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This review from the International Consortium on 
Hallucinations Research intends to question the pertinence 
of the excitatory-to-inhibitory (E/I) imbalance hypothesis 
as a model for hallucinations. A large number of studies sug-
gest that subtle impairments of the E/I balance are involved 
in neurological and psychiatric conditions, such as schizo-
phrenia. Emerging evidence also points to a role of the E/I 
balance in maintaining stable perceptual representations, 
suggesting it may be a plausible model for hallucinations. 
In support, hallucinations have been linked to inhibitory 
deficits as shown with impairment of gamma-aminobutyric 
acid transmission, N-methyl-d-aspartate receptor plastic-
ity, reductions in gamma-frequency oscillations, hyperac-
tivity in sensory cortices, and cognitive inhibition deficits. 
However, the mechanisms by which E/I dysfunctions at the 
cellular level might relate to clinical symptoms and cog-
nitive deficits remain unclear. Given recent data advances 
in the field of clinical neuroscience, it is now possible to 
conduct a synthesis of available data specifically related to 
hallucinations. These findings are integrated with the latest 
computational frameworks of hallucinations, and recom-
mendations for future research are provided.

Key words:  inhibition/hallucination/oscillation/sensory 
gating/GABA/glutamate/NMDA/Bayesian

Introduction

Neural circuits are regulated by activity-dependent feed-
back systems that act to maintain a precise excitatory-to-
inhibitory (E/I) balance.1 This E/I balance has been shown 
to play an important role in the development and mainte-
nance of stable perceptual representations,2 suggesting a 
plausible link with hallucinations. In support, many stud-
ies have shown that inhibitory deficits are linked with hal-
lucinations. Inhibition, however, is a polysemic term with 
multiple meanings and functions. For example, not all the 
cognitive mechanisms falling under the rubric of inhibi-
tion may be meaningfully related to hallucinations.3 In 
this article, we first review evidence for potential inhibi-
tory dysfunction in (auditory and visual) hallucinations at 
different scales of understanding (ie, molecular level, sys-
tem level, cognitive level). Given that hallucinations are 
a clinical feature of schizophrenia (SCZ), that literature 
is also reviewed so that deficits specific to hallucinations 
may be separated from those general to SCZ. Evidence 
drawn from studies in other conditions in which halluci-
nations occur is also provided. Second, we amalgamate 
this understanding with the latest computational models. 
Computational scale-free frameworks can provide power-
ful models for understanding hallucinations by allowing 
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the integration of macroscale findings with microscale 
factors that dictate the E/I balance. This knowledge car-
ries potentially important information for understanding 
mechanisms of hallucinations, and recommendations for 
future research and practice in the field are provided in 
the last section.

Molecular and Pharmacological Evidence

Decreased inhibition or increased excitation is now a 
consistent finding in SCZ. Genetic,4 physiological,5,6 and 
postmortem7 evidence converge to show an impairment 
of gamma-aminobutyric acid (GABA) transmission in 
SCZ. Using rodent models, the experimental blockage 
of parvalbumin interneurons,8 or the suppression of 
their activity using optogenetic methods,9 was shown to 
induce significant reductions in γ-oscillations, a finding 
which was replicated in humans with SCZ5 (see also the 
section on “neurophysiological evidence”). Interestingly, 
such reduced GABAergic inhibition was related to per-
ceptual deficits,10 such as reduced vulnerability to con-
trast-contrast illusions.11 Furthermore, global glutamate 
(Glu) receptor hypofunction (notably of the N-methyl-d-
aspartate receptor or NMDA-R) in animal models was 
shown to cause an increase in intrinsic pyramidal cell 
excitability and a selective disruption of parvalbumin-
expressing interneurons.12

Psychotomimetic models (eg, models that mimic the 
symptoms of psychosis), especially those based on ket-
amine (an antagonistic agent of NMDA-R), also sup-
port the E/I imbalance hypothesis. SCZ-like symptoms 
(eg, perceptual aberrations, delusional ideas, thought 
disorder, and changes in affect) have been described in 
healthy volunteers taking ketamine13 as well as in auto-
immune anti-NMDA-R encephalitis.14 Moreover, ket-
amine affects the intensity and integrity of the sensory 
experience.15 For both auditory and visual perception, 
acuity is increased and background stimuli become more 
salient.15–17 Specifically, the drug was shown to bind D2 
receptors and induce striatal dopamine release,18 even 
if  blocking D2 receptors with haloperidol prior to ket-
amine administration does not block ketamine-induced 
symptoms.13

