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Abstract

This paper describes a supervised machine learning approach for identifying heart disease risk 

factors in clinical text, and assessing the impact of annotation granularity and quality on the 

system's ability to recognize these risk factors. We utilize a series of support vector machine 

models in conjunction with manually built lexicons to classify triggers specific to each risk factor. 

The features used for classification were quite simple, utilizing only lexical information and 

ignoring higher-level linguistic information such as syntax and semantics. Instead, we 

incorporated high-quality data to train the models by annotating additional information on top of a 

standard corpus. Despite the relative simplicity of the system, it achieves the highest scores 

(micro- and macro-F1, and micro- and macro-recall) out of the 20 participants in the 2014 i2b2/

UTHealth Shared Task. This system obtains a micro- (macro-) precision of 0.8951 (0.8965), recall 

of 0.9625 (0.9611), and F1-measure of 0.9276 (0.9277). Additionally, we perform a series of 

experiments to assess the value of the annotated data we created. These experiments show how 

manually-labeled negative annotations can improve information extraction performance, 

demonstrating the importance of high-quality, fine-grained natural language annotations.
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1 Introduction

A significant amount of a patient's medical information in an electronic health record (EHR) 

is stored in unstructured text. Natural language processing (NLP) techniques are therefore 

necessary to extract critical medical information to improve patient care. For most serious 

conditions, many types of relevant information (e.g., diagnoses, lab results, medications) 

need to be extracted from the patient's records, often over a length of time that spans several 

narrative notes. The 2014 i2b2/UTHealth Shared Task Track 2 (hereafter, “the 2014 i2b2 

task”) [1] evaluates such a case by focusing on the many risk factors for heart disease, 

including comorbidities, laboratory tests, medications, and family history, with over 30 

specific risk factors. This article describes the method utilized by the U.S. National Library 

of Medicine (NLM) for the 2014 i2b2 task. Our method is a supervised machine learning 

(ML) approach that finished first overall in the task, including both the highest (micro and 

macro) recall and (micro and macro) F1-measure.

Most state-of-the-art NLP methods for extracting information from EHRs utilize supervised 

ML techniques [2, 3, 4]. However, one important yet understudied issue in developing ML-

based NLP systems for EHRs is the impact of the granularity of the labeled data. To assess 

the impact of granularity, we evaluate a relatively simple information extraction (IE) system 

on two sets of labels derived from the 2014 i2b2 task corpus: (a) coarse-grained document-

level annotations with at least one positive mention-level support span, and (b) fine-grained 

mention-level annotations where every relevant supporting span is marked as positive or 

negative. The labels from (a) were provided by the task organizers, and are described in the 

Task Description section below. The labels from (b) were created by NLM staff as part of 

our participation in the 2014 i2b2 task. The system utilizing this fine-grained data achieved 

the highest score among the 20 participants. Further, unlike most of the other top-performing 

participants, the system was entirely limited to lexical information: no syntactic information 

(e.g., parts-of-speech, dependencies) or semantic information (e.g., word senses, semantic 

roles, named entities) was utilized. Instead, our primary contribution was demonstrating the 

importance of fine-grained mention-level annotations for developing supervised ML 

methods for clinical NLP. In this article, we describe the data provided by the organizers, the 

data annotated by NLM, the supervised ML system for extracting risk factors, and the results 

on the 2014 i2b2 task. Additionally, we describe post-hoc experiments to evaluate how this 

system would have performed without the fine-grained annotated data.

2 Background

Since a significant amount of EHR information can be stored in an unstructured narrative, 

the range of NLP tasks spans almost the full range of potential EHR support functions [5]. 

The foundation for NLP-based applications is based on information extraction (IE), the task 

of automatically converting some particular type of unstructured text into a structured form. 

Widely used IE systems include MetaMap [6], MedLEE [7], and cTAKES [8]. To 

supplement these, the negation algorithm NegEx [9], and its successor method for more 

general context detection, ConText [10], are commonly used to understand negation and 

modality. Due to the difficulty in sharing clinical data, several de-identified corpora have 

been created, often in coordination with a shared task, to allow researchers to compare IE 
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methods on a common dataset. Such shared tasks include the i2b2 shared tasks, discussed 

below, as well as the recent ShARe/CLEF eHealth task [11], which evaluated concept 

extraction and normalization.

There have been seven i2b2 challenges to date, each dealing with at least one clinical IE task 

and evaluating participants on a de-identified clinical dataset. The tasks have dealt with de-

identification and smoking detection in 2006 [12, 13]; obesity detection in 2008 [14]; 

medication extraction in 2009 [15]; concept extraction, assertion classification, and relation 

identification in 2010 [2]; co-reference [3] and sentiment analysis [16] in 2011; event 

extraction, temporal expression extraction, and temporal relation identification in 2012 [4]; 

and, most recently, de-identification and heart disease risk factor identification in 2014 [1]. 

The heart disease risk factor identification task, which is the focus of the article, contains 

elements of many of the previous tasks: (i) many of the risk factors are expressed as 

concepts/events similar to the 2010 and 2012 tasks; (ii) smoking (2006), obesity (2008), and 

medications (2009) are among those risk factors, (iii) negation and modality play an 

important role in determining whether a concept is identified as a risk factor (2010 and 

2012); and (iv) the temporal aspect (2012) of each risk factor must be identified to qualify 

the patient's risk of heart disease.

