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Summary

Zero-inflated regression models have emerged as a popular tool within the parametric framework 

to characterize count data with excess zeros. Despite their increasing popularity, much of the 

literature on real applications of these models has centered around the latent class formulation 

where the mean response of the so-called at-risk or susceptible population and the susceptibility 

probability are both related to covariates. While this formulation in some instances provides an 

interesting representation of the data, it often fails to produce easily interpretable covariate effects 

on the overall mean response. In this paper, we propose two approaches that circumvent this 

limitation. The first approach consists of estimating the effect of covariates on the overall mean 

from the assumed latent class models, while the second approach formulates a model that directly 

relates the overall mean to covariates. Our results are illustrated by extensive numerical 

simulations and an application to an oral health study on low income African-American children, 

where the overall mean model is used to evaluate the effect of sugar consumption on caries 

indices.
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1. Introduction

Zero-inflated (ZI) regression models, which view data as being generated from a mixture of 

a point mass at zero and a non-degenerate distribution, have become a popular and 

interesting tool within the parametric framework to analyze count data with excessive zeros. 

Well known applications of these models include the works of Mullahy (1986), Farewell and 

Sprott (1988), Lambert (1992), Ridout et al. (1998), Böhning et al. (1999), Hall (2000), 
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Gilthorpe et al. (2009) and references therein. Despite their increasing popularity, most of 

the generic applications of ZI models in statistical practice focus primarily on regression 

models that relate the mean response of the so-called at-risk or susceptible population and 

the susceptibility probability to covariates. Although this latent class formulation in some 

settings provides a versatile and useful representation of the data, the implied 

parameterization may fail to provide a clear answer to the question of evaluating the 

covariate effects on the marginal mean response. By marginal mean, we refer to the overall 

mean obtained by averaging the latent mean response across the distribution of the 

susceptibility status, regardless of covariates. This mean, even when there is a sizeable 

frequency of zeros in the data, is often the target of inference in many clinical trials and 

observational studies especially when non-susceptibility is scientifically obscured or 

implausible. And for this reason, many analyses involving ZI models tend to misinterpret the 

covariate effects on the mean of the susceptible population as effects on the overall mean 

(Preisser et al., 2012).

The work proposed in this paper is motivated by data generated from a unique oral health 

study on low-income inner city African-American children under the age of six and their 

main caregivers residing in Detroit, Michigan. Our primary interest for these data is to 

evaluate the effect of sugar intake on caries indices in primary dentition, possibly adjusting 

for important confounders such as age. The dental caries literature has consistently indicated 

that sugar consumption remains an important modifiable risk factor for dental caries 

prevention, although its effect is not as strong as it used to be in the pre-fluoride era (Burt 

and Pai, 2001; Tellez et al.; 2006; and Anderson et al., 2009). Evaluating this effect for 

medically underserved children, who are prone to extensive caries and excessive sugar 

consumption, would be helpful in formulating a tailored dental caries prevention policy. 

Because caries susceptibility may not be fully observed, focusing this evaluation on children 

presumed susceptible to caries would be obscured from a policy formulation standpoint.

The literature has been fairly silent about the usefulness of ZI regression models in 

evaluating the overall covariate effects on the marginal mean response. An important 

contribution was recently made by Albert et al. (2011) who proposed, in the context of 

binary exposures, the so-called average predicted value (APV) by integrating out the 

confounding variables from the model-predicted response for each subject. This approach is 

interesting but has some limitations. Although the APV operates on the marginal mean, 

which is often of primary interest, the involved numerical integration can be computationally 

very intensive for moderate to high dimensional confounding variables even when these 

confounders do not interact with the exposure variable. And most importantly, its extension 

to continuous exposures, such as sugar intake in our motivating data example, in not trivial. 

