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Abstract

Advanced age is the greatest risk factor for the majority of human ailments, including spine-

related chronic disability and back pain, which stem from age-associated intervertebral disc 

degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology 

of intervertebral disc aging in order to develop effective therapeutic interventions to combat the 

adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging 

research have begun to shed light on the basic biological process of aging. Here we review some 

of these insights and organize the complex process of disc aging into three different phases to 

guide research efforts to understand the biology of disc aging. The objective of this review is to 

provide an overview of the current knowledge and the recent progress made to elucidate specific 
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molecular mechanisms underlying disc aging. In particular, studies over the last few years have 

uncovered cellular senescence and genomic instability as important drivers of disc aging. 

Supporting evidence comes from DNA repair-deficient animal models that show increased disc 

cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have 

now been well documented to secrete catabolic factors, which can negatively impact the 

physiology of neighboring cells and ECM. These along with other molecular drivers of aging are 

reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc 

degeneration. We also highlight molecular targets for novel therapies and emerging candidate 

therapeutics that may mitigate age-associated IDD.
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I. INTRODUCTION

Life expectancy has dramatically increased over the past century largely due to advances in 

medicine, control of infectious diseases, and improved nutrition. There were an estimated 

0.5 billion people 65 years and older worldwide in 2010, and this number is projected reach 

a staggering 1.5 billion by 20501. Emerging within the older population are numerous age-

associated chronic diseases, including heart disease, cancer, and diabetes, which are the 

leading causes of death in developing countries2. Low back pain, which also increases with 

age, is the leading cause of physical disability3,4. Age-associated chronic diseases, including 

those of the musculoskeletal system, impose the greatest burden on global health presently 

and in the future.

One of the largest age-dependent chronic disorders is degeneration of the joints, resulting in 

enormous socioeconomic and health impacts. Intervertebral disc degeneration (IDD) and 

osteoarthritis and are the most common underlying causes of joint-related chronic disability 

and debilitating pain in the older adults5–7. Unfortunately, decreased mobility is a validated 

predictor of loss of independence and mortality in the elderly8,9. Preserving healthy joints, 

particularly intervertebral discs in the spine, is vital for maintaining mobility in old age10. 

Individuals over 60 years old are more likely to suffer from pain stemming from IDD. As 

such, there is now great impetus to understand healthy disc aging in order to preserve 

mobility and fitness in the elderly population.

Organismal aging results from time-dependent accumulation of molecular and cellular 

damage that leads to impaired tissue homeostasis and eventual physiological and functional 

decline. Numerous types of damage are implicated in driving aging: accumulation of 

damaged proteins, mitochondrial damage and dysfunction, telomere shortening, DNA 

damage, attrition of quality control mechanisms (autophagy, DNA repair, etc.), and the loss 

of tissue-specific progenitor cells and tissue regenerative capacity11–14. The consequences of 

these different types of damage have recently been categorized into key aging hallmarks: 

genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, 

deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell 
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exhaustion, and altered intercellular communication15. Remarkably little is known about the 

contribution of these aging hallmarks to disc degeneration.

The purpose of this perspective is to provide an overview of disc aging characteristics and to 

organize the biochemical cascade of disc aging into three phases: (1) accumulation of 

damage to biomolecules, (2) aberrant cellular response to damage, and (3) loss of biologic 

structure and function. This perspective will focus particularly on cell senescence, 

inflammation, and oxidative damage as underlying mechanisms driving disc aging. Other 

important hallmarks of aging that have not been explored in the disc will be also highlighted 

in order to stimulate research that identifies potential causes and therapies for age-associated 

IDD.

II. AGING CHARACTERISTICS OF INTERVERTEBRAL DISCS

A. Disc anatomy and composition

Intervertebral discs are polyaxial cartilaginous joints that function primarily to provide 

support and flexibility to the otherwise rigid spine16. Situated between two adjacent 

vertebrae, discs consist of an outer, fibrous annulus fibrosus (AF) that circumferentially 

encloses a central, gelatinous nucleus pulposus (NP). Discs are constrained within and 

connected to adjacent vertebral bodies by superior and inferior cartilaginous end plates 

(CEP). The AF is composed of highly organized lamellae of predominantly type I collagen 

fibrils with alternating fiber angles of approximately 30°. AF functions mainly to bear 

circumferential stresses required to restrain NP swelling and tensile forces generated during 

bending or twisting. Conversely, the NP contains loose randomly organized networks of 

collagen type II and elastin fibers that encase proteoglycan aggregates. NP functions mainly 

to counteract and distribute compressive loads with large swelling pressures17. Discs consist 

mostly of extracellular matrix (ECM) sparsely populated by cells that are fibrochondrocytic 

in AF and chondrocyte-like and notochordal in NP. Discs are predominantly avascular, 

aneural tissues that exchange nutrients and metabolites primarily by diffusion to and from 

micro-vessels in the CEP and outer AF18. The restricted transport and low cellularity of the 

discs limit repair and make the disc particularly susceptible to injury and the aging-

associated accumulation of tissue damage.

B. Features of disc aging

Intervertebral discs appear to undergo age-related degenerative changes earlier in life than 

other tissues19,20. Based on studies of humans and different animal models (Table 1), these 

age-related changes include increased number and size of tissue fissures, the presence of 

granular debris, and neovascularization from the outer aspect of the annulus inwards19. The 

NP becomes more fibrous as its proteoglycan content and hydration diminish with age, 

leading to fissures and progressive loss of NP size and pressurization and overall disc 

height21,22. Age-related accumulation of oxidized matrix proteins transforms the clear, 

gelatinous NP in youth to yellow, fibrous tissue in older individuals due to deposition of a 

brown ‘age pigment’ known as lipofusin, which originates from the slow peroxidation of 

lipids23 (Fig. 1). Ossification and thinning of the CEP, microfractures in the adjacent 

subchondral bone, bone sclerosis, and drastic reduction in the number of vascular channels 
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in the CEP are also found with increasing age24. Reduced CEP vascular flow might 

contribute to a further decreased in nutrient supply to the disc, accumulation of cellular 

waste products, and an increasingly acidic environment (pH 6.3–6.6) that together with other 

stress factors can negatively impact cell function25. As such, elucidating disc aging-induced 

mechanisms will provide new opportunities for ameliorating age-related IDD.

C. Distinguishing disc aging from disc degeneration

Disc aging can be distinguished from disc degeneration by several defining characteristics. 

First, disc degeneration refers to the structural and functional failure of the disc as a result of 

aberrant, pathological cellular and ECM changes26. Disc degeneration may be caused by 

genetic predisposition, injury, aging, and environmental factors such as smoking, or any 

combination thereof27–33. Unlike disc aging, disc degeneration is not exclusive to the older 

population, i.e., disc degeneration can be present in a younger person due to injury or faulty 

genetics32–34. Conversely, disc aging is systemic and occurs in all spinal discs of all older 

individuals. In other words, a degenerated disc, but never an aged disc, can be found among 

the other young healthy discs and body organs in a young individual. However, the specific 

differences between an aged disc and a degenerated disc have not been clearly defined as 

both appear to share a number of similar changes19,20. Importantly, future work to identify 

the features common to aging and degeneration that are most pathologic to disc function will 

be critical in guiding novel treatments.

