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Abstract

Identification of prognostic gene expression signatures may enable improved decisions about 

management of breast cancer. To identify a prognostic signature for breast cancer, we performed 

DNA methylation profiling and identified methylation markers that were associated with 

expression of ER, PR, HER2, CK5/6 and EGFR proteins. Methylation markers that were 

correlated with corresponding mRNA expression levels were identified using 208 invasive tumors 

from a population-based case-control study conducted in Poland. Using this approach, we defined 

the Methylation Expression Index (MEI) signature that was based on a weighted sum of mRNA 

levels of 57 genes. Classification of cases as low or high MEI scores were related to survival using 

Cox regression models. In the Polish study, women with ER-positive low MEI cancers had 

reduced survival at a median of 5.20 years of follow-up, HR=2.85 95%CI=1.25-6.47. Low MEI 

was also related to decreased survival in four independent datasets totaling over 2500 ER-positive 

breast cancers. These results suggest that integrated analysis of tumor expression markers, DNA 

methylation, and mRNA data can be an important approach for identifying breast cancer 

prognostic signatures. Prospective assessment of MEI along with other prognostic signatures 

should be evaluated in future studies.

Introduction

DNA methylation of CpG dinucleotides within promoter regions of tumor suppressor genes 

is an early, stable, heritable event that may be associated with loss of mRNA and protein 

expression and contribute to breast carcinogenesis [1]. Accordingly, analysis of DNA 

methylation profiling in conjunction with expression of mRNA and protein may identify 
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genes that associated with the biology and clinical behavior of breast cancers and aid in 

clinical management [2-4].

Several recent studies employing candidate gene approaches [5-6] or profiling strategies 

[7-18] have identified DNA methylation markers that are associated with breast cancer 

characteristics or clinical outcomes. These studies demonstrate that DNA methylation is 

more frequent in estrogen receptor (ER)-positive compared with ER-negative tumors, 

suggesting that DNA methylation may play a more important role in shaping the biology and 

behavior of ER-positive cancers [7,9,11]. To date, most efforts to identify prognostic 

signatures for breast cancer have relied on mRNA profiling, but recent studies suggest that 

integrated analyses using multiple molecular platforms may be promising [19,7,20-21].

Although many immunohistochemical (IHC) signatures have been described to classify 

molecular subtypes of breast cancer, the five IHC markers that we used have shown 

important etiologic and survival differences for breast cancer [2,22-23]. We reasoned that 

evaluation of methylation profiles using these five-key IHC markers could provide new 

insights on epigenetic markers related to these important pathologic types..

Materials and Methods

Study Population

Subjects were selected from a population-based breast cancer case-control study, the Polish 

Breast Cancer Study (PBCS) [24]. The PBCS included 2386 cases and 2502 age and study 

site matched controls, between ages 20 and 74 years who resided in Warsaw or Łódź, Poland 

from 2000-2003. Breast cancer pathology was reviewed centrally to provide standardized 

classification. We selected 227 PBCS cases with snap frozen and formalin-fixed paraffin 

embedded tumor tissues obtained prior to treatment. Primary treatment (chemotherapy, 

radiation therapy, and hormone therapy) and vital status for up o 10 years after diagnosis 

(mean = 7.8 years, S.D. = 2.1), were collected through review of medical records and 

national databases in Poland.

Assessment of protein markers in TMAs

To develop a prognostic signature for breast cancer based on mRNA expression, we 

performed a cross-platform analysis using a multi-step strategy. Specifically, DNA 

methylation profiling data were first filtered based on their significant relationship with 

protein expression of ER, progesterone receptor (PR), human epidermal Growth factor 

receptor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal Growth factor receptor 1 

(EGFR) by immunohistochemical (IHC) analysis using data from the PBCS, a population-

based case-control study.