To address these limitations, these authors also proposed an approach for evaluating the 

exposure effect on the marginal mean by relating the susceptibility probability to covariates 

using the log link function. This approach which they referred to as the log – log approach 

has the key advantage that it provides a direct interpretation of the effects of covariates on 

the marginal mean response. A limitation, however, is that the log link may lead to unstable 

computations and inconsistent estimates, owing to the obvious constraints imposed on 

probabilities.
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In this article, we propose two strategies for evaluating the effect of covariates on the 

marginal mean response, which merely use the heterogeneity implied by the ZI models as a 

device to account for extra zeros in the data. The first approach derives the covariate effect 

on the overall mean response from the estimates of the models relating the latent mean 

response and the class membership probability to covariates. The second strategy, which we 

refer to as the direct approach, consists of formulating a regression model that relates the 

marginal mean response to covariates. Under this model formulation, the regression model 

relating the latent mean to covariates is implied by the assumed models for the class 

membership probability and the marginal mean. This second approach generalizes the 

marginalized zero-inflated Poisson regression model recently proposed by Long et al. (2014) 

to any count data with excess zeros. Although this extension may appear conceptually 

modest, the estimation may require additional programming efforts beyond those 

encountered in ZI Poisson models.

In Section 2, we give a brief description of ZI models and give details on the derived and the 

direct methods to estimate the overall effects of covariates on the marginal mean response. 

We conduct simulation studies to evaluate the finite sample performance of these methods 

and illustrate their practical utility using data from the Detroit oral health study in Section 3. 

We conclude with some remarks and discussions in Section 4.

2. The method

Suppose we randomly select a sample of n independent subjects with response counts Yi, i = 

1, …, n, from a population which can be well represented by a ZI model. Under this model, 

the population is viewed as a mixture of susceptible and non-susceptible subjects, but the 

susceptibility status Si, taking value 1 if subject i is susceptible to the event of interest and 0 

otherwise, is not fully observed. For each subject i, this heterogeneity manifests itself 

through the probability mass function (pmf) of Yi, assuming a covariate Wi,

Here y is an observable count, πi = Pr(Si = 1|Wi) is the susceptibility or the at-risk 

probability, δ0y is the kronecker's function taking value 1 if y = 0 and 0 otherwise, and fi(y|

Wi) = Pr(Yi = y|Si = 1; Wi) is the pmf for a susceptible subject indexed, possibly, by a finite 

dimensional parameter. Letting μi = E(Yi|Si = 1; Wi) be the mean response for a susceptible 

subject, the marginal mean response E(Yi|Wi) is obtained by averaging the latent mean 

response E(Yi|Si; Wi) = Siμi over the distribution of Si, yielding E(Yi|Wi) = πiμi.

In real applications of ZI models, μi and πi are related to, potentially different, subsets of Wi 

through regression models coupled with conventional link functions (Lambert, 1992 and 

Gilthorpe et al., 2009). Parameter estimates from these regression models often have the so-

called latent class interpretation, and in some settings can also be interpretable vis-a-vis the 

marginal mean. This is especially true when πi is constant or varies with covariates that are 

not of interest. In general, however, the interpretation of covariate effects on the marginal 

mean using individual regression models for μi and πi is often not trivial, especially when 
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these terms contain the exposure of interest. This limitation may preclude direct use of the 

latent class model formulation in practical settings.

In this paper, we aim at evaluating the effects of covariates on the overall mean E(Yi|Wi), 

representing the target of inference. We propose two strategies, which rely on the trivial 

relation E(Yi|Wi) = πiμi, to achieve this aim. The first approach provides estimates of 

covariate effects on the overall mean from individual estimates of μi and πi under the latent 

model formulation. In contrast, the second approach models directly the marginal mean 

E(Yi|Wi) and the mixing weight πi as a linear function of known covariates, but a regression 

model relating the latent mean μi to covariates is not directly specified but implied by the 

trivial relation . The core of estimation for these methods is based on the 

following joint pmf for observed outcomes y = (y1, …, yn) given covariates w = (w1, …, wn)

(1)

With a proper specification of fi(yi|wi), the estimation then proceeds by maximizing, 

preferably on the log scale, this joint pmf viewed as a function of finite dimensional 

parameters.

2.1 Derived marginal models

Suppose that the following regression models relating the latent mean and the at-risk 

probability to covariates using standard link functions are entertained,

(2)

where Vi = (1, v1i, …, vr−1,i)′ and Zi = (1, z1i, …, zq−1,i)′ are respectively an r × 1 vector 

and a q × 1 vector and subsets of Wi, α and γ are the associated vector of unknown 

regression coefficients. Vectors Vi and Zi may share common components, and because 

there are subsets of Wi, the basic regression models in (2) assume that the effects of some 

components of Wi on these latent quantities may be zeros. The log and logit link functions 

are also assumed but any monotone function should be applicable in principle.