While no previous task has focused on the exact same set of risk factors as the 2014 i2b2 

task, most of the individual risk factors have been studied in previous work. For example, 

Cimino et al. [17] and Gold et al. [18] perform medication extraction from clinical notes. 

Goryachev et al. [19], Lewis et al. [20], and Friedlin & McDonald [21] all extract family 

history information. Finally, a significant amount of research has focused on extracting 

temporal information from clinical narratives [22, 23, 24], as temporality is a crucial element 

to medical reasoning.

3 Task Description

The 2014 i2b2/UTHealth Shared Task Track 2 evaluates a system's ability to determine 

whether a patient has particular heart disease risk factors based on his or her unstructured, 

longitudinal medical records. The track evaluates 36 individual risk factors (18 if all 

medication types are considered collectively) in eight general categories:

1. Diabetes risk factors: diabetes mention, high A1c (over 6.5), high glucose 

(two measurements over 126)

2. Coronary artery disease (CAD) risk factors: CAD mention, CAD event 

(e.g., MI, STEMI, cardiac arrest), CAD test result (showing ischemia or 

coronary stenoses), CAD symptom (chest pain consistent with angina)

3. Hyperlipidemia risk factors: hyperlipidemia/hypercholesterolemia 

mention, high cholesterol (over 240), high LDL (over 100)

4. Hypertension risk factors: hypertension mention, high blood pressure 

(systolic over 140 or diastolic over 90)

5. Obesity risk factors: obese mention, high BMI (over 30), high waist 

circumference (over 40 inches in men or 35 inches in women)
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6. Family history risk factor: mention of immediate family member with 

history of early CAD

7. Smoking risk factor: whether patient currently smokes (CURRENT), smoked 

in the distant past (PAST), smoked at some unspecified point (EVER), never 

smoked (NEVER), or unknown (UNKNOWN)

8. Medication risk factors: whether the patient takes any medications 

indicative of the above risk factors. This includes the following drugs and 

drug classes: ACE inhibitor, amylin, anti-diabetes, ARB, aspirin, beta 

blocker, calcium channel blocker, diuretic, DPP4 inhibitor, ezetimibe, 

fibrate, insulin, metformin, niacin, nitrate, statin, sulfonylurea, 

thiazolidinedione, thienopyridine

Here, a mention is a statement of a specific disease diagnosis (e.g., “patient has diabetes”) 

instead of a diagnosis based on a measurement (e.g., “A1c is 8.5”) or other factor, and is 

limited to the patient (as opposed to a family member).

The organizers provided 790 training notes and 514 testing notes. Between 2 and 5 notes 

were provided for each patient to enable longitudinal analysis, though the manual 

annotations were done at the document level without considering previous notes (so, for 

instance, an early note might be positive for diabetes while a later note is marked as negative 

if it does not contain an explicit diabetes diagnosis). Each note contained 617 words on 

average. Each of the risk factors above is annotated at the document level (e.g., whether a 

note contains a high A1c value) by asking annotators to highlight at least one text span that 

indicates the risk factor (e.g., “A1c of 7.1”), additionally labeling the time of the risk factor 

(before, during, or after the hospital visit, or any combination of these). These text spans 

were provided by the organizers in addition to the document-level decision. However, since 

this is a document-level task, annotators were not provided with guidelines to ensure 

consistent span annotation. If two of three annotators found some support for a risk factor 

(and agreed on the time), the note was considered positive for that risk factor (and time) and 

all the highlighted spans were included in the annotations. No inter-annotator conflict 

resolution was performed. Further, when only one annotator found a textual support, the 

document was considered negative and those highlighted spans were not included in the 

annotations. Also, when annotators agreed on a risk factor but disagreed on its time, the 

document was also considered negative. See Stubbs et al. [25] for more details on the risk 

factor annotation process. The organizers' annotation decisions were made to increase the 

total number of annotated notes: a choice of quantity over both quality (since no resolution 

was performed) and granularity (document-level instead of mention-level). However, this 

has important ramifications on the types of automatic methods usable for the task. Since 

supervised ML methods require both positive and negative examples, and the only negative 

examples were at the document level and not mention level, any mention-level ML method, 

such as the one described in this article, either needs additional labels or must rely on 

heuristics to automatically label negative examples.
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4 NLM Annotations

To address the shortcomings of the original data described in the Task Description section, 

our annotation process had five goals:

1. Achievable annotation time

2. Consistent annotation boundaries

3. Both positive and negative annotations

4. Classification of types of negative annotations

5. Maximum number of annotations per document

One of the most time-consuming and least productive requirements of annotation is reading 

through irrelevant parts of a patient's record. Yet, if they read too quickly, annotators may 

miss crucial information. We thus utilized a form of pre-annotation of candidate risk factors 

that leverages the data provided by the organizers. Based on the spans highlighted by the 

original annotators, we created a lexicon for each risk factor.

The lexicon was manually built to ensure a set of consistent, maximal annotation 

boundaries. Since IE classifiers utilize linguistic cues, it is important that span boundaries 

are expanded to best recognize these contextual elements. For example, if the word before a 

lexicon match is no, that provides useful information that the risk factor is negated. If our 

lexicon only contained the word diabetes, this cue would work well for the phrase “no 
diabetes”, but not for “no type 2 diabetes”. Our annotations, therefore, should span the full 

extent of the risk factor. The lexicons were further expanded based on known synonyms that 

were missing in the set of spans highlighted by the original annotators.