Furthermore, ketamine does not routinely induce hal-
lucinations, rather illusory percepts—alterations of stim-
uli that are actually present.19 However, a recent report 
suggests that ketamine administration inside the MRI 
scanner (perhaps a form of sensory isolation) does induce 
auditory verbal and musical hallucinations.20 Contrary 
to ketamine, LSD and other serotonergic hallucinogens 
induce profound visual hallucinations, together with 
altered sense of self  and time21 but no consistent delu-
sions.22 Serotonergic hallucinogens mainly act at 5-HT 
receptors. However, they also impact upon glutamatergic 
transmission23 (and thus the E/I balance), especially in 
the locus coeruleus24 and in frontal cortex.25

Brain Imaging Evidence

From Hyperactivation to Brain Dysconnectivity

Consistent with the notion of  an E/I imbalance, meta-
bolic and functional changes in speech-related areas 
have been widely reported in functional brain imaging 
studies of  SCZ patients with hallucinations.26 Two main 
study categories can be distinguished: (1) trait studies 
(ie, studies comparing hallucinators with nonhalluci-
nators) and (2) state studies (ie, studies conducted dur-
ing the occurrence of  hallucinations in the scanner). 
Increased activation within a bilateral frontotemporal 
network was confirmed by coordinate-based meta-
analysis of  the auditory hallucination (AH) state.27 
State studies conducted in nonclinical hallucinators 
also confirmed the role of  frontotemporal regions in 
these experiences, independently of  the SCZ status.28 
Parahippocampal signal fluctuations preceding the 
occurrences of  hallucinations,29 as well as dyscon-
nectivity patterns of  the hippocampal complex dur-
ing hallucinations,30,31 tend to indicate a possible link 
between hallucinations and memory systems (see also 
the “Cognition” section).

Trait studies mainly explored verbal self-monitoring, 
verbal imagery, and source memory.26 These experiments 
showed that SCZ patients with AHs exhibit decreased 
activation within temporal, cingulate, premotor, and sub-
cortical regions thought to subserve the above-mentioned 
functions.32 In a recent study using a predictive learning 
task, aberrant resting activity was evidenced in audi-
tory cortex as well as weakened responses to unexpected 
speech in patients with AHs,33 suggesting auditory cortex 
prediction error dysfunction.

Auditory hallucinations are also associated with 
impaired connectivity of  large-scale networks at both 
the functional34 and structural level.35 Functional con-
nectivity between Wernicke’s area and Broca’s areas, for 
example, is shown to be disrupted during inner-speech 
processing in SCZ patients who hear voices,36 in line with 
the “comparator model” theory, positing that AHs are 
related to inner-speech self-monitoring impairments.37–39 
Overall, studies conducted in SCZ suggest that this dys-
connectivity may rely at the microscale on impaired 
control of  synaptic plasticity,40 notably of  NMDA-
dependent plasticity.41,42 Importantly, the dysconnectiv-
ity hypothesis was recently applied to specific symptoms 
such as hallucinations, eg, comparing different SCZ 
subgroups that only differ on their hallucination status 
(ie, with or without hallucinations, but also with uni-
sensory or multisensory experiences),30,43 and to hallu-
cinators outside of  this clinical spectrum.44 Changes in 
distributed functional connectivity networks were finally 
obtained when targeting the left temporoparietal junc-
tion with noninvasive brain stimulation techniques such 
as repetitive transcranial magnetic stimulation (TMS),45 
or transcranial direct current stimulation (tDCS),46 with 
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substantial impacts on AH severity (see also the section 
on “neuromodulation studies”).