D. Impact on disc aging by the surrounding spinal structures

Because aging is systemic, age-related changes in spinal structures can greatly impact disc 

health (Fig. 2). Osteoporosis and osteopenia are commonly observed in the aging spine, 

predisposing it to vertebral compression fractures35 and correlating with increased IDD36. 

Moreover, age-dependent endplate thinning and fracture create abnormal stress distributions 

and injury propagation to the adjacent disc, which increases the risk of IDD34,3738–40. Modic 

changes in the vertebral body and/or endplate identified by MRI have been associated with 

aging along with loss of disc height and signal intensity41. Vertebral endplate sclerosis is 

predicted to reduce bulk fluid movement in to and out of the disc, which could limit 

ancillary nutrient transport42,4344. Together with reduced endplate pore density and size seen 

with aging, these changes could significantly impact disc nutrient supply and thus disc cell 

survival18. Age-related facet cartilage erosion can impose abnormal load on disc, altering 

local mechanobiological responses45. Aging of the posterior and anterior spinal ligaments, 

important dynamic stabilizers of the spine, alters their material properties (increased 

stiffness) which conceivably could also influence mechanical strain and stability of the 

discs35,46. Finally, age-driven changes in the spinal muscle, e.g., fatty deposit or infiltration, 

could also affect the overall stability of the spine and hence the biology of the disc47. In 

summary, disc aging is a complex systemic process that is intimately modulated by the 

interactions among the different aging spinal structures (Fig. 2).

III. BIOCHEMICAL CASCADE OF INTERVERTEBRAL DISC AGING

The biochemical process of disc aging can be organized into three distinct phases (Fig. 3A). 

First, there is damage to biomolecules such as DNA and proteins that results from exposure 
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to inflammatory and oxidative stress. Second, aberrant cellular responses to damage 

exacerbates tissue damage when the responses become dysregulated. Third, accumulated 

damage leads to loss of biologic structure and function of disc tissue, as discussed in details 

below. Aging of the other spinal structures (Fig. 2) probably follows this same biochemical 

cascade.

A. Phase I of Biochemical Cascade of Disc Aging: Biomolecular Damage

A solid body of research supports time-dependent accumulation of stochastic damage to 

biological macromolecules as a driver of aging48. Well documented in aged tissue are 

damaged proteins and genetic materials which lead to genomic instability, epigenetic 

alterations, and loss of proteostasis. Proteostasis refers to protein homeostasis regulated by a 

dynamic equilibrium of protein synthesis and degradation. ECM damage resulted from loss 

of proteostasis during the course of age-related IDD has been extensively documented. The 

role of DNA damage in disc aging has also been recently reported. However, epigenetic 

alterations in disc aging have not yet been explored.

Damage and Perturbation of ECM Integrity in Aged Disc—Accumulation of 

molecular damage in the ECM of the aging disc has been well recognized (Fig. 4A) and 

reviewed49. Disc proteoglycan aggregates, consisting primarily of aggrecan core protein, 

link protein, and hyaluronan encased within the collagenous fiber network, provide the 

osmotic properties that create swelling pressure necessary to counteract compressive 

loading. In the aged disc the majority of the aggrecan exists in a non-aggregated form and 

contains decreased glycosaminoglycan (GAG) chain length, which is thought to be derived 

from proteolytic damage49. Link protein levels decrease with age50 while total disc 

hyaluronan levels increase with age, possibly as a response to its own proteolysis51. Versican 

is another major hyaluronan-binding proteoglycan in disc tissue which undergoes extensive 

degradative damage with aging52. The resulting non-aggregating proteoglycans may not 

have the same functional ability as that of intact aggregates, as their size, charge density, 

spatial rigidity and matrix interactions are diminished49,51,53,54.

The disc also contains the small leucine-rich repeat family of proteoglycans (SLRPs), which 

are characterized by their interaction with collagen fibers. Biglycan and decorin, the 

dermatan sulfate proteoglycans which interact with collagen type VI and type I/II, 

respectively, lose their GAG content with age due to proteolytic damage55. The keratin 

sulfate-containing fibromodulin and lumicans are two other disc collagen fibril-associated 

SLRPs. Whereas fibromodulin abundance decreases with age and exists mostly in non-

glycated form in adult discs, lumican increases in aged discs and exists as a glycoprotein 

throughout life4956. Since dermatan sulfate and keratin sulfate mediate intermolecular 

interaction, their age-related alterations most likely affects disc matrix structure. Age-related 

changes in other disc matrix constituents, e.g., elastin, fibronectin, have also been 

documented with unclear consequences on disc matrix organization and cell structure and 

function4957.

Disc tissue contains three broad categories of fibrillar, fibril-associated, and pericellular 

collagens whose relative abundance changes with age. The disc collagen network consists 
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predominantly of Type I and II fibrillar collagen which accounts for approximately 80% of 

the total disc collagen. Type VI pericellular collagen accounts for 10–20% of the disc 

collagen49. Age-associated changes in disc collagen structure include proteolytic damage in 

fibrillar collagen as a result of dysregulated collagenase activity58. Damaged fibrillary 

collagen weakens the mechanical strength of disc tissue and leads to the formation of non-

enzymatic crosslinks between basic amino acids of collagen and reducing sugars59. This 

results in advanced glycation end-products (AGEs) which elicit oxidative stress. AGEs are 

present throughout the disc and increase in abundance with age60 and may impair collagen 

fibril formation61,62. In mice, oxidative stress was shown to increase loss of disc elasticity 

and alter the secondary and tertiary conformation of collagen molecules, which increases 

their susceptibility to cleavage by MMPs63. Hence age-related ECM molecular alterations 

can result in a decline in the structural integrity and biomechanical function of the disc.

DNA Damage in Aged Disc—Besides ECM damage, aged discs also exhibit cellular 

damage. In particular, damaged DNA, unlike damaged proteins or other macromolecules 

that generally can be degraded and replaced by new synthesis, is especially harmful and 

requires repair in order to maintain normal cellular function. Each cell in an organism is 

subjected to tens of thousands of DNA lesions each day due to the inherent chemical 

instability of DNA structure, metabolic byproducts, and environmental mutagens and 

genotoxins11. Despite elaborate repair mechanisms, cells still amass DNA damage over 

time. Inherited defects in genome maintenance mechanisms invariably lead to a variety of 

diseases characterized by accelerated aging of one or more organ systems12. For example, 

deficiency in humans of certain genes involved in repair of DNA damage, such as ERCC1-

XPF, leads to dramatic progeroid, or accelerated aging syndrome64. Indeed, DNA repair-

deficient Ercc1−/Δ mice exhibit premature onset of key disc aging features, including loss of 

matrix proteoglycan, reduced disc height, and increased cellular senescence28,65 (Table 1). 

DNA damage as a driver of disc aging is further supported by exposure studies of human 

and mice to genotoxic stress, including ionizing radiation and tobacco smoking, which in 

mice dramatically accelerated disc degenerative changes66,6768.