The boundaries of the original highlighted spans were adjusted to match the terms in the 

lexicons, while some incorrect annotations were removed. The adjusted spans were then 

automatically labeled as positive and thus did not need to be addressed by the NLM 

annotators (about one-third of the total lexicon matches). The remaining lexicon matches 

were then pre-annotated so that the NLM annotators did not need to read the full notes, only 

the immediate context of each risk factor annotation to determine whether it was positive/

negative and, if possible, what temporal classification should be assigned. This also ensured 

annotators were able to easily label every mention of a risk factor in the notes, maximizing 

the number of examples for training. For measurements (A1c, glucose, cholesterol, LDL, 

blood pressure, BMI), the lexicon contained the name of the measurement (the “base”), and 

the right context was searched for numbers that were within the valid range for the given lab 

test. We annotated all measurements, not simply those above the threshold. Since the values 

under the threshold could easily be filtered automatically, all actual measurement values 

were considered positive. This increased the number of available annotations while also 

allowing the threshold to be changed at a later time without altering the annotations.

Negative concepts are split into two cases: validity and polarity. While a negative polarity 

corresponds to the linguistic notion of negation (e.g., “patient is not obese”, “goal A1c is 
7.0”), a negative validity corresponds to a lexicon match that does not refer to the actual 
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concept. Invalid concepts were typically the result of word sense differences. Usually this 

was either abbreviations that in the given context were referring to something else, or a 

measurement whose value span is not actually a valid measurement (e.g., in the phrase “A1c 
7.8 19 days ago”, the value 7.8 is positive, while the value 19 is invalid). By classifying 

whether negative risk factors are either negations or invalid, classifiers can focus on separate 

linguistic problems, such as negation and word sense disambiguation.

Only two-thirds of the training data was annotated in this way, as the final third was only 

available a few days before the submission deadline. Four annotators, including three MDs 

(LR, SA, DDF) and one medical librarian (SS), double-annotated the documents one risk 

factor at a time. The annotators worked in fixed pairs, with disagreements being resolved 

first within each annotator pair, then with an annotator from the other pair acting as tie-

breaker as needed. Both pairs annotated all of the risk factors (one annotating the even-

numbered documents, the other the odd-numbered), with the exception of CAD events, test 

results, and symptoms, which were entirely annotated by one pair due to time availability.

Table 1 shows a comparison of the original and NLM annotations at the document level. For 

instance, the original set had 1,560 Diabetes mention annotations, while the NLM annotators 

added a further 22 annotations without removing any. While many mention-level annotations 

were pruned (e.g., a medication being marked as a CAD mention), few of the original 

annotations at the document level were removed. A notable exception was Obese mentions, 

where 12 annotations were removed that referred to obesity of the abdomen. The lexicon-

based method allowed for finding many additional mention-level annotations, which resulted 

in a significant number of document-level changes. Notably, the number of document-level 

Glucose and Cholesterol annotations were significantly increased (though this is before the 

minimum two glucose measurement criteria is applied, so the final count would be smaller). 

In total, 33 document-level annotations were removed, while 1,178 document-level 

annotations were added.

Despite the faster annotation process, it would be unreasonable to claim this process should 

fully replace the full-text examination performed by the original annotators, as it still 

depends heavily on the highlighted spans from the original annotation process. Without 

those highlighted spans, there would be no terms to seed the lexicons. For risk factors with a 

diverse set of textual expressions, it would be difficult to build a lexicon simply from a priori 
knowledge of the way such concepts are expressed (e.g., the diabetes mention lexicon is 

quite complicated: it contains 20 base mentions as well as 30 possible pre-modifiers and 44 

possible post-modifiers to account for cases such as “diabetes mellitus type II”, “DM2”, or 

“adult onset diabetes”). For risk factors with a small, closed set of textual expressions, such 

a standalone annotation strategy might be a more feasible means of reducing annotation cost 

without a noticeable impact on quality (e.g., the LDL lexicon has only 3 bases, “ldl”, 

“ldlcal”, and “low density lipoprotein”, and no pre- or post-modifiers). Since annotators may 

skim past instances of a risk factor, however, this pre-annotation strategy may also increase 

the total number of available annotations when the corpus size is fixed. An optimal strategy 

might involve full-text annotation for a sample of the data, followed by lexicon building, 

pre-annotation, and then complete annotation as described above.
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Inter-annotator agreement numbers (accuracy and Cohen's Kappa) are shown in Table 2. 

Again, only one pair of annotators labeled CAD events, test results, and symptoms. For the 

most part, annotators achieved good agreement. Of the 58 measured Kappa scores, only 11 

(19%) were below 0.7, which indicates fairly good agreement. CAD test results were 

particularly difficult. Annotators appeared to have more difficulty agreeing on time than on 

whether a risk factor was positive, negative, or invalid. The extremely low agreement for the 

time of total cholesterol in the second set of annotators (0.05) is likely the result of a single 

annotator, as the first set of annotators had high agreement (0.91). There were similar 

disparities between annotator pairs for CAD mentions–with Annotator Pair 1 achieving 

much higher agreement–and BMI times–with Annotator Pair 2 achieving higher agreement. 

The annotators described most of the differences as the result of simple mistakes that were 

easily fixed in the conflict resolution stage, indicating the importance of resolving 

differences. The differences in annotator pair agreements suggest that occassionally, a single 

annotator would make a consistent error that, upon consultation with the other member of 

the pair or a member from the opposite pair, was easily fixed during reconciliation.