Glutamate and MR Spectroscopy

Given that Blood-Oxygen-Level Dependent fMRI 
(fMRI-BOLD) activations correlate with increases in 
Glu concentrations,47 we could expect that Glu abnor-
malities overlap with the above-mentioned increases 
in neuronal firing during AHs.27,32,48 Studies show Glu 
concentration abnormalities in SCZ relative to healthy 
controls,49,50 but very few studies have made the link to 
AHs. An exception is a recent study using a MR spec-
troscopy (1H-MRS) approach. Hugdahl et al51 dem-
onstrated reduced Glx levels (ie, the sum of  Glu and 
Glutamine, Gln) in the posterior temporal lobe and 
the inferior frontal gyrus of  SCZ participants relative 
to healthy controls. A significant positive correlation 
was also found between frontal-temporal Glx levels and 
hallucination severity (assessed with item P3 from the 
Positive and Negative Syndrome Scale, PANSS), while 
correlations with negative symptoms were close to zero. 
Interestingly, the Glx levels were higher in patients that 
scored in the upper range of  the P3 symptom range, 
which was interpreted as linked with a glutamater-
gic hyperactivity, not inhibited by the corresponding 
increase in GABA release. This would mean that AHs 
may be accompanied by Glu increase, rather than Glu 
reduction. A recent meta-analysis of  1H-MRS in SCZ 
also suggested that illness phases were associated with 
different Glu profiles.50 Increased metabolite concentra-
tion in the speech areas in the temporal lobe was also 
reported by Homan et al52 when comparing hallucinat-
ing and nonhallucinating patients.

Neurophysiological Evidence

Phase Synchronization

Neurons have been shown to synchronize their oscillatory 
phase (“phase synchronization”) in response to specific 
stimulus contexts.53 This phenomenon depends critically 
on E/I balance and is thought to provide a temporal code 
that underpins coherent perception, thought, and action 
(the “binding problem”), which has now been observed 
within and between distributed brain structures during 
rest, encoding, and higher-order cognition.54–56

State studies have typically observed increased phase 
synchronization in the auditory cortices of SCZ subjects. 
Initial case reports linked AHs to increased γ-band activ-
ity in left auditory cortex,57,58 while larger works have 
reported increased α-band synchrony between right and 
left auditory cortices,59,60 and more recently of θ-band 
and γ-bands in left frontal and auditory cortices.61 Ford 
and colleagues38 found 150 ms prior to and until speech 
production that β-band synchronization (~15 Hz) was 
larger over frontal cortex in HC compared to SCZ; the 

degree of synchrony in controls was positively correlated 
with the degree of auditory N1 amplitude suppression 
resulting from corollary discharge (N1 amplitude during 
talking versus listening), while in SCZ lower synchroniza-
tion was related to AH severity.

Several trait studies have examined neural synchro-
nization using auditory steady-state response (ASSR) 
paradigms. Spencer and colleagues62 found that 40 Hz 
stimulation elicited reduced γ-band synchronization in 
left auditory cortex of  SCZ compared to HC, but was 
modulated by δ-band (2 Hz) activity in SCZ. The degree 
of  γ-band synchronization was also related to the life-
time experience of  AHs in SCZ. Reanalyzing the same 
data, Mulert and colleagues6 found that greater syn-
chronization between bilateral primary auditory corti-
ces was correlated with AH severity in patients.

Using 20, 30, and 40 Hz stimulation, Koenig and 
colleagues63 found that a global measure of  phase-
locking was increased during ASSR stimulation in 
non-AH patients and healthy subjects (especially at 
40 Hz), but was decreased in AH patients, notably in 
the left hemisphere. Subsequently, these authors found 
that the time to peak “late-latency” γ-band amplitude 
(early-gamma = 0–100 ms, late-gamma = 200–300 ms), 
irrespective of  phase-locking, distinguished AH from 
non-AH patients (ie, AH longer), and that longer time 
to peak was positively correlated with AH severity.64 
Using a similar paradigm, Hirano and colleagues65 also 
found that phase-locking was significantly reduced in 
SCZ compared to controls at 40 Hz only, however, non-
phase-locked mean γ-band power (amplitude) was not 
different between the groups at rest and was increased 
during 40 Hz ASSR stimulation in SCZ. Also in SCZ, 
AH symptoms were positively correlated with induced 
40 Hz γ-band power in the left hemisphere and nega-
tively correlated with the ASSR stimulation phase-
locking factor.

