with

Thus the optimal density q*(Σ) is IW [ν + n, Ψq(Σ)]. Note that the term 

μq(Σ−1) appearing in the optimal density q*(BZ) is equal to .

From these individual updates, we arrive at the following iterative algorithm:

Algorithm 1

Iterative scheme for obtaining the optimal density parameters in the function-on-scalar 

regression model (A.1).

Initialize: μq(BZ,i), Σq(BZ,i) for all i; μq(BW); Σq(BW);  for all k; and Ψq(Σ). Initial values can be chosen at random, or based on the approach used to select hyperparameters 
described in Section 2.3 to speed convergence.

Cycle:

• For all i:

◦
Σq(BZ, i)

(1Ji
⊗ Θ)T(IJi

⊗ μ
q(Σ−1)

)(1Ji
⊗ Θ) + μ

q(1/σZ
2)

P
−1

◦
μq(BZ, i)

Σq(BZ, i)
(1Ji

⊗ Θ)T(IJi
⊗ μ

q(Σ−1)
)vec (Y i) + μ

q(1/σZ
2)

P(μq(BW)wi
T)
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•

Σq(BW) μ
q(1/σZ

2)
(W ⊗ IKθ

)T(II ⊗ P)(W ⊗ IKθ
) + diag  μ

q(1/σW , k
2 )

⊗ P
−1

•
μq(BW) Σq(BW) μ

q(1/σZ
2)

(W ⊗ IKθ
)T(II ⊗ P)vec (μq(BZ))

•
b

q(σZ
2)

bZ + 1
2 ∑i μq(BZ, i)

T Pμq(BZ, i)
+ tr  PΣq(BZ, i)

− 2wiμq(BW)
T Pμq(BZ, i)

+ wiμq(BW)
T Pμq(BW)wi

T + widiag  tr  PΣq(BW , k) wi
T

• For all k:

◦
b

q(σW , k
2 )

bW + 1
2 μq(BW , k)

T Pμq(BW , k) + tr  PΣq(BW , k)

• Ψq(Σ) Ψ + YTY − YTZμq(BZ)
T ΘT + Θμq(BZ)Z

TY + Θμq(BZ)Z
TZμq(BZ)

T ΘT + ∑iJiΘΣq(BZ, i)
ΘT

until the increase in Lq is negligible.

Finally, the expression for the q-specific lower bound of the marginal log-likelihood is

where “const.” represents an additive constant not affected by updates to the q density 

parameters. It should be noted that this constant contains the term log(|P−1|), thus 

necessitating a full rank penalty matrix if Lq is used to monitor convergence of the 

algorithm.
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Figure 1. 
Observed data for two subjects; the top row shows the dominant hand of a healthy control, 

and the bottom row shows the affected dominant hand of a severe stroke patient. The left 

column shows observed kinematic data for all reaches observed in the dominant hand. The 

middle and right columns show the X- and Y- position separately for all reaches.
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Figure 2. 
The left panel shows the three coefficient functions used to simulate data. The middle panel 

shows a complete simulated data set, with three subjects (one from each group) highlighted. 

The right panel shows the true coefficient functions, as well as their estimates and credible 

intervals derived from the dataset shown in the middle panel.
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Figure 3. 
Simualtion results. The left panels show IMSE, defined as IMSE = ∫ (β̂(t) − β(t))dt, for each 

coefficient function, sample size, and estimation technique. The right panel show 

computation time for each sample size and estimation method.
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Figure 4. 
Estimated motions for an affected dominant arm with Fugl-Meyer scores 66, 51, 36, and 21 

(in columns) under Models 2, 5, and 7 (in rows). An interactive version of this Figure is 

available on the first author’s website.
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Figure 5. 
Observed data (faint solid lines) overlayed with estimated fixed (bold solid lines) and 

random (bold dashed lines) effects. Data for two subjects are shown: in the top row, the 

dominant hand of a control subject, and in the bottom row the affected dominant hand of a 

severe stroke patient. Data for these subjects appear in Figure 1.
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Figure 6. 
Estimated effect of a 10-unit decrease in Fugl-Meyer score in an affected dominant hand. 

Effects to eight targets appear in columns; the effect in the X and Y positions appear in rows. 

Posterior means are shown as bold curves; a posterior sample is shown as translucent curves.
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Figure 7. 
Diagnostic and convergence criteria for representative parameters are show in the grid on the 

left. The top row shows a spline coefficient in a fixed effect function and the bottom row 

shows the variance component associated with that coefficient function. The columns in this 

grid show, from left to right, the five chains with random start values, the autocorrelation 

function, and Gelman and Rubin’s diagnostic criterion. The plot at right show the residual 

covariance surface.
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Table 2

Description and comparison of models considered.

Model Fixed Effects Number of fixed effects Relative PVE for fixed effects

0 Tar 8 Reference

1 FM + Tar 9 0.1

2 FM × Tar 16 4.6

3 FM2 × Tar 32 5.2

4 FM × Tar × Hand 32 8.4

5 FM × Tar × Aff 32 8.8

6 FM2 × Tar × Aff 64 10.1

7 FM × Tar × Hand × Aff 64 11.9

Fixed effects structure is described in the second column, where “Tar” represents the target direction (as a categorical variable); “Hand” represents 
hand used (dominant, non-dominant); “Aff” indicates an affected hand; “FM” is the continuous Fugl-Meyer score; “+” indicates additive effects 
and “×” indicates interactions. The number of fixed effects induced by the model structure is given in the third column. The fourth column provides 
the percent of outcome variance explained by the model relative to a model with only target as a covariate (defined in equation (6)).
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