5 Risk Factor Identification

A simplified architecture of our system is shown in Figure 1. Unstructured notes are first 

processed with a collection of trigger lexicons. The first type of trigger lexicon targets 

medical concepts, covering diabetes mentions, CAD mentions, CAD events, CAD tests, 

CAD symptoms, hyperlipidemia mentions, hypertension mentions, obesity mentions, 

smoker mentions, and 18 different classes of medications. The second type of trigger lexicon 

targets measurements, containing base names for measurements within the note whose value 
is the result of the measurement. This lexicon type includes A1c, glucose, total cholesterol, 

LDL, blood pressure, and BMI (the waist circumference measurement is in the guidelines 

but not our system due to the lack of data). Each measurement base is paired with its value 

as determined by a regular expression (e.g., A1c is a real value with optionally one digit 

after the decimal) and a min/max range (e.g., in the range (0,100) for A1c, though the 

extreme values are admittedly unlikely). Measurements can therefore be considered a 

relation between base and value. At test time, the measurements are further filtered to only 

include those above the specified threshold. The third type of lexicon includes immediate 

family relations (e.g., mother, brother) for family history detection, which is a rule-based 

system and therefore separated from the other triggers. Table 3 reports the number of terms 

in each lexicon.

After trigger extraction, the candidate risk factors go through a series of support vector 

machine (SVM) [26] classifiers that (1) filter out invalid triggers, (2) filter out negated 

triggers, and (3) classify time with three separate binary classifiers. Different SVM models 

are used by the validity and polarity classifiers for each annotation type, while each of the 

three time classifiers uses one model for all annotation types. The features used in all the 

classifiers are described below. The output of the three time classifiers is then subject to a set 

of constraints and exceptions:
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1. Diabetes, CAD, hyperlipidemia, hypertension, and obesity mentions are 

assumed to be [before DCT, during DCT, after DCT] (i.e., all 

times). They therefore do not go through time classifiers.

2. A1c, glucose, CAD events, CAD test result, CAD symptoms, cholesterol, 

LDL, blood pressure, and BMI are assumed to have exactly one time. 

Therefore, the highest confidence positive result of the three time 

classifiers is used to determine their time.

3. Medications are the only annotation type with an unconstrained time. All 

three time classifiers are run and the corresponding times are assigned if 

the positive confidence is greater than the negative.

4. Smoker mentions are not run through either the time classifiers or a 

polarity classifier. Instead, a 5-way classifier is used to assign the smoking 

status, as explained below.

5. Glucose requires two measurements over 126. Therefore, if only one 

glucose measurement is present in a note, it is removed prior to time 

classification.

The features used in our classifiers are shown in Table 4. The first set of features is used in 

every classifier. The second set is used only in the measurement validity and polarity 

classifiers. The third set is used only in the three time classifiers. For the most part, the 

features used were quite simple, and chosen entirely based on our intuition for the ways in 

which validity, polarity, and temporality were expressed in the corpus. To illustrate these 

features, consider the following two examples, where the relevant risk factor spans are in 

bold:

1. He has a history of diabetes and sleep apnea.

2. His hemoglobin A1c was 7.4 % a month ago.

The first set of features provides simple external context. Since a different model is used for 

each risk factor, the internal information (e.g., whether the risk factor is spelled diabetes or 

DM) was largely irrelevant. These features are:

• F1 and F2 are simple contextual features to represent the caseless words 

before and after, respectively, the risk factor. For (1), F1 would be {1:of, 
2:history, 3:a, 4:has, 5:he}, while F2 would be {1:and, 2:sleep, 3:apnea}.

• F3 is a bag-of-words feature for a 5-word context around the risk factor 

where case is removed from words and numbers are replaced with 0. For 

(1), F3 would be {a, apnea, has, he, history, of, sleep}.

• F4 is a binary feature indicating whether a family word is in a 5-token 

context. This helps identify cases where the risk factor is associated with a 

family member and not the patient. The family member lexicon has 28 

terms, including more than just the immediate family, as well as plural 

words (e.g., grandparents, aunts). Neither (1) nor (2) have such a word.
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• F5 and F6 use negation and modality lexicons, respectively, to identify 

words in the 10 previous tokens that might indicate negation, modality, or 

temporality. These lexicons were first proposed in Kilicoglu & Bergler 

[27]. The negation lexicon includes words like hasn't, exclude, and 

prevent. The modality lexicon includes words like attempt, potentially, and 

unknown.

• F7 to F10 use the ConText algorithm [10] to provide contextual clues about 

negation (negated vs. affirmed), history (historical vs. recent), 
hypotheticality (not particular vs. recent), and experiencer (other vs. 

patient).

• F11 provides the name of the section using a simple heuristic. The closest 

previous line ending in acolon and containing less than 10 tokens is 

considered the section header.

The second set of features provides internal context for measurements. Since the 

measurement candidate extraction simply looks for compatible base and value pairs within a 

reasonable distance, often the base and value do not correspond to each other (e.g., multiple 

measurements in the same sentence). The measurement features therefore are designed to 

indicate the relatedness between the base and value:

• F12 is a bag-of-words feature between the base and value. For (2), F12 

would be {was}.

• F13 is a bag-of-wordshapes feature between the base and value, where a 

wordshape is a case representation where all upper case letters are 

replaced with A, all lower case letters are replaced with a, and all numbers 

are replaced with 0. For (2), F13 would be {aaa}.

• F14 is the shape of the value, which helps capture legal types of values. For 

(2), F14 would be {0.0}.