Fixed tissues were prepared as tissue microarrays (TMAs) and evaluated for expression of 

ER, PR, HER2, EGFR or CK 5/6 using Automated Quantitative Analysis (AQUA) as 

previously described elsewhere [25,22]. Results of AQUA were highly correlated with 

results of IHC performed on TMAs and assessed visually and staining of whole sections 

performed for clinical management [25]. AQUA or IHC data was used to define tumors that 

were positive for each individual protein marker: ER, PR, HER2, EGFR and CK 5/6 and the 
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scores for each individual marker were combined to approximate correspondence to the 

intrinsic molecular subtypes, including luminal (ER or PR positive), HER2 overexpression, 

and basal (negative for ER, PR and HER 2 with expression of CK 5/6 or EGFR) as 

previously described [25,22].

DNA Isolation and Methylation Analysis of Breast Cancer Tissues

DNA and RNA were isolated by standard protocols simultaneously from 30 mg tissue 

samples. For DNA, 30 mg of frozen tissue was shaved into 400 μl digestion buffer (0.1 M 

NaCl, 0.01 M Tris, pH 8.0, 0.025 M EDTA, pH 8.0, and 0.5% SDS) containing 0.1 mg/ml 

proteinase K. Samples were incubated overnight at 50°C with gentle rocking and purified 

using phenol:chloroform:isoamyl alcohol (25:24:1) and PhaseLock Gel (heavy) tubes for 

DNA extraction. DNA quality and quantity was assessed using agarose gel electrophoresis 

and PicoGreen dsDNA Quantitation Kit (Molecular Probes, Eugene, OR). Upon bisulfite 

conversion, DNA methylation status of 25,578 CpG probes was assayed using the Illumina 

Methylation27 bead-array (Illumina, San Diego CA) using the manufacturer's protocol. Data 

were extracted from the scanned arrays using Bead Studio. Of the 227 cases selected 226 

had methylation data.

RNA Isolation, labeling, and microarray hybridization

Frozen tumor samples were stored in liquid nitrogen (−196°C) prior to nucleic acid 

extraction. RNA was isolated using 350 microliters TRIzol reagent (Invitrogen, Carlsbad, 

CA) and purified on Qiagen RNAeasy Mini columns per manufacturer protocols. RNA 

quantity and integrity was assessed using Nanodrop Spectrophotometry (Thermo Scientific, 

Waltham, MA) and 6000 Nano LabCip Kit on Agilent 2100 BioAnalyzer (Agilent, Santa 

Clara, CA), respectively.

Two-hundred fifty nanograms of input RNA was amplified and labeled using the Illumina 

TotalPrep RNA Amplification kit (Applied Biosystems/Ambion, Austin, TX). The biotin-

labeled cRNAs were quantitated using RiboGreen RNA Quantitation reagent (Molecular 

Probes, Eugene, OR) and 750 ng was hybridized to Illumina HumanRef-8 v2 Expression 

BeadChip microarrays (Illumina, San Diego, CA). BeadChips were scanned in an Illumina 

scanner. Data were deposited with NCBI under GSEXXXXX. Of the 227 cases selected, 

208 had usable mRNA expression data.

Data Analysis

The representativeness of cases with regards to tumor characteristics or risk factors included 

in the analysis was compared with the entire set of cases of the original PBCS population 

using Chi-squared or Fischer's exact tests.

Methylation data were processed in the R statistical environment. Analysis of mRNA 

expression data was processed using the lumi package in Bioconductor (R). These 

methylation markers were correlated with mRNA profiling data to define a Methylation 

Expression Index (MEI) composed of 57 genes whose expression was correlated (typically 

negatively) with DNA methylation.
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To develop a prognostic signature, we classified tumors as negative or positive for five IHC 

markers, ER, PR, HER2, EGFR, and CK5, as previously described [22]. Using the 

methylation data from the Illumina Infinium Human Methylation27 BeadChip, we selected 

markers related to IHC protein expression, using a Bonferroni adjustment threshold of p 

<1.8 e-06. Through this selection process we identified 2227 methylation markers in 1162 

genes, which also had corresponding mRNA expression data (Figure 1). In a separate 

analysis, to identify mRNA markers that had substantial variation, we selected the 3% most 

variable mRNA expression probes from the Illumina HumanRef-8 v2 Expression BeadChip, 

which identified 563 probes corresponding to 541 genes. To we selected 3% most variable 

genes based on gene expression and intersected them with the 1162 genes. The intersection 

resulted in 65 genes. We further selected 57 genes that had spearman correlation absolute 

values of 0.1 or greater.