Stressors Driving Disc Biomolecular Damage—Exogenous and endogenous 

stressors causing molecular damage in aging discs are thought to be predominantly oxidative 

and inflammatory in nature (Fig. 3A)65,69. Evidence of oxidative damage in aged disc 

include accumulation advanced glycation end products (AGEs), e.g., pentosidine and 

carboxymethyl-lysine, produced by nonenzymatic glucosylation and oxidation of proteins 

and lipids6070. Pentosidine, which cross-links collagen molecules, might play an important 

role in increased collagen stiffness and fragility to weaken cartilage biomechanics with old 

age59,60,71. Redox proteomic analysis also revealed oxidative post-translational 

modifications, e.g., protein carbonylation, in disc matrix isolated from aging mice; this 

change was associated with protein fragmentation and aggregation and increased disc 

stiffness63.

The source of reactive oxygen species (ROS) driving oxidative damage includes free radicals 

generated from radiation, by-products of oxidative phosphorylation, cellular response to 

chronic inflammatory stress exposure, and decreased synthesis of ROS-scavenging 
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enzymes72. Although residing in a low oxygen tension environment, resident disc cells, 

especially AF cells, are capable of oxidative phosphorylation which can generate ROS. In 

addition, aged discs acquire fissures and associated neovascularization which exposure the 

otherwise hypoxic resident cells to higher oxygen tension and thus oxidative stress73. 

Increased ROS contribute to aging changes in cells and tissues by damaging proteins, lipids, 

and DNA. One key marker of protein oxidation is nitrotyrosine that is formed by the 

reaction of protein tyrosine residues with peroxynitrite (ONOO−)74. Peroxynitrite, formed 

by rapid reaction of nitric oxide (NO) with oxygen radical superoxide (O2
−), is a potent 

cytotoxic damaging nitrating and oxidizing agent.

Intriguingly, hyperosmolality is recently demonstrated as a non-classical inducer of DNA 

damage. Hyperosmolality induces DNA double strand breaks, which activate the ATM-p53-

p21WAF1 axis leading to the hypophosphorylation of the pRb protein and cell cycle arrest in 

the G1 phase of the cell cycle75. NP cells are continuously exposed to hyperosmolality, up to 

500mOsm/kg H2O in vivo as compared with <300mOsm/kg H2O in the majority of the 

other tissues76. Increased osmolality in NP cells was found to provoke chromatin changes 

and DNA damage75. It is still unclear what level of hyperosmolality is needed to overwhelm 

NP cell DNA repair capacity to introduce DNA damage.

Abnormal mechanical loading represents another major potential stressors that can promote 

disc tissue damage. Cohort analyses point to associations between long-term physical 

loading and loss of spinal mobility and disc height77, and other age-associated IDD78,7980. 

In animal studies, rats with imposed upright stance for up to 11 months showed increased 

disc senescence, presumably due to altered magnitude and mode of disc loading81. Modest 

age-related IDD features in rat discs were observed following compressive overloading for 

eight weeks82,83. However, more studies are needed to establish role of abnormal 

mechanical loading in promoting disc degenerative changes, with or without age 

associations.

Last but not least, nutritional stress can also promote perturbation in disc tissue. The 

avascular nature of disc tissue results in an environment of low oxygen and glucose 

concentrations and high lactate concentration84,85. Despite low physiologic concentrations 

of oxygen85 and glucose84 and high concentrations of lactate (>10x plasma 

concentrations)86, which acidify the inner disc environment, disc cells can remain viable and 

functional in this hostile environment. Yet low nutrition and pH are also the very factors that 

reduce the disc’s resilience to additional nutritional and environmental stresses87,88; this is 

because disc nutrient supply barely hovers above the cellular requirements in the NP89. This 

precarious balance may expose disc cells to nutritional deprivation due age-related 

processes. For instance, disc cell death is initiated if glucose concentrations drop below 

critical thresholds (<0.5 mM) 90. Acidic conditions (pH < 6.7) can also lower cell viability91. 

Low O2 and pH conditions have been shown to diminish proteoglycan and collagen 

synthesis86,92.

B. Phase II of Biochemical Cascade of Disc Aging: Aberrant Responses to Damage

In an attempt to repair damage, cellular responses may become dysregulated over time, 

which exacerbate cellular and ECM damage. Aberrant molecular signaling, abnormal 
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changes in cell fate, dysregulated nutrient sensing, and mitochondrial dysfunction all have 

been reported in non-disc tissues15. However, only abnormal alterations in cell fate (e.g., 

cellular senescence) and dysregulated signaling (e.g., NF-κB pathway) have been reported 

recently in studies on disc aging. These two areas of research are discussed below.

Cell Functional and Phenotypic Changes in Disc Aging—AF and NP differ in their 

developmental origin, with AF developing from the mesenchyme and the NP from the 

notochord. The cells in the outer AF are elongated and fibroblast-like, whereas the inner AF 

and NP are populated by more spheroidal, chondrocyte-like cells. While cell types in the 

outer AF appear to change little during lifetime, NP cell subpopulations undergo a 

substantial change whereby clusters of large vacuolated notochordal cells in young NP are 

replaced by smaller chondrocyte-like cells in older NP93. Cell density decreased from 0 to 

16 years, and no significant variation occurred thereafter in human lumbar discs 94. Cell 

density in normal, mature disc is approximately 4x106 cells/cm3 in the NP and 9x106 

cells/cm3 in the AF 49. During aging disc cells undergo a number of phenotypic changes, 

including a switch from an anabolic to a catabolic phenotype95–99. Cells isolated from aged 

discs exhibit reduced collagen and proteoglycan matrix anabolism95–97,100. Moreover, found 

in aged discs are elevated levels matrix proteoglycan degradative products and certain matrix 

metalloproteinases (MMPs), including MMP-3 and ADAMTS-510198,99102,103. The pro-

inflammatory cytokine TNF-α is also shown to be more highly expressed in older adult 

discs than young adult discs104. These observations suggest imbalanced matrix homeostatic 

phenotype as a consequence of age-associated changes in disc cells. Additionally, other cell 

phenotypic changes such as elevated necrosis, apoptosis, and senescence have been 

reported105,106 (Fig. 4B). These phenotypic and functional changes are likely consequences 

of aberrant cellular responses to accumulated biomolecular damage in disc tissue. Such 

changes also likely contribute to loss of functional cells, leading to age-related depletion of 

disc matrix proteoglycan, tissue dehydration, and altered load distribution that may increase 

risk of injury87,107.

The Role of Cellular Senescence in Disc Aging—Cell senescence, originally 

described as a process that limits cell proliferation108,109, is an important mechanism for 

preventing the proliferation of potential cancer cells. This type of senescence is known as 

replicative senescence, characterized by cessation of cell proliferation due to critical 

shortening of telomere length after successive replicative cell cycles. Another type of 

cellular senescence was discovered relatively recently, which was termed, “stress-induced 

premature senescence (SIPS)”. SIPS is formed as a result of accumulate genomic and 

mitochondrial DNA damage. SIPS cells also acquire a senescence associated secretory 

phenotype (SASP), a unique feature in which they secrete high amounts of numerous 

inflammatory cytokines and matrix proteinases, which can have profound catabolic effects 

on neighboring cells and ECM110,111. Because senescent cells accumulate in various tissues 

and organs with aging112, SASP is currently believed to disrupt tissue structure and function 

and promote aging113. This theory is supported by a seminal study demonstrating that 

clearance of senescent cells delays aging-associated disorders114.
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An increased number of senescent cells were observed in both aged and degenerated 

discs105,115–118, as measured by increased expression of senescent markers, including 

senescence-associated β-galactosidase (SA-βgal), p16INK4A, and decreased telomere length. 