Sensory Gating

Sensory gating, a form of preattentional inhibition when 
facing repeated sensory stimulation, is usually exam-
ined with pairs of stimuli (S1 and S2) presented at some 
stimulus-onset-asynchrony (SOA). In healthy subjects, a 
positive wave peaking ~50 ms after each stimulus (P50), 
exhibits reduced amplitude to S2 compared to S1; the 
S2:S1 “gating ratio” of P50 amplitudes is the dependent 
measure in clinical studies. Acutely psychotic and non-
psychotic SCZ patients exhibit larger P50 gating ratios 
than healthy controls (especially when SOA  =  500 ms), 
irrespective of medication status.66,67 This deficit is also 
observed in about half  of SCZ relatives,68 indicating 
that a P50 gating ratio deficit may be a endophenotypic 
marker for vulnerability to SCZ.

Two studies have explored the role of  impaired sen-
sory gating in AHs. Using a standard paradigm, Smith 
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and co-workers69 observed greater P50 in SCZ with 
drug-resistant hallucinations compared to healthy 
controls, and SCZ ratios exhibited a positive correla-
tion with lifetime AH scores (from the PSYRATS) but 
not current AH scores (from the PANSS). In contrast, 
Hirano and colleagues70 found that the magnetic P50 
(P50m) gating ratio analogue observed in response 
to pairs of  a Japanese vowel sound (SOA  =  500 ms), 
was larger in the left hemisphere in SCZ compared to 
healthy controls, and was positively correlated with 
current AH scores, however, not all SCZ had drug-
resistant hallucinations.

Neuromodulation Studies

Combining TMS with electroencephalography (EEG) 
and electromyography constitutes a powerful tool to 
assess the E/I balance in humans.71,72 Numerous studies 
have investigated excitatory and inhibitory mechanisms 
in medicated, unmedicated, first-episode patients with 
SCZ and subjects at risk to develop SCZ,73 but only few 
studies have investigated their relationship with AHs.

Most of paired-pulse TMS paradigm applied over 
the motor cortex investigating NMDA glutamate recep-
tor activity failed to demonstrate any difference between 
SCZ patients and healthy controls.74,75 No studies directly 
explored the relationship between AHs and excitatory 
mechanisms measured by paired-pulse TMS paradigm 
applied over the motor cortex. Investigating the parieto-
motor connectivity with a subthreshold preconditioning 
pulse over the posterior parietal cortex before the test 
pulse over the ipsilateral motor cortex, a study reported 
reduced paired-pulse facilitation in patients with SCZ.76 
Even if  such facilitatory interactions are thought to 
depend on the superior longitudinal fasciculus integrity, 
a white matter tract associated to AHs’ severity,77 patients 
with lower negative symptoms had less impaired parieto-
motor connectivity.76

Short-interval cortical inhibition (SICI) is a paired-
pulse paradigm with 1–4 ms interstimulus intervals asso-
ciated with the GABA-A receptor-mediated inhibitory 
neurotransmission.78 A  recent meta-analysis74 reported 
that SICI was significantly reduced in SCZ patients when 
compared with healthy subjects (d = 0.476). Daskalakis 
and colleagues reported that the intensity of the SICI def-
icit correlated with the intensity of positive symptoms.79 
Investigating integrity of the cerebello-thalamo-cortical 
loop with a TMS pulse delivered over the cerebellum 
5–15 ms before a TMS pulse applied over the contralat-
eral primary motor cortex, a study also reported reduced 
cerebellar inhibition in SCZ patients.80 Even if  cerebel-
lar dysfunction has been linked with confusion between 
reality and perceived reality, leading to positive psychotic 
thinking,81–83 the relationship between the severity of 
AHs and the intensity of the cerebellar inhibition deficit 
has yet to be explored.