We then determined the overlap between the 1162 methlylation marker genes associated 

with IHC marker expression, and the 541 genes with variable mRNA expression data, which 

identified 65 genes. Because we were interested in methylation markers that could influence 

mRNA expression, we determined the Spearman correlations coefficients between 

methylation and mRNA expression among the 65 genes. We further restricted the gene list to 

those with an absolute Spearman correlation rho equal or greater than 0.1 (for genes with 

multiple probes we calculated the average), which resulted in 57 genes with corresponding 

mRNA expression data available in the Polish study (Table 1).

MEI scores were related to demographic, prognostic and treatment variables using Chi-

squared or Fischer's exact tests. We assessed the relationship between MEI and overall 

survival among 208 women with breast cancer who had available mRNA expression data. 

The Kaplan-Meier (KM) method stratified by ER-status was used to generate survival curves 

for categories of the MEI [26]. Hazard ratios (HR) and 95% confidence intervals (CI) 

associated with methylation status adjusted for age (in five-year categories), tumor size 

(<2cm vs >2cm) , grade (well/moderately differentiated vs poorly differentiated), and node 

status (positive vs negative), were estimated using Cox proportional hazard models [27]. We 

checked for violations of the proportional hazards assumption for methylation variables and 

covariates by using Schoenfeld residuals. Interaction with MEI and ER was assessed using 

an interaction term in Cox models. Analyses were performed using Stata/SE v11.2 for 

Windows (College Station, TX) and the R statistical environment.

Replication datasets

To validate associations between MEI and breast cancer survival, we analyzed mRNA 

expression data from four independent datasets. The first consisted of a combined dataset of 

cDNA microarrays from 337 breast cancer patients (88 ER-negative and 249 ER-positive) 

ages 26-62 from the Netherlands Kanker Instituut (NKI) [28,4]. A second dataset included 

expression data from GEO GSE6532 Affymetrix Human Genome U133A microarray assays 

from 414 breast cancer patients ages 24- 88 available at the National Center for 

Biotechnology Information http://www.ncbi.nlm.nih.gov/geo/ [29]. In this dataset, 277 

patients were treated with tamoxifen 5 of which were ER-negative, while the remaining 137 

patients were untreated, 86 of which were ER-positive. The third dataset is the TCGA breast 
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cancer dataset [19] and used data on 532 patients (407 of which were ER-positive) ages 

26-90 with both gene expression and survival data. The fourth dataset was from METABRIC 

(Molecular Taxonomy of Breast Cancer International Consortium) with expression data on 

1992 patients of which 1508 were ER-positive (referred to as BT2000) [20]. Gene 

expression data were weighted by the correlation of methylation with expression determined 

in the PBCS dataset. The correlations provided a way to combine gene expression so that a 

gene with less correlation had less contribution to the MEI.

Result

Development of Methylation Express Index (MEI)

Cases included in this study ranged in age from 28-75 years, with a median age of 55 years. 

The percentage of cases positive for IHC markers of interest was 72% for ER, 49% for PR, 

10% for HER2, and 18% for CK5/6 or EGFR (Supplemental Table 1). Patient demographic 

and tumor characteristics for the 227 cases selected for analysis were generally similar to the 

remaining cases in this population, except that tumors were larger (53% of profiled > 2.1 cm 

vs. 42% not profiled; p=0.002), more frequently ER positive (72% profiled vs 65% not 

profiled; p=0.02), and more often node positive (profiled 46% vs. 36% non-profiled 

p=0.008, Supplemental Table 1). Additional analysis restricted to these 208 showed similar 

results but use of the full set of 226 samples with methylation profiling data. 93% of the 

methylation markers found by the 208 samples were also found by the 226 samples, 

however to increase the power of methylation markers we selected relevant markers from the 

full set of 226 samples.