Thus, cellular senescence is a potential driver of both disc degeneration and disc aging, 

possibly through the SASP mechanism that promotes pathologic disc matrix catabolism. 

Evidence supporting this idea originally came from a study showing a positive correlation 

between the senescent marker p16INK4A and matrix proteases expression (MMP-13 and 

ADAMTs-5) in human disc tissue, implicating senescent disc cells as a source of these 

catabolic enzymes105. In vitro cell culture studies using H2O2 to simulate oxidative DNA 

damage that induces SIPS also revealed an altered, catabolic phenotype119. These H2O2-

induced senescent disc cells exhibited SASP, as characterized by their secretion of high 

levels of MMPs and pro-inflammatory cytokines. These senescent disc cells also showed 

growth arrest and perturbed matrix homeostasis, i.e., reduced matrix synthesis capacity 

(anabolism) and increased matrix degradation (catabolism)120. However, to determine the 

causative role of cellular senescence in driving disc aging, genetic and pharmacological in 
vivo strategies are needed to study the effects of ablation of senescent cells on age-

associated IDD.

Possible causes of disc cellular senescence—DNA damage is the underlying cause 

of cellular senescence, but how cells become senescent in disc tissue is not fully understood. 

Current evidence supports the existence of both replicative senescence and SIPS in discs. 

Telomere length shortening, a marker of replicative senescence, is observed in aged and 

degenerated human disc tissue, as is increased p16Ink4a immunopositivity, a marker of 

SIPS105,121. Elevated cellular senescence was observed in discs of DNA repair-deficient 

Ercc1−/Δ mice28 as well as in genotoxin-exposed mice 66,67, suggesting that DNA damage is 

a key driver of disc cellular senescence. Other potential sources of oxidative DNA damage 

include oxidative stress induced by inflammation and high glucose-induced oxidative stress, 

e.g., in diabetes122. IL-1, a predominant cytokine implicated in the pathogenesis of disc 

degeneration123,124, has been suggested to promote SIPS in NP cells. Indeed, spontaneous 

age-related IDD with associated senescent phenotype is seen in an IL-1Ra knockout mouse 

model 125. Finally, activation of WNT/β-catenin signaling was also reported to promote 

cellular senescence in rat disc cells126, but it is unclear in disc tissue how this signaling is 

influenced by oxidative or inflammatory stress that drives senescence. In summary, disc 

senescence phenotype appears to be specific aberrant cell response to DNA damage which 

can cause further tissue perturbation and damage during the course of disc aging (Fig. 3A).

Aberrant Molecular Signaling in Disc Aging—Biomolecular damage, e.g., DNA 

damage, can initiate aberrant signaling cascade, which then, if left unchecked, acts to cause 

further molecular damage. It is now well known that in addition to environmental factors and 

behavior traits, genetics greatly influences lifespan. Most longevity genes identified starting 

from the early 1980s in various models (worms, fruit flies, mice, monkeys … etc.) implicate 

one of three major signaling pathways in cells: insulin/IGF-1, sirtuins, or mTOR13,127,128. 

These three pathways regulate a variety of cellular processes, including cell growth, cell 

proliferation and survival, protein synthesis, and transcription mechanisms. The roles of 

these signaling pathways in disc aging, however, have not been explored although it is 
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known that Insulin-like growth factor-1 (IGF-1) induces disc anabolic activity129 while 

SIRT1 is expressed by human NP cells and acts to suppress NP cell matrix metabolism and 

proliferation130. However, signaling other than these three pathways have been reported to 

influence age-related IDD, including NF-κB, MAPK, and HIF-1α signaling which are 

known to be involved in stress responses and SIPS, which are discussed below.

NFkB signaling in age-related disc degeneration—NF-κB signaling is central to the 

cellular response to inflammation, stress and damage. NF-κB is comprised of a family of 

structurally related transcription factors, which in mammals consists of five protein subunits, 

RelA or p65, c-Rel, RelB, p50 and p52. NF-κB exists as a homodimer or a heterodimer, 

with the p50–p65 heterodimer being the most common form which controls the expression 

of the majority of NF-κB-regulated genes131. Chronic activation of NF-κB has been linked 

to tissue aging and many age-related degenerative diseases, including musculoskeletal 

disorders such as muscular dystrophy, osteoarthritis, and osteoporosis132,133134.

NF-κB is also implicated age-associated IDD135. In disc tissue, NF-κB activity was shown 

to correlate with accumulated oxidative stress and increase with age and degeneration70. 

Systemic inhibition of NF-κB activity by pharmacologic and genetic means has been shown 

to ameliorate age-associated IDD in a mouse model of accelerated aging136. Most other 

studies focus on the role of NF-κB in mediating degenerative and inflammatory disc disease. 

Increased NF-κB activity is found in degenerative discs135. Compared to asymptomatic 

discs, symptomatic discs have higher levels of pro-inflammatory cytokines that are 

considered typical NF-κB target genes, e.g. TNF-α, IL-1β, IL-6 and IL-8104,123,124,137. 

Together, these findings support the role of dysregulated NF-κB chronic activation in 

promoting IDD and age-related IDD.

MAPK signaling in disc biology and disc aging—Mitogen-Activated Protein 

Kinases (MAPKs) are a family of signal transduction pathways, allowing the cells to 

respond to multiple extracellular inputs, such as hormones, growth factors, inflammatory 

cytokines, and environmental stresses such as ionizing radiation or osmotic stress138,139. In 

mammals, these diverse signals activate at least three major subfamilies of MAPKs, the 

extracellular signal-regulated kinases (ERK), c-Jun NH2-terminal kinases (JNKs), and p38 

isoforms (p38MAPKs)140,141. Activation of MEK/ERK and JNK are involved in the 

induction of cellular senescence142143. On the other hand, p38 MAPK activation is a marker 

of senescence and plays a vital role in establishing SASP which probably affects local tissue 

homeostasis144. Consistent with in vitro data, up-regulated p38 MAPK expression has been 

reported in senescent AF cells isolated by laser capture microdissection145.

Multiple components of the catabolic machinery (e.g. MMPs, ADAMTSs, COX-2, PGE2, 

iNOS, etc) are regulated by MAPK family members. Many of these catabolic genes are also 

regulated by NF-κB signaling, highlighting the cross-talks between the components of 

MAPK and NF-κB pathways135. In disc tissue, the major pro-inflammatory cytokines, i.e., 

IL-1β and TNF-α, activate ERK and/or p38 and consequently catabolic molecules such as 

ADAMTs-4, MMP-3 or syndecan-4 146–149. Inhibition of MAPK activation by specific 

synthetic compounds or naturally occurring molecules such as glucosamine prevent these 
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processes, indicating that MAPK regulation may represent a promising tool to mitigate disc 

degeneration and aging147,150.