Combining TMS and EEG, Farzan and colleagues84 
reported that patients with SCZ had significant deficits 
in the inhibition of  gamma oscillations in the dorso-
lateral prefrontal cortex, a phenomenon known to be 
associated with an impairment in GABA-B receptor-
mediated inhibition. The severity of  this deficit corre-
lated with the illness severity as measured by the Brief  
Psychiatric Rating Scale (BPRS). However, the specific 
link with AHs was not investigated. Interestingly, using 
tDCS, a recent study also investigated the excitability 
of  the occipital cortex in healthy subjects, and reported 
a correlation between the predisposition to anoma-
lous experiences/hallucinations score measured by the 
Cardiff  Anomalous Perceptions Scale (CAPS)85 and the 
number of  visual distortions that occurred from viewing 
aversive gratings during active and sham tDCS.86 This 
suggests a hyperexcitability of  the brain in clinical and 
nonclinical subjects predisposed to hallucinate.

Cognition

Inhibition is also a broad psychological construct which 
refers to a particular form of prefrontal executive con-
trol that assists a range of  cognitive skills (ie, attention, 
learning, memory, and language) and behaviors. The 
principal role of  cognitive inhibition is to suppress irrele-
vant information and previously activated cognitive con-
tents, and resist interference from competing stimuli.87 
Cognitive inhibition can be further differentiated into 
(1) interference control which refers to an initial percep-
tual stage of  processing88 (assessed on tasks such as the 
Stroop task); (2) automatic (or unintentional) inhibition, 
referring to automatic, preparatory, and prestimulus 
processes89 (assessed with tasks such as Negative Priming 
paradigms90); and (3) intentional inhibition which applies 
to goal-directed and poststimuli processes which may be 
conscious or unconscious89,91 (assessed with tasks such 
as the Hayling Sentence Completion Task [HSCT] or 
the Inhibition of  Currently Irrelevant Memories Task 
[ICIM]92).

By definition, AH in SCZ are sensory experiences over 
which the person does not feel (s)he has direct and vol-
untary control.93,94 Consequently, cognitive explanations 
of AH have suggested that this reduced sense of control 
arises from a breakdown in inhibition,95 and that such def-
icits might result in the emergence of irrelevant material 
from long-term memory into awareness.96,97 In support, 
studies have showed that hallucination frequency in SCZ 
was associated with difficulties on tasks requiring the sup-
pression of irrelevant information and distracting infor-
mation, like the ICIM and HSCT tasks,98,99 a Directed 
Forgetting (DF) task,100 and the Dichotic Listening 
task,101 all pointing to deficits in intentional inhibition. 
Such deficits were not correlated with delusions or other 
symptom dimensions. Similar deficits have been found in 
Alzheimer disease patients with hallucinations102 as well 
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as with nonclinical groups who score high on a measure 
of hallucination proneness.103,104 Mental health condi-
tions that are characterized by unwanted and uncontrol-
lable cognitions, primarily obsessive compulsive disorder 
(OCD)105–107 and posttraumatic stress disorder (PTSD),108–

111 also show similar deficits in inhibiting mental events.
Studies also show selective impairments in the domain 

of intentional inhibition, but not in the other inhibi-
tion constructs referring to interference control and 
automatic inhibition.112–115 Such dissociations suggest 
that deficits may be specific to the deliberate suppres-
sion of salient cognitive representations, in contrast to 
motoric or unconscious responses. This notion is con-
sistent with early theories of hallucinations, proposing 
that they involve “parasitic memories”116,117 or the intru-
sions of strongly activated (but irrelevant) representa-
tions in memory,96,97 especially when words are negative 
or derogatory.118

Two studies extended these results in nonclinical par-
ticipants scoring high on measures of hallucination-like 
experiences. Paulik et al103 reported that these individu-
als made more false alarms on ICIM conditions requir-
ing intentional inhibition than comparison controls. This 
finding was partially replicated by a recent paper,104 which 
showed correlations between ICIM scores and partici-
pants’ scores on one measure of hallucination proneness 
(the Cardiff  Anomalous Percepts Scale; r = .38) but not 
with another (the Launay-Slade Hallucination Scale; r = 
.10). Thus, in both clinical and nonclinical groups, there 
is evidence to suggest that the predisposition to halluci-
nate is related to intentional inhibition abilities.