• F15 is a binary feature that indicates whether the base and value are on the 

same line. In most cases this is true for gold measurements, but 

occasionally the measurements are located in multi-line tables which 

requires expanding the context beyond the line.

• F16 indicates the token distance between the base and value. For (2), F16 

would be 1.0.

• F17 is a binary feature that indicates if a “target” word is in the previous 5 

tokens. Commonly, the notes express a desired measurement instead of an 

actual measurement (e.g., “target A1c value is 7.5” or “shooting for A1c 
of 8.0)”. This feature uses a lexicon of 17 target synonyms to help capture 

these cases.

The third set of features only applies to the time classifiers. Since all risk factors are 

classified with the same 3 time models, the two features in this set distinguish between the 

type of risk factor under the assumption that different risk factors have different temporal 

properties:
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• F18 indicates the type of annotation (e.g., A1C, Blood_pressure, 
Medication).

• F19 indicates the type of medication (e.g., fibrate, diuretic, aspirin), and 

ignores non-medications.

Since smoking status is not binary, the heuristic of a single positive mention indicating the 

entire note is positive does not apply. Instead, the smoking status SVM is a document-level 

classifier. It uses the same set of base features, but the individual features for every valid 

smoking mention in the note is aggregated into a single feature. For example, with feature 

F11, instead of returning a single section name for the smoker mention, F11 returns the 

section names for all the smoker mentions in the note.

Finally, the family history of CAD module is a simple rule-based system that combines a 

lexicon of immediate family names with the output annotations from the previously 

described classifiers. The lexicon consists of 6 immediate family relations (father, mother, 
brother, sister, son, daughter). Within the immediate context (10 tokens) of one of these 

terms, a valid, non-negated CAD-related annotation (CAD mention or CAD event) must be 

present with an age below the specified threshold (55 for male, 65 for female) for the family 

history attribute to be considered Present. Otherwise the family history attribute is 

considered NotPresent. Additionally, if a synonym of the phrase “family history” appears 

with a CAD-related annotation, the presence of a family history of CAD is assumed 

regardless of age (since it is un-specified). In all cases, no syntactic processing is used, 

simply the presence of terms matching those described above within the local context is 

assumed to be an indication of a family history of CAD.

6 Results

The official results for our first two runs are shown in Table 5, along with the official 

aggregate results and other top submissions. Our third run performed worse on every 

measure and is omitted. Run #1 has the best recall of the two runs, while Run #2 has the best 

precision and F1-measure. Run #1 is the system as described in the Risk Factor 
Identification section. Run #2 is essentially the same, but with two filtering steps to improve 

precision. First, all glucose results are removed since the vast majority of the glucose 

measurements in the gold data are not annotated as a risk factor, which results in models that 

predict large amounts of false positives. Second, a set of 52 low-precision triggers is filtered 

out (e.g., chest for CAD symptom, substance for smoker mention). These two filtering steps 

raise precision considerably (0.8702 to 0.8951) without a large drop in recall (0.9694 to 

0.9625), thus raising the overall F1-measure (0.9171 to 0.9276).

The per-annotation type results for Run #2 are shown in Table 6. Compared to the overall 

F1-measure for the run (micro 0.9276, macro 0.9277), many of the risk factors perform 

much better or worse. Every mention annotation except CAD outperforms the overall F1, 

while every measurement annotation under-performs the overall F1. For all but 6 of the 

annotations, recall outperformed precision. Additionally, for the lower performing risk 

factors, if one ignores the time attribute, their performances are significantly improved. Most 

of the individual validity and polarity classifiers achieve a classification accuracy of over 
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95%. Much of the loss, therefore, comes from time classification. This is why many of the 

chronic diseases, which are almost always [before DCT, during DCT, after DCT], 

have high overall performance, while many of the measurements have lower overall 

performance.

7 Discussion

7.1 Error Analysis

As the results in the previous section show, our system is heavily skewed toward recall. To 

some extent, this is a natural result of our system's design: the lexicons are high-recall by 

design, and most of the validity and polarity classifiers are trained on data that is heavily 

skewed positive. While the gold test data contains 10,974 annotations, our system output 

11,801 annotations (almost 8% more). This evaluation is complicated, however, by the way 

times were evaluated. No partial credit is given for an incorrect time, and risk factors that 

occur before, during, and after the hospital visit receive three times the amount of credit as a 

risk factor with only one time. Biasing toward recall can thus help here: guessing [before 

DCT, during DCT] for a risk factor that is only [during DCT] results in an F1-measure 

of 66.7, while guessing just [before DCT] results in an F1-measure of 0.0. Upon 

examination of the precision errors made by the system, the majority were indeed due to an 

excessive emphasis on recall. This includes medications in the allergy section (i.e., should 

have been negated, but their presence in a list structure meant there was no local context 

cues) as well as those with a super-set of the valid times (e.g., marking discontinued 

medications as after DCT in addition to before DCT and during DCT). There were 

some examples, though, of mentions missed by the original annotators and picked up by our 

system, possibly including following examples:

1. A 75-year-old diabetic whose glycemic control is good.

2. His CRF include HTN, elevated cholesterol, smoking, male gender.

3. 2/02: A1c 6.50.