Assume that the maximum likelihood estimates (MLEs) α̂ and γ̂ of α and γ are obtained by 

maximizing the joint pmf in (1). To derive the overall effect of covariates on the marginal 

mean response from these estimates of the conventional models in (2), suppose for example 

that there exists an unspecified column vector Xi of dimension p related to the marginal 

mean as follows,

(3)
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where β is the unknown parameter vector. Unlike the model formulation in (2) where Vi and 

Zi are directly observable, the specification of Xi under the mean regression model in (3) is 

somewhat dictated by the working regression models for μi and πi. This then necessitates Xi 

to be expressed in terms of covariates Vi and Zi, at least approximately. A simple algebraic 

calculation shows that the relation between the marginal mean E(Yi|Wi), the latent mean μi, 

and the at-risk probability πi given the respective working regression models, can be 

expressed as

Because α′Vi is linear in parameters, a simple approach for selecting Xi would be to 

linearize gγ(Zi) = log{1 + exp{−γ′Zi}} in the parameters, using a Taylor expansion of 

gγ(Zi) around E(Zi). As an example, the second order Taylor expansion

where hi = Zi − E(Zi), ∇g(.) and ∇2gγ(.) are the gradient and Hessian matrix, would include 

in Xi all unique elements in Vi, and the first order (linear) and second order (quadratic and 

interaction) terms of Zi. A first order Taylor approximation of gγ(Zi) around E(Zi) would 

only include the unique elements in Vi and Zi for the choice of Xi. Naturally if Zi only 

contains one dummy 0 – 1 covariate, the Taylor approximation is not necessary.

With Xi specified, we focus on estimating β. We adopt the following notation. Let mi(α, γ) 

denote the marginal mean on the log scale, log{πi(γ)μi(α)}, where πi(γ) and μi(α) highlight 

the dependence of μi and πi on α and γ, and let X = (X1, …, Xn)′ and m(α, γ) = (m1 (α, 

γ), …, mn(α, γ))′ respectively be a matrix and a column vector of dimensions n × p and n. 

Under the working independence assumption of elements of m(α̂, γ̂), a consistent estimate 

β̂der of the unknown β, obtained by minimizing the sum of square deviations (Xβ−m(α̂,γ̂))′
(Xβ − m(α̂, γ̂)), is

with associated variance-covariance matrix cov(βd̂er) = (X′X)−1 X′cov{m(α̂, γ̂)}X(X′X)−1, 

where cov{m(α̂, γ̂)} = cov{mi(α̂, γ̂), mj(α̂, γ̂)}i,j ∈ {1, …, n}. The matrix cov{m(α̂, γ̂)} can 

be approximated using the delta method or any resampling (including the bootstrap) 

technique. Details of these calculations for the delta method are given in the Appendix.

2.2 Direct Marginal Models

We formulate a ZI regression model that directly relates the marginal mean E(Yi|Wi), the 

desired target of inference, to covariates. We consider the marginal mean model,
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where Xi = (1, x1i, …, xp−1,i)′ is a p × 1 vector and a subset of Wi, and β is a vector of 

unknown regression coefficients that directly captures the effects of covariates on the overall 

mean. It is worth noting that, unlike the model formulation in (3) where Xi is dictated by the 

working models of μi and πi, here Xi represents the vector of covariates that are directly 

observable. To describe heterogeneity in the population, we assume that the unobserved 

latent variable Si is a Bernoulli process with success probability πi = Pr(Si = 1|Wi) related to 

Zi = (1, z1i, …, zq−1,i)′, a subset of Wi, as follows,

where γ is a vector of unknown regression coefficients. In the current model formulation, ηi 

= log{E(Yi|Si = 1;Wi)} describing the mean response for a susceptible subject is not directly 

modeled as a linear function of covariates as in (2) but is related to covariates through the 

trivial relation . Estimates of β, γ and other finite dimensional 

parameters defining fi(.) can be obtained by maximizing the joint pmf in (1) viewed as a 

function of parameters. We denote by β̂dir the MLE of β.