The MEI signature we developed based on these 57 genes was defined as the sum of the 

mRNA expression values of the 57 genes weighted by the Spearman correlation coefficient, 

which we refer to as the MEI (see Methods). Of the 57 genes, 54 showed a negative 

correlation between DNA methylation and mRNA expression (Table 2, Supplemental 
Table 3). The 57 genes identified through the selection process are related to a broad range 

of molecular functions based on Gene Ontology (GO), including binding, catalytic activity, 

enzyme and receptor activities and other processes.

MEI score association with death among ER-positive breast cancer cases in the PBCS

MEI scores approximated a normal distribution (median value = 168.172). We classified 

tumors as high/low MEI using the median value as the cutpoint, to evaluate its association 

with tumor characteristics and prognosis. Low MEI was associated with tumors that were 

poorly differentiated, ER-negative, PR-negative, and HER2-postive (p=<0.001), 

Supplemental Table 3.

Survival analysis based on the classification of the MEI as high/low showed a significant 

association with survival overall; however, analysis stratified by ER status demonstrated that 

a significant association was restricted to ER-positive tumors. Among ER-positive breast 

cancer cases, low MEI was significantly associated with an increased risk of death in KM 

curves (P=0.0088, Figure 2) and in multivariable models adjusted for age, tumor size, node 
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status, grade, primary hormone treatment and secondary radiation treatment (HR=2.85 

95%CI=1.25-6.47, Table 3).

Validation of the MEI score and survival among ER-positive breast cancer cases

We generated a high/low categorical variable of MEI based on the median value of the MEI 

in each of four published mRNA expression datasets and evaluated its relationship with 

clinical outcomes. Among ER-positive breast cancer cases, low MEI was significantly 

associated with an increased risk of death (TCGA dataset P=0.003, BT2000 dataset 

P=1.4×10−5, NKI dataset P=0.01); and increased risk of distant metastases (GSE6532 

dataset P=0.0018) (Figure 3). Tests for interaction of the MEI and ER by dataset showed 

significant interaction only in TCGA (P=0.02) and not in the other datasets (PBCS, P=0.37; 

NKI, P=0.52; BT2000, P=0.06; GSE6532, P=0.81). Evaluation of an unweighted MEI 

showed similar results to the weighted MEI in the datasets PBCS, TCGA and GSE6532, 

however, weighting of the markers gave more consistent findings (See Supplemental Figure 

1),

Discussion

In this report, we describe the development of the MEI, a prognostic signature consisting of 

a weighted combinatorial score of mRNA levels corresponding to 57 genes. These genes 

were selected because they showed significant relationships between DNA methylation 

levels and expression of key protein markers in the Polish Breast Cancer Study. In this study, 

women with ER-positive cancers and low MEI demonstrated reduced survival, and similar 

results were found in four large independent datasets. These results provide further support 

for integrated multi-platform molecular analyses to characterize tumor biology and search 

for prognostic signatures for breast cancer.

Although the MEI is novel, our findings are consistent with other published data. We found 

that the frequency of DNA methylation was higher in ER-positive as compared with ER-

negative breast cancers, similar to prior studies [7,9,11,30]. Two MEI genes are included in 

other well-known prognostic gene expression signatures, including MLPH in the PAM50 

panel and SCUBE2 in the Oncotype DX [2,31]. DNA methylation has also been identified in 

histologically normal tissues surrounding breast cancers, potentially implicating methylation 

as an early mechanism in carcinogenesis [32]. Accordingly, identifying panels of frequently 

methylated genes in breast cancers and surrounding tissues related to critical changes in 

mRNA and protein expression may provide markers of early detection and molecular targets 

for prevention or treatment. Analysis not using the weights showed similar results to the 

weighted sum of the MEI, showing the signature to be robust and support these genes to 

potentially have some important biological function.