Considering These Findings Using Scale-Free 
Computational Approaches

Building on the previous sections, the following con-
siders how both micro- and macroscale findings on 
hallucinations can be convincingly articulated using 
computational modeling. Several theoretical models have 
already been proposed to account for hallucinations.119,120 
In this report, we will mainly focus on Bayesian inference, 
but note that the different underlying hypotheses behind 
these computational frameworks (eg, attractor states, 
noise models, etc.) are not necessarily mutually exclusive 
but perhaps complementary, in that they bring different 
insights into the mechanisms behind hallucinations.121

The Predictive Coding Framework

Recent theories propose that hallucinations could be due 
to altered inference mechanisms.122–124 Originating from 
Helmholtz’ idea of unconscious inference,125 these theo-
ries conceptualize the brain as an inference machine that 
uses learned predictions (prior beliefs), combined with 
sensory evidence, to infer the causes of the incoming sen-
sory data (“posterior probabilities”). Importantly, both 

the prior and the sensory evidence are weighted by their 
precisions, which define their relative contributions on 
the “posterior.”

A plausible implementation of Bayesian inference in 
the brain is hierarchical predictive coding.126–129 The core 
idea is that an internal model that represents the knowl-
edge about the outer world serves to generate a stable per-
ceptual experience despite noisy sensory data. Predictive 
signals are thought to be fed back from higher to lower 
levels of the cortical hierarchy. When these predictions 
are violated by the sensory data, a precision-weighted 
prediction error signal is fed forward to the next hier-
archical level to update the predictive model and drive 
learning. If  the precision of the sensory data is high rela-
tive to the precision of the prior belief, the prediction 
error will be greater, and vice versa. It has been proposed 
that psychosis is linked to increased prediction error sig-
naling122 which in turn leads to aberrant salience and the 
formation of delusions, as proposed earlier.123,124,130–132

Disrupted predictive coding has also been invoked as a 
mechanism underlying hallucinations per se.122–124 Different 
predictive coding alterations have been proposed. One pos-
sibility is that hallucinations result from an overly strong 
effect of top-down predictive signals on neural activity in 
sensory cortices.133,134 Others have linked hallucinations to 
a failure to attenuate the sensory consequences of inner 
speech, in analogy to the mechanism that is thought to 
underlie delusions of control.42,124,135 In Bayesian inference 
terms, the latter mechanism would correspond to increased 
prediction errors, possibly resulting from neural signals that 
encode inner speech in auditory cortex with relatively high 
precision.122,136 Even if compatible with the E/I imbalance 
hypothesis, how this expectation gives rise to voices rather 
than other sounds remains to be established.137

The Circular Inference Framework

The prediction coding hypothesis suggesting that SCZ 
subjects give too much relative weight to their prior 
beliefs may have some limitations, especially when con-
sidering the fact that patients with psychosis are less 
sensitive to many perceptual illusions than healthy indi-
viduals,11,138–140 which is inconsistent with the proposition 
that strong priors would be at the root of perceptual illu-
sions.141,142 To overcome these shortcomings, it could be 
useful to come back to a mathematically rigorous for-
mulation of hierarchical causal inference. In a Bayesian 
network, inference can be performed by a recurrent prop-
agation of messages between causal nodes in all possible 
directions: top-down, bottom-up, and laterally. Inference 
is only complete after all such messages have been sent 
in the cortical hierarchy.143 Since long-range connec-
tions in the brain are overwhelmingly excitatory, these 
messages would be reverberated endlessly through feed-
forward/feedback excitatory loops if  they were not con-
trolled by the presence of equivalently strong inhibitory 
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connections. Indeed such balance is tightly maintained 
in cortical networks, and was shown affected in SCZ.144 
Scaling down inhibition (or scaling up excitation) in such 
a computational model results in a pathological form of 
inference called “circular belief  propagation,” in which 
“bottom-up” and “top-down” messages are reverberated 
and taken into account multiple times.145

Even when facing weak sensory evidence, circular 
propagation generates strong perceptual beliefs: halluci-
nations occur where nothing relevant should have been 
inferred. In the same way, circular inference introduces 
spurious correlations between feed-forward and feedback 
messages that are nonexistent in the real world. This leads 
to the learning and consolidation of “unshakable” (but 
false) causal relationships, resulting in delusional belief  
systems. In this line, hallucinations have been proposed 
to originate primarily from the reverberation of “bottom-
up” messages, leading to an overinterpretation of the 
sensory evidence.145 This does not rule out the possibil-
ity that some individuals with hallucinations (within, but 
also beyond the SCZ spectrum) may overinterpret their 
priors.133,146 Importantly, these 2 hypotheses could be 
tested experimentally by measuring how patients weigh 
their likelihood and priors during decisions.