We refer to this formulation as the marginal log-logit zero-inflated regression model for 

count data. This marginal regression model is conceptually similar to the formulation 

proposed by Heagerty (1999) in the context of logistic regression models with random 

effects. In the current formulation, the unobserved class membership represents this author's 

random effects terms to model the within-subject association. The marginalized pattern-

mixture model for informative missing data proposed by Wilkins and Fitzmaurice (2007) 

also shares some similarities with this model formulation. However, unlike in this model 

where the latent means are averaged across unobserved variables, their marginalized model 

is averaged over observed missing data patterns. As stated in Section 1, this model is a 

generalization of the marginalized zero-inflated Poisson regression model recently proposed 

by Long et al. (2014). It is generally applicable to any ZI regression model for which the 

associated non-degenerate function fi(.) is a smooth function that decays rapidly at infinity 

with some degree of uniformity (see for example Preisser et al, 2015).

2.3 The relative merit of the derived and direct marginal models

For any of the marginally specified mean models, β is interpreted as contrasting the log 

mean for subgroups defined by measured covariates. In addition to this marginal 

interpretation of covariate effects, an appealing and interesting feature of the derived 

approach is that it also allows a latent class interpretation (through α) of covariate effects. 

This is scientifically valuable in situations where the scientist is not only interested in 

conducting inferences on variables that affect the mean response for subjects at risk but also 

variables that affect the overall mean response. The direct approach, however, focuses 

primarily on the marginal mean E(Yi|Wi), while treating the latent components E(Yi|Si = 1; 

Wi) and Pr(Si = 1|Wi) which describe how heterogeneity arises in the data as nuisance. But 
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from a technical standpoint, because the parameters in this approach are directly estimated 

from a likelihood, βd̂ir will enjoy well known desirable asymptotic properties associated 

with MLE, compared to βd̂er obtained through the unweighted least squares method. Finally, 

it is worth mentioning that the degree of accuracy of the derived approach depends primarily 

on the order of the Taylor expansion. This may constitute a trade-off between the ease of 

interpretation and the degree of approximation of the derived marginal mean  to 

the fitted mean πi (γ̂)μi(α̂) from the fitted latent class regression models for πi and μi.

3. Numerical studies

3.1 Simulation studies

We conduct a numerical study to evaluate the finite sample performance of estimated 

covariates effects on the marginal mean using both the derived and the direct approaches. 

The results of this evaluation are then compared to those of the APV approach of Albert et 

al. (2011), which we briefly describe. Suppose that v1i is a binary exposure taking value 1 if 

subject i is exposed and 0 otherwise, and v2i a potential confounder. The APV method 

compares the overall means of a subject under exposed and unexposed conditions with the 

confounder integrated out. And because it relies on the integrated mean, we will focus our 

investigation on the behavior of the estimate of the mean ratio for binary exposures

where E(Yi|v1i) = ∫v2i E(Yi|v1i, v2i)dF(v2i), v1i is deterministic (v1i = 1, i ≤ [n/2]; v1i = 0, i > 

[n/2]) and v2i is generated from a standard normal distribution F. Two data generating 

schemes based on ZINB models are considered. Given covariates v1i and v2i, Yi is generated 

first with the latent mean model log{μi} = 1.5–0.5v1i–0.1v2i, and second with the marginal 

mean model log{E(Yi|v1i, v2i)} = 1.5 – 0.5v1i – 0.1v2i. Both schemes set the dispersion 

parameter κ to 0.5 and relate πi, to covariates using the model logit{πi} = 1.5–0.5v1i–0.2v2i. 

Throughout our simulations, we compute the estimate of the MR using the derived approach 

and the direct approach, and the APV. Specifically, the APV and the derived estimates are 

computed using the working regression models log{μi} = α0 + α1v1i + α2v2i and logit{πi} = 

γ0 + γ1v1i + γ2v2i. The MR estimate from the marginal log-logit model (direct approach) 

was obtained using the working model log{E(Yi|v1i, v2i)} = β0 + β1v1i + β2v2i. Estimates of 

the true MR are exp{β̂1,der} and exp{β1̂,dir}, respectively for the derived and the direct 

method. But the APV estimate is computed by integrating out the confounder v2i from the 

fitted marginal mean πi(γ̂)μi(α̂) predicted from individual models of πi and μi. The three 

estimation methods of the mean ratio are compared according to the estimated mean ratio 

(EMR), the relative bias (RB) in percentage, the mean squared error (MSE), and the 95% 

coverage probability (CP) of Wald confidence intervals of the true mean ratio. Finally, all 

simulations are replicated 1,000 times and for sample sizes varying from 50 to 1000.