Increased disc cell proliferation and formation of cell clusters is a characteristic feature of 

disc degeneration151. This is thought to be partly due the over-expression of growth factors 

and their receptors152. Growth factors such as PDGF, IGF-I or bFGF stimulate cell 

proliferation via ERK activation153,154, indicating an additional role of MAPK in disc 

degeneration. Conversely, hyperosmotic conditions inhibit ERK, arrest cell cycle in the 

G2/M phase via p38 MAPK activation and restrain the mitogenic effect of growth factors, 

indicating that the reduced osmolality prevailing in the degenerated disc may boost cell 

proliferation155. Whether disc aging involves these same signaling pathways as they are 

related to cell proliferation and clustering awaits further investigation.

HIF-1α signaling in disc biology and disc aging—For any meaningful discussion of 

aging of disc at the molecular level, it is important to consider the unique niche and 

physiology of the cells of NP and inner AF. NP resides in a hypoxic and hyperosmotic 

environment156,157 to which they have adapted a novel hypoxia signaling governed by the 

activities of the transcription factors hypoxia-inducible factor-1α and -2α (HIF-1/2). Unlike 

other cell types in which HIF-1α protein stability and activity are enhanced under hypoxia 

and abolished under normoxia, NP cells constitutively express both HIF-1α and HIF-2α, 

even under normoxic conditions158. In fact, NP cells are either partially or wholly refractory 

to propyl-hydroxylases (PHD)-dependent degradation159,160. Similarly, Factor Inhibiting 

HIF-1 (FIH-1) does not control HIF-1α transcriptional activity in NP cells161 as typically 

seen in other cell types. The constitutive HIF-1 expression has important metabolic 

consequences for NP cells which are obligate glycolytic and rely very little on aerobic 

respiration even when oxygen is abundant 162. In addition to this metabolic adaptation, HIFs 

promote survival and function of NP cells through upregulation of crucial genes including, 

aggrecan162, galectin-3163, β-1,3-glucuronyltransferase 1164, and VEGF-A165. In fact HIF-1 

is indispensable for NP cell survival as demonstrated by conditional knockout of HIF-1α in 

mouse notochord by Foxa2-Cre which results in smaller, non-vacuolated cells in the NP at 

E15.5 and massive apoptotic cell death in the NP at birth166. Thus, the important role of HIF 

signaling in physiological adaptation and function of NP cells suggests that its dysregulation 

may contribute to cellular aging and degeneration.

The role of HIF signaling in organismal aging was recently elucidated. Dysregulated 

increase in HIF-1α activities due to age-dependent decline of nuclear NAD+ was found to 

interfere with the coordination between nuclear and mitochondrial activities, resulting in 

mitochondrial dysfunction and accelerated aging167. However, other studies suggested a role 

of HIF-1 in suppressing cellular senescence168,169. These conflicting results require further 

investigation in order to elucidate how dysregulated HIF signaling contributes to disc aging, 

given that robust and stabilized HIF-1α expression is vital for NP cell survival and 

function162. One possible mechanism involves cross-talk between HIF and NF-kB pathways 

under pathological conditions170,171. TNF-α controls expression of PHD2 and 3 through 

NF-κB pathway, and both PHDs in turn serve to control p65/RelA of NF-κB transactivation. 

Importantly, PHDs partially control a broader TNF-dependent inflammatory response by 

promoting expression of several cytokines and chemokines170,171. More studies are needed 
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to detangle the complex interaction and possible dysregulation between HIF and NF-kB 

pathways that might predispose disc tissue to accelerated aging.

C. Phase III of Biochemical Cascade of Disc Aging: Loss of Biologic Structure and 
Function

Loss of disc biologic structure and function (phase III) is an end consequence of time-

dependent accumulation of damage resulting from biomolecular changes (phase I) and 

associated aberrant signaling (phase II) (Fig. 3A). Damage-induced apoptosis, cellular 

senescence, and pathologic alterations in matrix metabolism all likely contribute to the loss 

of disc functional cells, stem cell pool172–175, and ECM structural integrity (Fig. 4). These 

changes are expected to alter ECM-cell communication and eventually the normal 

physiology and biomechanical function of the disc (Fig. 3A).

Loss of disc ECM integrity and altered cell mechanobiology—Loss of disc matrix 

proteoglycans decreases the negatively charged ionic environment, reducing hyperosmotic 

loading ionic flux176. Loss of hydration alters fluid pressurization and fluid flows in the 

disc177. Age-related changes to the solid matrix, such as increased non-enzymatic collagen 

cross-linking59178, protein glycation179, or protein denaturation180 can increase structural 

stiffness 180 and alter disc strains181. Moreover, AF damage increases with age182, which 

can alter tensile stiffness and annular local strains183184. These changes perturb the cellular 

microenvironment and compromise normal disc function.

Cell clustering and interactions with the pericellular matrix also appear to change with 

age185, which suggest altered cellular mechanical properties186. Indeed, disc cells from 

young and middle-aged bovine respond differently to the same compression regimes, with 

older cells showing diminished capacity for matrix repair187. Similarly, AF cells from 

mature and aged pigs subjected to loading exhibit differences in anabolic and catabolic gene 

expression, further suggesting changes to cells or mechanotransduction with aging188. Cells 

isolated from injury-induced degenerative discs also demonstrated differences in response to 

mechanical loading189, but the effect of physiologic aging was not evaluated.

Mechanical features of aging discs: loss of physiological biomechanics—The 

complex structure of the disc allows multiaxial motion while maintaining stability190,191. NP 

and AF interact to support compressive loading and facilitate segmental motion. 

Compression increases swelling pressure in the NP192193 which is constrained by the 

surrounding, distensible AF and the adjacent CEPs194. In distraction, the AF limits vertebral 

body motion181. The organized, concentric lamellae of the AF resist torsion through 

circumferential tensile stress in its collagen and elastin fibers195–197. The physiological 

function of the spine thus depends on these integrated interactions among the different disc 

regions198,199. A number of mechanical features specific to aging have been identified 

within the disc. Hydration levels within the NP decrease in aging, which, along with GAG 

depletion200, reduces swelling pressure in the NP192201 and increases the shear modulus of 

NP with age202. On the other hand, hydration in the AF remains relatively unchanged with 

aging192, and annular tensile properties change only modestly with aging183,203. The net 
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result of these age-related changes, is a loss of elasticity and increased stiffness63180, which 

overlaps with mechanical changes in non-age related disc degeneration.

POTENTIAL THERAPIES TO DELAY AGE-ASSOCIATED IDD

The events within disc aging cascade present potential therapeutic targets for treating or 

delaying age-related IDD (Fig. 3B). In theory, treatments that reduce free radical production 

may ameliorate macromolecular damage. Indeed, accelerated aging Ercc1−/Δ mice treated 

with systemic administration of XJB-5-131, a mitochondria-targeted ROS scavenger, 

resulted in improved disc GAG content and proteoglycan synthesis204. This demonstrates 

that mitochondria-derived ROS drives aging-related IDD and that radical scavengers may 

play a promising role in slowing disc aging. Anti-oxidants such as curcumin and resveratrol 

have also been reported to be therapeutic for treating IDD, as have a number of other anti-

inflammatory agents such as NSAIDS and IL-1Ra205–210. Whether these same agents are 

therapeutic against age-related IDD await further research.