4. Test Description Result Abnormal Flag Ref. Range Ref. Units

… (table) …

Cholesterol 245 mg/dl

The first example is a diabetes mention that was missed by the annotators, likely because it 

is the adjective form instead of the noun (it was observed at least once in the training data, 

however, and was therefore in our lexicon). In the second example, “elevated cholesterol” is 

generally considered to be a hyperlipidemia mention in the training data, as well as much of 

the test data. In the third example, while 6.5 is not strictly “over 6.5”, many times in the 

training data an A1c of 6.5 was marked as a high A1c value. In the fourth example, the total 

cholesterol's value is located within a tabular structure (tables, in general, were not only 

difficult for the automatic system, but they also were time-consuming to annotate due to the 

large number of quantitative values).

These examples demonstrate the difficulty of attempting to replicate the implicit annotation 

standard used by the original annotators. During our annotation process, when a question 
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arose as to the legitimacy of a certain annotation, we generally consulted the training data. If 

around half the times in the training data (or more) a phrase was annotated a particular way, 

our annotators were instructed to do that as well. When a question arose where no example 

in the training data existed to guide our decisions, we relied on the clinical expertise of the 

annotators to determine if the given risk factor applied to the patient. In general, we erred on 

the side of recall. In practice, this again resulted in ML classifiers with unbalanced data, 

creating clear errors in our output. An example is this case where the abbreviation NG is 

mistaken for a nitrate, since it was used that way once in the training data and thus appeared 

in our lexicon:

5. NG tube lavage showed 200 cc of pink tinged fluid, cleared after 50 cc.

Other low-precision examples include “chest” in the CAD mention lexicon and “cholesterol” 

in the hyperlipi-demia lexicon. While these examples were used at least once as positive 

mentions in the original data, it was felt that they had sufficiently low precision that we 

removed these and other mention candidates (a total of 52 different lexicon items) for Run 

#2, which outperformed Run #1 in both precision and F1 at the cost of a small drop in recall. 

Ideally, the classifiers would have filtered these errors out to maintain the superior recall, but 

it is likely there was not sufficient data for the classifiers to properly handle these fairly rare 

terms. Integration of methods for abbreviation disambiguation [28] and concept 

normalization [29] could potentially handle such cases without any additional data directly 

related to this task, as each of those methods indirectly incorporates additional data into their 

models.

The CAD event, test result, and symptom risk factors are some of the most difficult to 

annotate (Table 2) as well as detect automatically (Table 6). While the original annotations 

generally had predictable spans, and normalization typically involved adding or removing a 

few words, the three non-mention CAD risk factors often had entirely unpredictable spans in 

the original annotations. For example, the following typify the provided annotations:

• Event: “s/p ant SEMI + stent LAD”, “PTCA w/ Angioplasty to LAD”

• Test Result: “Stress (3/88): rev. anterolateral ischemia”, “normal ECG but 
a small anteroseptal zone of ischemia”

• Symptom: “occasional and very transient episodes of angina”, “Since 
11/19/2096 he has had complaints of increasing dyspnea on exertion and 
chest pain”

These were shortened in our lexicon to one-word terms such as “infarction” and “stent” for 

event, “ecg” and “catheterization” for test result, and “angina” and “cp” (chest pain) for 

symptom. However, our main reason for normalization was to learn consistent lexical 

context, but the loose descriptions seen above meant that many of the contexts in the test 

data were never seen in the training data. Due to the diversity of phrasing, we attempted to 

find the most minimal set of lexicon terms to cover all the cases in the training data. Thus, 

we chose “chest” instead of “chest pain” for symptoms to cover cases such as “a dull and 
mid scapular discomfort that radiated to his upper chest”. However, it was found that “chest” 

was too imprecise and was removed for Run #2 without adding “chest pain” to the lexicon. 

This missing term alone probably accounts for a significant loss of recall for CAD 
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symptoms. Instead of mention-level classification, these risk factors may perhaps be better 

suited for sentence classification, where n-gram features can overcome the sparsity in 

phrases.

A surprising result was the poor performance on BMI, as our method performed quite well 

on BMI with the training data. There were not very many BMI instances in the data, 

however: Run #2 had 10 true positives, 3 false positives, and 7 false negatives. The false 

positives are indeed system errors: one marked a BMI of 30 when the standard requires over 

30 (though for other measurements in the training data, values at the threshold were 

sometimes marked as positive), and twice a [during DCT] was marked as a [before 

DCT], which also resulted in two false negatives. Four of the false negatives (recall errors) 

could easily be argued to be annotation mistakes: twice a BMI was marked as [before 

DCT, during DCT, after DCT] when the system classified [during DCT] despite the 

annotation convention generally favoring marking only a single time for a measurement. The 

final false negative was the result of the note providing a height and weight, implicitly 

allowing for a BMI calculation, but the actual BMI was not in the note (this type of BMI 

annotation never came up in the training data).

Several of the errors made by our system were the result of our additional annotations. 

Ultimately, given that the original annotations and the NLM annotations were created by two 

different sets of annotators, and without a highly detailed guideline to ensure consistency, it 

would be impossible to expect the two sets of annotations to line up perfectly. A prime 

example of this is the glucose annotation, which was annotated in only 24 documents in the 

original training data, but was labeled by our annotators hundreds of times. Even when 

applying the “two times” filter, there were still far more glucose measurements using our 

annotations. As a result, we removed them from Run #2, resulting in a large precision gain 

for a small drop in recall.