Results in Table 1 show that the three estimation methods work extremely well in finite 

samples with average estimates of the mean ratio virtually identical to their true values and 
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relative bias below 5%. Moreover, the associated MSEs also decrease with increasing 

sample sizes leading to the conjecture that the invoked estimates are consistent. The derived 

estimation approach based on βd̂er has 95% coverage probabilities of confidence intervals 

higher than the nominal level, resulting from larger standard errors. And this behavior does 

not appear to change with increasing sample sizes. This phenomenon is also apparent in the 

analysis of early childhood indices in Section 3.2, where the parameter estimates from the 

derived mean model appear to be more variable than those from the direct method. This loss 

of precision under working independence assumptions is not uncommon and has been 

previously reported in the literature (Fitzmaurice, 1995).

A simulation study was also conducted for situations where the APV can not be computed, 

for example when the exposure of interest v1i has infinitely many strata or is continuous. For 

such cases, the probability of observing a specific exposure profile is zero rendering the 

APV computationally unfeasible. Table 2 shows that both the derived and the direct 

estimation approaches give satisfactory results for the mean ratio MR = E(Yi|v1i + 1)/E(Yi|

v1i) for one unit increase of the exposure generated from a standard normal distribution. 

These methods provide a decent estimation of the mean ratio in settings where the APV 

method can not be performed. Additional simulations to study the performances of the 

derived and direct estimation approaches when a second order Taylor expansion is assumed 

are given in Web supplementary materials.

3.2 Analysis of dental caries indices in primary dentition

We apply the proposed methods to dental caries data generated from the Detroit study aimed 

at identifying the social, familial, biological, and neighborhood determinants of dental caries 

and periodontal disease among low-income African American children and their caregivers 

(Sohn et al., 2007 and Ismail et al., 2011). Our chief focus in this article is to evaluate the 

effect of the daily amount of sugar intake (DASI), measured in grams per day, on early 

childhood caries, taking into account potential confounders. We are particularly interested in 

answering the following scientific question: do inner city African American children with 

higher levels of sugar intake experience greater caries severity relative to those with lower 

levels of intake in the modern age of fluoride exposure? The outcome of interest is the so-

called dmfs (number of decayed, missing and filled tooth surfaces) index representing the 

cumulative severity of tooth decay for each surveyed child. This index has well-documented 

shortcomings but continues to be instrumental in evaluating and comparing the risks of 

dental caries across population groups (Lewsey and Thomson, 2004). Additional pertinent 

covariates include the child's age, the caregiver's employment status and oral health practices 

(measured by the personal hygiene performance-PHP index with lower scores being 

desirable, described by Podshadley and Haley, 1968).

The data set contains 874 children of which 427 (48.86%) have no caries, resulting in a 

sizeable frequency of zero dmfs counts. Following earlier analyses of caries indices in this 

inner city children population, a traditional zero-inflated negative binomial (ZINB) 

regression model is considered to accommodate excessive zeros and overdispersion due to 

some children having large caries indices (Todem et al., 2012 and Cao et al., 2014). 

Specifically, we postulate that the distribution of dmfs caries index, which we denote by Yi, 
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for a susceptible child i is a negative binomial model with mean μi and dispersion parameter 

κ > 0. And that the latent mean μi and the membership probability πi are related to 

covariates as follows,

(4)

For each child i, Unempli is the caregiver's employment status recoded to binary (Unempli = 

1 if unemployed and 0 otherwise); Agei is the child's age (standardized); SIi is the child's 

sugar intake (standardized version of DASI); and PHPi is the caregiver's PHP index 

(standardized).

Using the parameter estimates of the latent regression models in (4), and assuming a first 

order Taylor expansion of log{πi} around the mean of its covariates, we indirectly estimate 

the overall effects of covariates on the marginal mean πiμi, using the model

(5)

Because the Taylor expansion only invokes linear terms of covariates in πi, which are a 

subset of covariates in μi, the marginal mean model in (5) has the same covariates as the 

working model for the latent mean μi. In addition to the indirect approach, we also estimate 

the covariate effects on the overall mean using the marginal log-logit regression model 

coupled with the maximum likelihood estimation. This approach directly specifies a 

regression model for the overall mean πiμi using the same covariates as in model (5). It also 

assumes a regression model for πi similar to the formulation in (4).