Our analysis independently identified 55 genes that are not in well-known gene expression 

signatures (PAM50, OncotypeDx, and MammaPrint), thus are specific to the MEI. These 

genes might provide further clues into the biology of aggressive ER-positive breast cancers. 

Some of the MEI-specific genes are well-known cancer associated-genes, including 

CCND1, MUC1, MMP7 , C10orf116, and KYNU, which are involved in DNA repair, cell 
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proliferation and cancer metastasis, and have been noted to be related to aggressive breast 

cancers [33-44].

Strengths of our study include: 1) analysis of samples from a population-based case-control 

study, with detailed epidemiologic data and long term follow-up and treatment data from 

medical records for these cases; 2) use of high density profiling arrays; 3) availability of 

detailed pathology and IHC data; and 4) validation of our findings in four independent 

datasets. Our study was limited by small numbers of less common subtypes, including ER-

negative breast cancers. Although, some differences were found between the pathologic 

characteristics of Polish cases included in the analysis and the entire case group, 

confirmation of the prognostic significance of the MEI in independent datasets reduces 

concerns about generalizability. In addition, data were lacking from some MEI markers in 

the validation sets, but findings replicated nonetheless, suggesting that the signature is 

robust.

In conclusion, our analysis demonstrated that an integrated biomarker discovery approach in 

which DNA methylation profiling is integrated with mRNA expression and IHC is 

promising for discovering prognostic signatures for breast cancer. Specifically, discovery 

approaches that identify genes which show important associations at the DNA, RNA and 

protein levels may improve the specificity of signatures and limit the identification of chance 

findings. Future prospective studies are needed to assess the performance of the MEI along 

with other signatures to determine how best to employ these tools to direct patient care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis strategy to define the 57 gene Methylation Expression Index (MEI), using data 

from 27,578 methylation markers and 22,184 mRNA expression markers from the Polish 

breast cancer study
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Figure 2. 
Kaplan-Meir curves by low and high MEI overall survival for 208 breast cancer cases from 

the Polish breast cancer study
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Figure 3. 
Kaplan-Meir curves and low and high MEI among ER-positive breast cancers and 

association with overall or disease metastasis free survival in four independent datasets
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Table 1

Summary of the methylation markers and whether they are CpG islands significantly associated with tumor 

IHC marker expression at p< 1.813e-06

IHC marker count notCPGI CPGI

ER 922 574 348

PR 646 394 252

HER2 203 127 76

EGFR 286 167 119

CK5 124 64 60
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Table 2

Weights based on 208 breast cancer cases from the Polish breast cancer study for the 57 genes identified from 

methylation analysis that have corresponding mRNA expression data and used as weighting factors for 