Minimizing the aberrant damage responses that exacerbate tissue damage is another strategy 

for treating age-related IDD. One promising candidate is the NF-κB pathway whose chronic 

activation has been closely linked to age-related diseases. Previous studies demonstrated that 

blocking NF-κB activity pharmacologically and genetically in the Ercc1−/Δ rodent model of 

accelerated aging delayed the onset of age-dependent disc proteoglycan loss and other 

degenerative changes136,211. Moreover, intra-discal injection of ‘naked’ NF-κB decoy 

oligonucleotides proved effective in partially restoring disc height in an animal model of 

IDD212, indicating that dysregulated activation of NF-κB is involved in disc matrix loss.

Other potential strategies involve the use of protein-, gene-, and cell-based therapy to 

counter age-related changes to the matrix and cells, respectively213–215 (Fig. 3B). The goal 

of most gene therapy approaches is to replace loss of disc ECM via increased matrix 

synthesis or to inhibit catabolic factors that degrade the matrix216. Cell-based therapy 

frequently aims to restore loss of functional disc cells with possible anti-inflammatory 

effects217,218. These interventions aim at either preventing damage, ensuring optimal cellular 

response to damage, or restoring tissue loss associated with aging. Indeed, such strategies 

exist and have been extensively investigated in the context of disc degeneration. To be 

effective, however, therapeutic interventions need to target the early phases of the disc aging 

cascade prior to the occurrence of functional failure.

CONCLUSIONS AND PERSPECTIVES

A large number of studies dating back to the early 1950s describe various age-related disc 

degenerative changes. However, the molecular mechanisms which initiate and mediate disc 

aging are still poorly understood. Recent advances in the aging research field are beginning 

to reveal important insights into the mechanisms of organismal aging. Based on these 

insights, we proposed to organize the complex multi-step process of disc aging into three 

distinct phases to guide future research: (1) biomolecular damage, (2) aberrant damage 

responses, and (3) loss of biologic structure and function. While genomic instability, cellular 

senescence, and dysregulated NF-κB signaling have been recently uncovered in disc aging, 
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research is still lagging to elucidate the roles of other important aging hallmarks such as 

mitochondrial dysfunction, stem cell exhaustion, altered intercellular communication, and 

epigenetic alterations in disc tissue. The unique disc biological niche, i.e., mechanically 

loaded, nutrient-poor, acidic and hypoxic environment, offers an excellent opportunity to 

discover novel disc aging mechanisms that might be distinct from those driving aging in 

other tissues. Importantly, disc aging is a systemic process that does not occur in isolation 

and is likely influenced by the aging processes of neighboring spinal structures (Fig. 2), 

circulating factors, and remote body tissues and organs. Hence, aging research of the whole 

spine, not just the disc, is an important, immediate future direction. The broad, multi-tiered 

approach is necessary to provide the basic information needed for the development of 

effective therapies and interventions to delay the onset of age-related spinal disorders. This 

is imperative given aging is a big risk factor for IDD-associated chronic pain and disability, 

the prevalence of which will undoubtedly be amplified with the growing aging population.
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LIST OF ABBREVIATIONS

AF Annulus Fibrosus

ADAMTS A Disintegrin And Metalloproteinase with Thrombospondin Motifs

AGES Advanced Glycation End products

CEP Cartilaginous Endplate

ECM Extracellular Matrix

GAG Glycosaminoglycan

IDD Intervertebral Disc Degeneration

MMP Matrix Metalloproteinase

MRI Magnetic Resonance Imaging

NP Nucleus Pulposus

ROS Radical Oxygen Species

SA-βgal Senescence Associated Beta Galactosidase

SASP Senescence Associated Secretory Phenotype

SIPS Stress-induced Premature Senescence

SLRP Small Leucine-rich Repeat family of Proteoglycans
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Figure 1. Gross features of the aged mammalian discs
Axial sections of young and aged lumbar discs of 3 month- vs. 24 month-old mice (A, B), 3 

week- vs. 3 year-old pigs (C, D) 219, and 16 year- vs. 55 year-old humans (E,F, courtesy of 

Dr. Ian Stokes), are shown. Old discs exhibit an overall loss of hydration, loss of 

demarcation between the AF and NP boundary, and tissue discoloration (old disc more 

yellowish). Average lumbar disc cross-sectional diameters are approximately 2–3mm for 

mice, 24–30 mm for pigs, and 45–55mm for humans 220.
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Figure 2. Gross features of the aging spine
Young and aged lumbar spines are visually compared to illustrate the wide range of tissues 

and processes involved in aging of the spine. Muscle atrophy and fatty infiltration is evident 

at L1-2 in the aged spine. 25Similarly, a window into L3 depicts reduced vascularity and 

fewer capillaries reaching the endplate. Foraminal stenosis is shown at L2-3 (arrow), L3-4, 

and L4-5, and facet hypertrophy is evident at L3-4 (arrow) and L4-5. An annular lesion is 

present in the posterior portion of the L3-4 disc. Disc degeneration with evident loss of disc 

height and prominent anterior osteophytes occur at L4-5. Ligamentous thickening is 

indicated in the interspinous and supraspinous ligament; thickening of the ligamentum 

flavum occurs with aging but is not observable in the sagittal view. Finally, facet cartilage 

arthritis is revealed on the inferior facet of L5.
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Figure 3. Proposed biochemical cascade in disc aging process and potential therapeutic targets
(A) With aging, there is time-dependent accumulation of biomolecular damage (Phase I), 

most importantly, DNA damage, in the disc due to exogenous and endogenous factors. 

Cellular responses to accumulated damage over time become dysregulated (Phase II) leading 

to more damage and eventual loss of disc biologic structure and function (Phase III). This 

results in degenerative changes observed in aged discs. * Observed in other tissues but not 

yet investigated in disc tissue. (B) Potential therapeutic targets to delay or ameliorate age-

related degeneration. Oxidative and inflammatory stress can be reduced with anti-oxidants 

and anti-inflammatory drugs. Reducing chronic activation of NF-κB signaling by 

pharmacologic intervention may be efficacious in delaying age-related degeneration. 

Moreover, removal of senescent cells or blocking formation of SASP could potentially 

mitigate disc matrix catabolism. Finally, protein-, gene- and cell-based therapy could also 

conceivably delay or help restore age-related loss of disc matrix and functional cells.
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Figure 4. Molecular and cellular features of the aging disc
Young and aged extracellular matrix (A) and cells (B) are schematically compared to 

summarize important changes that occur during disc aging. Panel A, young matrix is rich in 

elastin (green, coiled fiber), aggregated aggrecan (dark blue, bottle-brush aggregate), and 

collagen fibers (banded fibers). Aged matrix shows loss of elastin, increased collagen and 

collagen crosslinking, fragmented aggregan, diminished GAG quality, reduced aggregan 

aggregates, increased accumulation of advanced glycation end-products (AGEs) along with 

lower hydration49. Panel B, young AF cells are elongated fibrochondrocytes and NP cells 

are a mixture of large, clustering, notochordal cells and smaller, chondrocyte-like cells. 