Table 3 presents the MLEs and inference results for the parameters of the latent mean 

regression model in (4), as well as those of the derived and direct covariate effects from the 

marginal mean in (5). Both the derived and the direct approaches produce similar estimates 

and inferences, with the effect of sugar intake on average caries indices being significant at 

5% nominal level. This effect, however, fails to reach significance on both the mean caries of 

the at-risk group and the susceptibility probability, after controlling for caregivers' 

employment and oral hygiene practices. This analysis constitutes an excellent example 

where the classical formulation of zero-inflated count regression models fails to capture the 

overall effect of covariates in contrast with the models that relate the overall mean to 

covariates. This finding is reminiscent of the statement by Preisser et al. (2012) who argued 

that misinterpreting the covariate effects on the mean of the susceptible subpopulation as the 

covariate effects on the overall may lead to the incorrect conclusion that covariate effects are 

not significant and thus can be grossly misleading.

Children with high sugar intakes appear to exhibit worst caries indices on average although 

the size of the effect tends to diminish with age. In Figure 1, we plot the estimates of the 

ratios of mean caries indices for each unit increase in SI (standardized version of DASI) as a 
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function of Age (years) and corresponding 95% joint confidence band, for the derived and 

the direct estimation approach, holding the caregivers' employment and oral hygiene 

practices constant. Note that each unit increase in the standardized version of sugar intake 

(DASI ‒ 126.47)/102.31, corresponds to an increase of about 229g sugar intake per day, 

which is substantial in view of the observed data. Nonetheless, the dramatic effect of sugar 

intake for this nominal increment is seen in infants under the age of 1 who can see their 

average caries indices multiplied by as much as 2. After age 3 years, however, the effect of 

sugar intake vanishes and fails to reach the significance level. This analysis shows that the 

study population clearly has different levels of vulnerability to dental caries from exposure 

to sugar intake. Such information is critical for designing targeted and age-specific oral 

health policies pertaining to dental caries in this inner city children population.

To study the agreement between the two fitted models, we plot in Figure 2 α̂′Vi, with Vi = 

(1, Unempli, Agei, SIi, PHPi, AgeiSIi)′, the estimates of the linear predictors of μi against ηî 

from the marginally specified model, only for susceptible subjects as predicted by these 

models. Susceptible children to caries are classified as such when they have a higher 

posterior probability , where yi is 

the observed caries index. An estimate of the susceptibility status is Ŝi = 1 if 

, with children with observed nonzero dmfs indices being naturally 

classified as being at risk. These estimates generated from the two working models were 

almost identical with 465 among 874 children being classified as being at risk. The R2 

statistic for this plot is 0.72 representing the variation in η̂
i explained by covariates of μi in 

model (4). This level of correlation is consistent with inferential results obtained under the 

derived and direct approaches, which are virtually identical (Table 3). Additional analysis 

was conducted to evaluate whether a second order Taylor expansion of log{πi} around the 

mean of its covariates, would lead to significant effects of higher order terms of covariates 

on the average caries indices. Table W.3 (Web supplementary materials) shows that except 

age, no significant effect of quadratic terms and other higher order interactions on the 

average caries indices were found.

Table 4 presents the results of goodness-of-fit statistics for the two fitted models and those of 

competing formulations. Models that accommodate zero-inflation and overdispersion appear 

to give a better representation for these caries indices. Specifically, the ZINB coupled with 

the marginal and the latent means provides superior fit according to the AIC and BIC 

criteria. Although the latent mean and the marginal mean both have the same specification in 

terms of covariates and link functions, the latent mean model appears to provide a better fit 

to the data under the same mixing probability model.

4. Discussion

This paper has extended the literature by developing two methods which relate the overall 

mean response to covariates but use the heterogeneity implied by the ZI models as a device 

to account for extra zeros. These methods are particularly useful when the overall mean 

response is the target of inference and the latent class parameterization based on the 
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characterization of the population into the at-risk and not at-risk subgroups is scientifically 

implausible. As argued by Mwalili et al. (2007), the marginal distribution resulting from ZI 

models for count data does not always imply that there is an underlying classification of the 

at-risk and not at-risk population, and that the marginal distribution model may well provide 

a reasonable representation of data from a homogeneous population. In the Detroit study, it 

is unclear why some of the minority low-income children would be considered immune to 

dental caries.