7.2 System Design

A notable aspect about our system is its lack of reliance on many third-party tools to provide 

higher-level linguistic information, such as syntax and semantics. This has inherent 

advantages on its own, since many tools (e.g., a part-of-speech tagger) demonstrate 

significant performance variation on different texts. However, we make no claim that such 

information would not have improved our performance further on this task. It is quite likely 

our performance would have been even higher if we had incorporated parts-of-speech, 

syntactic dependencies, named entities, ontological knowledge, and more. This type of 

information was certainly beneficial to other participants in the 2014 i2b2 task. Actually, 

very little work was done at all in feature engineering. The set of features in Table 4 were 

chosen completely based on our sense of the important lexical information that could be 

captured. Removing some of the features might easily help the score, and there are certainly 

other lexical features worth adding. No experiments were attempted to adjust this initial 

feature set, largely due to the time-consuming nature of feature engineering. Such 

experiments, as well as adding syntactic and semantic features, would almost certainly have 

increased system performance. Due to the significant number of such features in the 

literature, however, we leave such improvements to future work. Despite this, it should be 
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noted that even without the lack of risk factor customization, the performance across the 

mention-type annotations is quite good, all of which have an F1-measure of at least 0.92. 

Our method, therefore, would likely generalize well to other diseases with similar data, 

though certainly disease-specific processing would be ideal.

Given the limited amount of time available for system development in the 2014 i2b2 task, 

we simply chose to devote our resources instead to creating more fine-grained annotations. 

Importantly, this is analogous to a very common real-world problem when developing NLP 

systems: given limited resources (time, funding, etc.), are those resources better spent (a) 

developing more advanced systems, or (b) creating higher quality data? While there is no 

one absolutely correct answer, and while we make no claim as to the generalizability of our 

results beyond the 2014 i2b2 task, these results do provide an interesting case study to help 

explore this important question.

One way to evaluate the effect of the fine-grained annotations is simply to examine the 

system rankings in Table 5. Instead, we would prefer some quantitative measure of the value 

of these fine-grained annotations independent of the system itself. That is, if we had two 

nearly identical systems, one with access to the fine-grained annotations and one without, 

how would these systems compare? To do this, we utilize the same basic information 

extraction approach: identical lexicons, architecture, ML features. The main factors to 

remove are the NLM annotations (both positive and negative) and the normalized concept 

boundaries. We thus consider four different systems, with increasing reliance on the NLM 

annotations:

• NONORM: Uses only the original, uncorrected annotations provided by the 

organizers. Since this leaves only positive mention-level annotations, we 

use a heuristic to create negative annotations: any lexicon match in a 

negative document is considered a negative annotation.

• NORM: Same as NONORM, but the boundaries in the original annotations are 

normalized to be consistent with the lexicon.

• GOLDNEG: Same as Norm, but instead of the heuristically annotated 

negative concepts, the NLM-annotated negative gold concepts are used.

• RUN2: The official NLM Run #2. Same as GOLDNEG, except all NLM-

annotated gold concepts are used (i.e., includes additional positive 

annotations).

The results on these four experiments are shown in Table 7. The NONORM method (i.e., the 

system without any changes to the original annotations) would only have achieved an F1-

measure of 0.9021, a large drop compared to the submitted F1 of 0.9276. This would have 

only been enough for 7th place in the task, which is still above the median but not at all 

close to the top participants. The Norm method, which didn't add any additional annotations 

but changed the boundaries of the original annotations to be more consistent with the 

lexicon, shows a slight improvement (from 0.9021 to 0.9043). This gain is likely due to the 

fact that the risk factors' context in the training data is better captured with the more 
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consistent span boundaries. Additionally, there were several dozen incorrect annotations that 

were removed from the original data, which is reflected in this score as well.

The GOLDNEG results show the very large improvement made by adding the manually-labeled 

negative annotations (from 0.9043 to 0.9296). Interestingly, this F1-measure is higher than 

that from RUN2. This means that while adding the gold negatives provided a large boost in 

performance, adding gold positives actually hurt slightly. The most likely explanation for 

this is the lack of annotation alignment between the original annotators and the NLM 

annotators. While the benefit of negative annotations far outweighed the cost of mis-aligned 

negative annotations, there was insufficient benefit in the additional positive annotations to 

overcome the disagreement between the two annotator groups. We can speculate this would 

not have been the case if (a) the same set of annotators labeled both data sets, or (b) 

extremely detailed annotation guidelines were provided to increase the inter-group 

agreement.

These observations lead us to several points for potentially improving the system used in 

Run #2. First, either the NLM-annotated positive concepts should be removed, or a deeper 

investigation should be performed to determine the key points of inter-group disagreement. 

Second, further experiments with the lexical ML features should be performed to determine 

if any of the features in Table 4 actually degrade performance, or if any other lexical features 

improve performance. Third, further experiments with syntactic, semantic, and discourse-

level features should be performed to assess what additional value they may provide. The 

features utilized by other top-performing systems in the 2014 i2b2 task are a useful starting 

point for such features.

8 Conclusion

This article has described our submission to the 2014 i2b2 task, which was a fairly simple 

supervised information extraction method based on lexicons and mention-level 

classification. Our key contribution to the task was a large set of mention-level annotations 

for the various heart disease risk factors. We have explored the impact of fine-grained 

annotations, both manually and heuristically labeled, to assess the value of this data. Despite 

being a relatively simple system that employs only lexical features, our submission achieved 

the high-est scores (micro- and macro-F1, and micro- and macro-recall) out of the 20 

participants. The official results of this task, as well as the post-hoc experiments we 

performed, demonstrate the importance of high-quality, fine-grained natural language 

annotations.
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1. Supervised information extraction to identify risk factors for heart 

disease in EHRs.