Aged cells show reduced cellularity, loss of notchordal cells, and incidence of senescence, 

apoptosis, and necrosis.

Vo et al. Page 30

J Orthop Res. Author manuscript; available in PMC 2016 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vo et al. Page 31

Ta
b

le
 1

A
ni

m
al

 m
od

el
s 

us
ed

 to
 in

ve
st

ig
at

e 
ag

e-
as

so
ci

at
ed

 in
te

rv
er

te
br

al
 d

is
c 

de
ge

ne
ra

tio
n

M
ou

se
 m

od
el

s

G
en

e 
sy

m
bo

l
G

en
e 

na
m

e/
de

sc
ri

pt
io

n
P

ro
te

in
 f

un
ct

io
n

M
od

el
A

ge
-r

el
at

ed
 d

is
c 

de
ge

ne
ra

ti
ve

 c
ha

ng
es

R
ef

E
rc

c1
E

xc
is

io
n 

re
pa

ir
 c

ro
ss

-c
om

pl
em

en
tin

g 
ro

de
nt

 re
pa

ir
 1

D
N

A
 r

ep
ai

r
M

Sy
st

em
ic

 E
R

C
C

1-
de

fi
ci

en
cy

 a
cc

el
er

at
ed

 
ag

e-
de

pe
nd

en
t d

is
c 

de
ge

ne
ra

tio
n

28

n/
a

Se
ne

sc
en

ce
-a

cc
el

er
at

ed
 m

ou
se

 (S
A

M
)

G
en

e 
no

t y
et

 id
en

tif
ie

d
D

er
iv

ed
 f

ro
m

 A
K

R
/J

A
m

yl
oi

d 
de

po
si

tio
n 

in
 d

is
c 

A
F,

 a
rt

ic
ul

ar
 

ca
rt

ila
ge

22
1

D
m

dM
dx

X
-c

hr
om

os
om

e-
lin

ke
d 

m
us

cu
la

r D
ys

tr
op

hy
D

ys
tr

op
hi

n-
sk

el
et

al
 m

us
cl

e 
in

te
gr

ity
M

A
ge

-r
el

at
ed

 lo
ss

 o
f 

di
sc

 p
ro

te
og

ly
ca

n
22

2

C
nn

2
C

on
ne

ct
iv

e 
tis

su
e 

gr
ow

th
 fa

ct
or

 (
C

T
G

F 
or

 C
C

N
2)

M
at

ri
ce

llu
la

r 
pr

ot
ei

n 
in

vo
lv

ed
 in

 c
el

lu
la

r 
ad

he
si

on
, 

m
ig

ra
tio

n,
 E

C
M

 s
yn

th
es

is
T

G
N

ot
oc

ho
rd

-s
pe

ci
fi

c 
C

C
N

2 
de

le
tio

n 
ac

ce
le

ra
te

d 
ag

e-
de

pe
nd

en
t d

is
c 

de
ge

ne
ra

tio
n

22
3

B
gn

B
ig

ly
ca

n
Sm

al
l l

eu
ci

ne
 r

ep
ea

t p
ro

te
og

ly
ca

ns
 E

C
M

T
G

A
ge

-r
el

at
ed

 e
ar

ly
 o

ns
et

 o
f 

di
sc

 
de

ge
ne

ra
tio

n
22

4

K
y

K
yp

ho
sc

ol
io

si
s 

pe
pt

id
as

e
C

yt
os

ke
le

to
n-

as
so

ci
at

ed
 p

ro
te

as
e 

re
qu

ir
ed

 f
or

 
no

rm
al

 m
us

cl
e 

gr
ow

th
A

R
M

D
eg

en
er

at
iv

e 
ch

an
ge

s 
in

 c
er

vi
ca

l a
nd

 
th

or
ac

ic
 d

is
cs

; k
yp

ho
si

s
22

5

Sk
t

Si
ck

le
 ta

il
L

in
ke

d 
to

 D
an

fo
rt

h’
s 

sh
or

t t
ai

l l
oc

us
T

G
A

bn
or

m
al

 d
ev

el
op

m
en

t o
f 

th
e 

in
te

rv
er

te
br

al
 d

is
c

22
6

n/
a

D
an

fo
rt

h’
s 

sh
or

t t
ai

l l
oc

us
 (S

d)
G

en
e 

no
t y

et
 id

en
tif

ie
d

M
, S

D
A

be
rr

an
t p

at
te

rn
s 

of
 v

er
te

br
ae

 a
nd

 d
is

c 
de

ve
lo

pm
en

t
22

7

C
57

B
l6

W
ild

ty
pe

 m
ic

e
N

at
ur

al
 a

gi
ng

 m
ic

e
N

at
ur

al
 a

gi
ng

-r
el

at
ed

 d
is

c 
de

ge
ne

ra
tio

n
22

8

O
th

er
 a

ni
m

al
 m

od
el

s

A
ni

m
al

s
Sc

ie
nt

if
ic

 n
am

e
K

ey
 f

ea
tu

re
s 

&
 a

na
ly

si
s 

m
et

ho
ds

A
ge

-r
el

at
ed

 d
is

c 
de

ge
ne

ra
ti

ve
 c

ha
ng

es
R

ef

H
am

st
er

C
ri

ce
tin

ae
C

hi
ne

se
 h

am
st

er
s 

pr
on

e 
to

 d
ev

el
op

m
en

t o
f 

sp
on

ta
ne

ou
s 

di
ab

et
es

. S
pi

ne
s 

of
 a

ge
 1

0–
33

 m
on

th
s 

hi
st

ol
og

ic
al

ly
 a

na
ly

ze
d

A
gi

ng
 c

ha
ng

es
 in

 in
te

rv
er

te
br

al
 d

is
cs

 S
po

nd
yl

os
is

 w
as

 
pr

es
en

t a
t a

n 
ea

rl
ie

r 
ag

e 
in

 d
ia

be
tic

 th
an

 in
 n

on
di

ab
et

ic
 

ha
m

st
er

.
22

9

R
at

R
at

tu
s

M
al

e 
Fi

sh
er

 3
44

 r
at

s.
 μ

C
T

 o
f 

sp
in

es
 o

f 
ag

e 
3,

 1
2,

 1
8,

 3
0 

m
on

th
s

A
ge

-a
ss

oc
ia

te
d 

m
or

ph
om

et
ri

c 
an

d 
de

ge
ne

ra
tiv

e 
di

sc
 

ch
an

ge
s

23
0

Sa
nd

 ra
t

Ps
am

m
om

ys
 o

be
su

s
Sp

on
ta

ne
ou

s 
de

ve
lo

pm
en

t o
f 

di
ab

et
es

. A
ge

 1
–4

6 
m

on
th

s 
an

al
yz

ed
 r

ad
io

gr
ap

hi
ca

lly
 

an
d 

hi
st

ol
og

ic
al

ly
A

ge
-r

el
at

ed
 a

nd
 d

ia
be

te
s-

re
la

te
d 

sp
on

ta
ne

ou
s 

de
ve

lo
pm

en
t o

f 
lu

m
ba

r 
di

sc
 d

eg
en

er
at

io
n

23
1

J Orthop Res. Author manuscript; available in PMC 2016 August 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vo et al. Page 32
O