From a practical standpoint, these methods can be implemented in commercial software with 

minimal programming effort. They can also be readily extended to latent class models with 

more than two classes. Consider a mixture population with J latent classes with a pmf 

function of the form , where Wi is 

the vector of covariates and Si represents the class membership for subject i. Using the trivial 

expression , the overall covariate effect on 

the marginal mean E(Yi|Wi) can be indirectly estimated from MLEs of the basic regression 

models relating the latent class means E(Yi|Si = j;Wi) and the latent class membership 

probabilities Pr(Si = j|Wi) to covariates. A marginally specified mixture model can also be 

formulated by directly relating the marginal mean E(Yi|Wi) to covariates and formulating 

regression models for the latent class membership probabilities Pr(Si = j|Wi) and all but one 

latent means E(Yi|Si = j; Wi). This extension has wide applications not only to discrete data 

but also to continuous data in which case the probability mass functions are replaced by 

density functions.

The proposed methods have some limitations. The derived estimation approach by relying 

on the working independence assumption of elements of m(α̂, γ̂), is apt to yield less precise 

estimates β̂der. A simple approach to circumvent this limitation might be to estimate β by 

minimizing the sum of the weighted square deviations (Xβ − m(α̂, γ̂))′ D̂−1 (Xβ − m(α̂, γ̂)) 
with D = cov{m(α̂, γ̂)}, in which case β̂der = (X′D̂−1X)−1X′D̂−1m(α̂, γ̂), and cov(β̂der) = 

(X′D̂−1X)−1. This approach, however, can be computationally demanding as it requires 

inverting D̂, a high dimensional matrix of order n × n.

Another limitation of our methodology is that the marginal mean is assumed to be linearly 

related to covariates through the log link function, which may be subject to misspecification. 

Although the methodology is readily applicable to any known link function, the linearity 

assumption may provide a poor approximation of the true function relating continuous 

covariates to the marginal mean. Given that the true underlying relationship between the 

mean response and covariates is usually unknown to the analyst, a general approach that 

does not specify a priori the form of this relationship appears to be the most robust analytic 

strategy. Smoothing techniques such as generalized additive models and spline models can 

then be used to reliably estimate the underlying relationship between the marginal mean and 

covariates (see, for example, Hastie and Tibshirani, 1986; Xue et al., 2004; Lam et al., 2006; 

Lui et al., 2012). This extension and other generalizations of the methodology are outside of 

the scope of this paper and may be the subject of further research.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Calculation of cov{m(α̂, γ̂)}

Using a first order Taylor expansion of mi(α̂, γ̂) around {α, γ}, we have,

where m˙i,α = ∂mi (α, γ)/∂α and m˙i,γ = ∂mi(α, γ)/∂γ.

Using the delta method, we have for i, j = 1, …, n,

where m˙u, α = Vu and m˙u,γ = (1 − πu(γ))Zu with πu(γ) = {1 + exp{−γZu}}−1, u = 1, …, n. 

Applied at α̂ and γ̂, m˙u,α and m˙u,γ take values Vu and (1 − πu(γ̂))Zu, respectively.
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Figure 1. Estimates of mean ratio for each unit increase in DASI (standardized version) as a 
function of the child's age in years and corresponding 95% joint confidence band, for the derived 
estimation approach (a), and the direct estimation approach (b)
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Figure 2. Plot of η̂i from the marginal log-logit model against the linear predictors α̂′Vi from the 
latent log-logit model, for predicted susceptible children (Ŝi = 1)
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Table 4
Goodness-of-fit statistics for alternative models fit to dental caries indices in young 
children

Model # parameters -2 logLik AIC BIC

Homogeneous model

 Poisson 6 8574.8 8586.8 8615.5

 Beta Binomial 7 3787.4 3801.4 3834.8

 Negative Binomial 7 3980.2 3994.2 4027.6

ZI model with latent mean

 Poisson 11 5873.4 5895.4 5947.9

 Beta Binomial 12 3749.1 3773.1 3830.4

 Negative Binomial 12 3744.8 3768.8 3826.1

ZI model with marginal mean∓

 Poisson 11 5901.4 5923.4 5975.9

 Beta Binomial 12 3780.7 3804.7 3862.0

 Negative Binomial 12 3755.0 3779.0 3836.3

∓
Marginal log-logit model
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