calculation of prognostic signature

Gene Gene name weights

DNALI1 dynein, axonemal, light intermediate chain 1 0.7370

CALML5 calmodulin-like 5 0.6845

HCLS1 hematopoietic cell-specific Lyn substrate 1 0.6748

SERPINA5 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 5 0.6397

PDZK1 PDZ domain containing 1 0.6325

AGR3 anterior gradient 3 0.6307

PLAT plasminogen activator, tissue 0.6215

SCUBE2 signal peptide, CUB domain, EGF-like 2 0.6146

KYNU kynureninase 0.6116

SCNN1A sodium channel, non-voltage-gated 1 alpha subunit 0.5683

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 0.5480

REEP6 receptor accessory protein 6 0.5400

STC2 stanniocalcin 2 0.5338

C8orf4 chromosome 8 open reading frame 4 0.5319

CAP2 CAP, adenylate cyclase-associated protein, 2 (yeast) 0.5118

CFB complement factor B 0.5039

C1orf64 chromosome 1 open reading frame 64 0.5024

IL20 interleukin 20 0.4972

CD247 CD247 molecule 0.4967

FABP7 fatty acid binding protein 7, brain 0.4952

CCND1 cyclin D1 0.4827

AKR7A3 aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase) 0.4678

TFF1 trefoil factor 1 0.4575

TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) 0.4360

ZG16B zymogen granule protein 16B 0.4226

MMP7 matrix metallopeptidase 7 (matrilysin, uterine) 0.3514

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial) 0.3425

CAMK2N1 calcium/calmodulin-dependent protein kinase II inhibitor 1 0.3393

GZMA granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3) 0.3298

ATP6V1B1 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B1 0.3214

GLIPR2 GLI pathogenesis-related 2 0.3054

PRSS8 protease, serine, 8 0.2737

MLPH melanophilin 0.2733

C10orf116 adipogenesis regulatory factor 0.2715

THRSP thyroid hormone responsive 0.2706

CRYAB crystallin, alpha B 0.2598

ALOX5AP arachidonate 5-lipoxygenase-activating protein 0.2439
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Gene Gene name weights

IFITM3 interferon induced transmembrane protein 3 0.2414

CD248 CD248 molecule, endosialin 0.2359

CXCL12 chemokine (C-X-C motif) ligand 12 0.2344

SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 0.2328

CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase 0.2233

CST3 cystatin C 0.2154

HLA-DRA major histocompatibility complex, class II, DR alpha 0.2039

SCGB3A1 secretoglobin, family 3A, member 1 0.1925

S100A7 S100 calcium binding protein A7 −0.1892

SLPI secretory leukocyte peptidase inhibitor 0.1823

GP1BB glycoprotein Ib (platelet), beta polypeptide −0.1781

S100A9 S100 calcium binding protein A9 0.1761

CCL8 chemokine (C-C motif) ligand 8 −0.1726

SMOC2 SPARC related modular calcium binding 2 0.1738

TFF3 trefoil factor 3 (intestinal) 0.1617

MSLN mesothelin 0.1611

MUC1 mucin 1, cell surface associated 0.1539

PRSS23 protease, serine, 23 0.1518

TMEM119 transmembrane protein 119 0.1026

PI15 peptidase inhibitor 15 0.1024

*These genes had more than one methylation marker associated with the mRNA expression target and the average of the sites was used to calculate 
the weighted Rho value.
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Table 3

Hazard ratios (HR) and 95% confidence intervals (CI) between low and high MEI among ER-positive breast 

cancers and risk of death in the Polish breast cancer study

Person years Alive Dead HR
* 95%CI P-value HR

** 95%CI P-value

MEI

    High 697.82 81 13 1.00 1.00

    Low 375.49 35 17 2.59 1.22-5.49 0.01 2.85 1.25-6.47 0.01

Invasive grade

    Well/moderately differentiated 927.94 102 25 1.00 1.00

    Poorly differentiated 145.37 14 5 1.55 0.58-4.16 0.38 0.98 0.34-2.80 0.97

Tumor size, CM

    0.1-2.0 582.56 63 17 1.00 1.00

    2.1+ 490.75 53 13 1.39 0.75-2.57 0.29 0.95 0.43-2.07 0.89

Nodal status

    Negative 564.70 65 13 1.00 1.00

    Positive 508.61 51 17 1.70 0.79-3.65 0.17 1.79 0.79-4.03 0.16

Hormone therapy- primary treatment

    No 226.89 23 10 1.00 1.00

    Yes 846.41 93 20 0.51 0.23-1.14 0.10 0.42 0.18-0.99 0.05

Radiation therapy -secondary treatment

    No 771.11 86 18 1.00 1.00

    Yes 302.20 30 12 2.66 1.34-5.30 0.005 2.93 1.34-6.41 0.01

*
Cox-proportional hazard ratios adjusting for age in 5-year intervals

**
Cox-proportional hazard ratios adjusting for age in 5-year intervals, tumor size, node status, grade, treatment regimen, and MEI
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