th
er

 a
ni

m
al

 m
od

el
s

A
ni

m
al

s
Sc

ie
nt

if
ic

 n
am

e
K

ey
 f

ea
tu

re
s 

&
 a

na
ly

si
s 

m
et

ho
ds

A
ge

-r
el

at
ed

 d
is

c 
de

ge
ne

ra
ti

ve
 c

ha
ng

es
R

ef

R
ab

bi
t

O
ry

ct
ol

ag
us

 c
un

ic
ul

us
N

ew
 Z

ea
la

nd
 W

hi
te

 r
ab

bi
ts

. A
ge

 1
–3

0 
m

on
th

s 
st

ud
ie

d 
by

 M
R

I,
 h

is
to

lo
gy

, g
en

e 
ex

pr
es

si
on

N
at

ur
al

 a
gi

ng
-r

el
at

ed
 d

is
c 

de
ge

ne
ra

tio
n

23
2

Pi
g

Su
s 

sc
ro

fa
 d

om
es

tic
us

Po
rc

in
e 

di
sc

s 
of

 a
ge

 2
–3

 w
ee

ks
, 6

–9
 m

on
th

, 2
–3

 y
ea

rs
 a

na
ly

ze
d 

by
 h

is
to

lo
gy

, G
A

G
 

as
sa

y,
 c

el
l d

en
si

ty
 a

ss
ay

, g
en

e 
ex

pr
es

si
on

D
is

c 
M

M
P-

1 
in

cr
ea

se
d 

w
ith

 a
ge

. G
A

G
 a

nd
 c

ol
la

ge
n 

I,
 

II
, a

gg
re

ca
n 

de
cr

ea
se

d 
w

ith
 a

ge
.

21
9

D
og

C
an

is
 lu

pu
s 

fa
m

ili
ar

is
D

is
cs

 o
f 

ch
on

dr
od

ys
tr

op
hi

c 
(C

D
) 

an
d 

no
nc

ho
nd

ro
dy

st
ro

ph
ic

(N
C

D
) 

do
gs

 o
f 

ag
e 

1–
7 

ye
ar

s 
w

er
e 

an
al

yz
ed

 b
y 

hi
st

ol
og

y,
 G

A
G

, a
nd

 M
M

P 
ac

tiv
ity

C
D

 d
og

s 
sh

ow
ed

 e
ar

ly
 a

ge
 o

ns
et

 o
f 

di
sc

 d
eg

en
er

at
iv

e 
ch

an
ge

s 
co

m
pa

re
d 

to
 N

D
C

 d
og

s.
23

3

Sh
ee

p
O

vi
s 

ar
ie

s
D

is
cs

 o
f 

ne
w

-b
or

n,
 3

, 1
2,

 a
nd

 >
36

 m
on

th
s 

w
er

e 
an

al
yz

ed
 m

ec
ha

ni
ca

lly
 a

nd
 

m
ic

ro
sc

op
ic

al
ly

 to
 a

ss
es

s 
nu

cl
eu

s 
pu

lp
os

us
-e

nd
pl

at
e 

in
te

gr
at

io
n

R
ap

id
 in

cr
ea

se
 in

 N
P-

E
P 

in
se

rt
io

n 
no

de
s 

be
tw

ee
n 

bi
rt

h 
an

d 
3 

m
on

th
s,

 a
ft

er
 w

hi
ch

 th
is

 in
te

gr
at

io
n 

re
m

ai
ne

d 
co

ns
ta

nt
.

23
4

A
lp

ac
a

V
ic

ug
na

 p
ac

os
Y

ou
ng

 (
2–

6 
ye

ar
s)

 a
nd

 o
ld

er
 (

>
10

 y
ea

rs
) 

al
pa

ca
 u

nd
er

w
en

t M
R

I 
ev

al
ua

tio
n 

to
 

de
te

ct
 c

er
vi

ca
l s

pi
ne

 d
eg

en
er

at
io

n

N
o 

ce
rv

ic
al

 d
is

c 
de

ge
ne

ra
tio

n 
in

 y
ou

ng
 a

lp
ac

as
. 

In
cr

ea
se

d 
di

sc
 d

eg
en

er
at

io
n 

in
ci

de
nc

e 
an

d 
se

ve
ri

ty
 a

t 
lo

w
er

 c
er

vi
ca

l l
ev

el
s 

in
 o

ld
er

 a
lp

ac
as

23
5

R
he

su
s 

M
ac

aq
ue

s
M

ac
ac

a 
m

ul
at

ta
 (

M
ac

aq
ue

s 
m

on
ke

ys
)

L
on

gi
tu

di
na

l s
tu

dy
 o

f 
m

ac
qu

es
 1

1–
32

 y
ea

rs
 o

f 
ag

e 
to

 a
ss

es
s 

di
sc

 s
pa

ce
 n

ar
ro

w
in

g 
(D

SN
) 

by
 r

ad
io

gr
ap

hy
.

A
ge

-a
ss

oc
ia

te
d 

di
sc

 s
pa

ce
 n

ar
ro

w
in

g,
 o

st
eo

ph
yt

os
is

, 
in

cr
ea

se
d 

di
sc

 ti
ss

ue
 s

tif
fn

es
s

23
6

G
en

et
ic

 m
od

el
s:

 M
ut

at
io

n 
(M

),
 T

ra
ns

ge
ni

c 
(T

G
),

 A
ut

os
om

al
 re

ce
ss

iv
e 

m
ut

at
io

n 
(A

R
M

),
 T

ru
nc

at
io

n 
m

ut
at

io
n 

(T
M

).
 N

/A
: n

ot
 a

pp
lic

ab
le

.

J Orthop Res. Author manuscript; available in PMC 2016 August 29.


	Abstract
	I. INTRODUCTION
	II. AGING CHARACTERISTICS OF INTERVERTEBRAL DISCS
	A. Disc anatomy and composition
	B. Features of disc aging
	C. Distinguishing disc aging from disc degeneration
	D. Impact on disc aging by the surrounding spinal structures

	III. BIOCHEMICAL CASCADE OF INTERVERTEBRAL DISC AGING
	A. Phase I of Biochemical Cascade of Disc Aging: Biomolecular Damage
	Damage and Perturbation of ECM Integrity in Aged Disc
	DNA Damage in Aged Disc
	Stressors Driving Disc Biomolecular Damage

	B. Phase II of Biochemical Cascade of Disc Aging: Aberrant Responses to Damage
	Cell Functional and Phenotypic Changes in Disc Aging
	The Role of Cellular Senescence in Disc Aging
	Possible causes of disc cellular senescence
	Aberrant Molecular Signaling in Disc Aging
	NFkB signaling in age-related disc degeneration
	MAPK signaling in disc biology and disc aging
	HIF-1α signaling in disc biology and disc aging

	C. Phase III of Biochemical Cascade of Disc Aging: Loss of Biologic Structure and Function
	Loss of disc ECM integrity and altered cell mechanobiology
	Mechanical features of aging discs: loss of physiological biomechanics


	POTENTIAL THERAPIES TO DELAY AGE-ASSOCIATED IDD
	CONCLUSIONS AND PERSPECTIVES
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