2. Approach achieved the highest overall F1-measure on the 2014 i2b2 

challenge.

3. Finer-grained annotations are used over those provided by the 

organizers.

4. Approach relies on lexical features that are mediocre with the original 

annotations.

5. Demonstrates a simple approach with better data can outperform more 

advanced NLP.
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Figure 1. 
System architecture. Blue borders indicate rule-based modules while red borders indicate 

machine learning-based modules. N indicates there are different classification models for 

each annotation type. The primary exception to this architecture is the Smoker mention 

approach.
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Table 1

Annotation differences between the original and NLM sets. Counts are by document and time, not mention. 

The maximum count for most annotation types is three times the number of documents (i.e., an annotation for 

before DCT, during DCT, and after DCT in each note). Medications, however, can have up to 57 

annotations per note (for the 19 types of medication).

Annotation Original Only Both NLM Only

Diabetes Mention 0 1560 22

A1C 3 107 44

Glucose 0 25 187

CAD Mention 3 777 19

CAD Event 0 246 26

CAD Test Result 2 77 78

CAD Symptom 2 79 145

Hyperlipidemia Mention 0 1020 21

Cholesterol 0 9 63

LDL 0 33 50

Hypertension Mention 0 1563 13

Blood Pressure 2 361 264

Obese Mention 12 401 15

BMI 0 20 11

Smoker Mention 0 400 13

Medication 7 8631 207

Family History 2 20 0

Total 33 15329 1178
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Table 3

Number of terms in each annotation lexicon.

Annotation Base Terms Pre-Modifiers Post-Modifiers

Diabetes Mention 20 30 44

A1C 37 - -

Glucose 12 - -

CAD Mention 7 2 -

CAD Event 31 - -

CAD Test Result 18 - -

CAD Symptom 6 - -

Hyperlipidemia Mention 19 3 -

Cholesterol 4 - -

LDL 3 - -

Hypertension Mention 12 3 -

Blood Pressure 10 - -

Obese Mention 4 6 -

BMI 1 - -

Smoker Mention 25 13 13

Medication 565 - -
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Table 4
Features used in ML classifiers

All classifiers

F1 Indexed uncased previous words

F2 Indexed uncased next words

F3 Generic words within 5 tokens

F4 Has family term within 5 tokens

F5 Negation word in previous 10 tokens

F6 Modality word in previous 10 tokens

F7 ConText negation value

F8 ConText history value

F9 ConText hypothetical value

F10 ConText experiencer value

F11 Section name

Measurement classifiers only Time classifiers only

F12 Words between base and value F18 Annotation type

F13 Word shapes between base and value F19 Medication type

F14 Value shape

F15 Base and value on same line

F16 Number of tokens between base and value

F17 Target word in previous 5 tokens
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Table 6

Results by risk factor for Run #2. Notes: (1) Glucose was omitted from this run. (2) Smoking status is a 5-way 

classification, hence precision and recall should be identical and equal to the accuracy. However, some 

documents are inadvertently missing a smoking status, so only the recall is equal to the accuracy on the sub-set 

of documents with a smoking status. (3) There are no examples of Amylin in either the training or test data, 

while only the training data contains examples of anti diabetes medications.

Type Risk Factor P R F1

Diabetes Mention 0.9568 0.9972 0.9766

A1C 0.8235 0.8537 0.8383

Glucose - - -

ALL 0.9473 0.9593 0.9533

CAD Mention 0.8705 0.9767 0.9205

Event 0.6719 0.9281 0.7795

Test Result 0.4425 0.8475 0.5814

Symptom 0.6170 0.4143 0.4957

ALL 0.7648 0.9082 0.8303

Hyperlipidemia Mention 0.9419 0.9578 0.9498

Cholesterol 0.6000 0.5455 0.5714

LDL 0.7333 0.7586 0.7458

ALL 0.9292 0.9441 0.9366

Hypertension Mention 0.9581 1.0000 0.9786

Blood Pressure 0.7627 0.9231 0.8353

ALL 0.9247 0.9884 0.9555

Obesity Mention 0.9325 0.9592 0.9457

BMI 0.7692 0.5882 0.6667

ALL 0.9245 0.9351 0.9298

Family History Present 0.8000 0.6316 0.7059

Accuracy 0.9805

Smoking Status 0.8555

Medication ACE Inhibitor 0.8754 0.9707 0.9206

Amylin - - -

Anti Diabetes - - -

ARB 0.8972 0.9948 0.9435

Aspirin 0.9427 0.9887 0.9651

Beta Blocker 0.9019 0.9904 0.9441

Calcium Channel Blocker 0.9031 0.9688 0.9348
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Type Risk Factor P R F1

Diuretic 0.7955 0.9646 0.9719

DPP4 Inhibitor 1.0000 0.8333 0.9091

Ezetimibe 0.7805 0.8889 0.8312

Fibrate 0.9195 0.8889 0.9040

Insulin 0.8588 0.9544 0.9041

Metformin 0.8561 0.9946 0.9202

Niacin 0.6250 1.0000 0.7692

Nitrate 0.7723 1.0000 0.7692

Statin 0.9301 0.9767 0.9528

Sulfonylurea 0.9135 0.9896 0.9500

Thiazolidinedione 0.8406 0.9508 0.8923

Thienopyridine 0.9213 0.9894 0.9542

ALL 0.8890 0.9766 0.9307
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