Further Experimental Support

Besides the clinical and cognitive predictions of these 
models, several neural implementations have been pro-
posed.126,127,143,147–150 Regardless of its specific implementa-
tion, it is important to consider that belief  propagation 
relies on local inhibitory control to avoid circular infer-
ence. The presence of these corrective connections has 
been shown to be highly compatible with the architecture, 
connectivity, and dynamics of the cortical column.151 In 
such a context, it can be interesting to reappraise the 
effects of ketamine from an inferential point of view. 
Corlett et al suggested that under ketamine, the sub-
ject may experience both perceptual aberrations (due 
to AMPA [α-amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate receptor] upregulation) and a reduced capac-
ity to accommodate and ignore these aberrations (due to 
NMDA blockade).123 This suggests that ketamine and 
phencyclidine (PCP) disturb the feed-forward mechanism 
(prediction error signal) through AMPA upregulation 
and the feedback constraint (priors) through NMDA 
blockade. The impairment of NMDA function would 
limit the extent to which priors could exert their effect 
in explaining the mismatch that is carried by the upregu-
lated AMPA signaling. This would lead to persistence of 
perceptual aberrations due in part to persistent AMPA 
signaling and in part to an attenuation of the constrain-
ing effect that priors would normally afford on perception 
(see also study by Powers et al20). Intriguingly, contrary to 
ketamine, LSD alters glutamatergic function but it does 
not impair NMDA signaling23 and may actually enhance 

it.152 Thus, LSD induces more visual hallucinations, a phe-
nomenon that can be captured by circular inferences.121

Conclusion and Recommendations for Future Research

Overall, this report reviewed the applicability of multi-
scale approaches of hallucinations presenting the current 
available data for an E/I imbalance in these experiences. 
Bayesian inference frameworks were shown to be partic-
ularly efficient for integrating various degrees of under-
standing, from the molecular to anatomo-functional or 
behavioral levels. Because of a specific lack of empirical 
evidence, neurophysiological validation of computational 
approach is urgently needed, notably to identify the pos-
sible neural implementations of belief propagation in 
both hallucinations and unbiased perceptions.153 Three 
main lines of recommendations emerged from the work-
ing group. First in terms of population studied, it would 
be particularly useful if  future research could devote con-
certed efforts in exploring these hypotheses transdiagnos-
tically, to adequately control for SCZ as an independent 
factor: eg, comparisons of nonclinical individuals with 
hallucinations against healthy controls (none of the par-
ticipants have SCZ, and they only differ on the presence 
of AHs), or studies comparing SCZ participants with and 
without AHs (all the groups have a SCZ diagnosis, but 
still only differ on AH). Beyond simple group compari-
sons, future cognitive studies could, for example, examine 
whether the magnitude of participant’s DF or ICIM effect 
from different populations correlated with the number of 
intrusions they experience. This would notably allow to 
test whether intentional inhibition problems cause the 
intrusive cognitions reported in OCD and PTSD. Second, 
in terms of paradigms, multiscale approaches should be 
privileged, eg, combining cognition with MRS. Some spe-
cific recommendations could notably be made regarding 
emerging exploratory methods, like MRS. Indeed, GABA 
measures from the same brain regions as are targeted for 
measures of Glu could allow to sort out the specificity 
of E/I interactions for the initiation and maintenance of 
hallucinations. The validation of these experimental data 
through computational model fitting, based on predictive 
coding and circular inference frameworks, should finally 
reinforce the biological plausibility of the computational 
approach. This area of research is still in the early stages of 
development, but has the potential to make real improve-
ment in our understanding of neurochemical causes of 
hallucinations and to optimized interventions.
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