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Precise and selective sensing 
of DNA-DNA hybridization by 
graphene/Si-nanowires diode-type 
biosensors
Jungkil Kim1, Shin-Young Park2, Sung Kim1, Dae Hun Lee1, Ju Hwan Kim1, Jong Min Kim1, 
Hee Kang3, Joong-Soo Han2, Jun Woo Park1, Hosun Lee1 & Suk-Ho Choi1

Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is 
very limited because of high noise signals, originating from small source-drain current of the single 
Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-
modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive 
and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic 
oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated 
as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is 
hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, 
resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 
to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing 
does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. 
Similar results are observed from photoluminescence microscopic images and spectra. The biosensors 
show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times 
endurance tests. These results are very promising for their applications in accurate, selective, and stable 
biosensing.

Silicon nanomaterials widely known as one of the most biocompatible materials have been successfully applied to 
various kinds of bionics fields such as imaging cells, biosensors, cancer theranostics, bio-integrated electronics, 
and drug deliveries1–8. Especially, the application of silicon nanowires (Si NWs) to biosensors have received much 
attention due to their possible detection of biological species such as DNAs, RNAs, proteins, virus, and others9–15. 
The unique structural properties of Si NWs enable them to serve as a building block for biological sensors by 
monitoring the change of electrical current. The binding of bio-species with the surface of Si NWs can bring 
about accumulation or depletion of charge carriers (negative electrons or positive holes), thereby affecting the 
variation of the electrical properties in Si NWs, which is more sensitive than in bulk Si because of high surface/
volume ratio of Si NWs, resulting from their ultrathin diameter11,12,14.

Recently, there have been several reports on field-effect-transistor (FET)-based electrochemical DNA sensors 
employing conducting polymers and single planar Si NW9,11,14,16, that are label-free, and real-time-monitoring 
available. However, these sensors generally require large amount of DNA solution for the differential pulse 
voltammetry because they should be soaked in the solution for this technique. The planar-shape active region of 
the sensors limits their sensitivity. The single Si-NW FET sensors are fundamentally three-electrode structures, 
which requires complicated fabrication processes for the gating channels. Due to the single wire-structure, the 
responsivity and the absolute-current change stick around several tens of percent and order of nA, respectively. 
No such limitations exist in vertical Si-NW bundles because the sum of the current flowing through Si-NW 
arrays is much larger than the current in the single planar Si NW, and the noise current of Si NW arrays can be 
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sufficiently ignored, resulting in great enhancement of the sensitivity and responsivity17. Graphene and carbon 
nanotubes have been also employed in FET-type biosensors, but the detection range of DNA is just down to 
100 nM18, and the current response is in the orders of nA and μ​A19.

Here, we first report remarkable sensitivity and selectivity of the graphene/surface-modified-Si-NWs 
vertical-junction diodes in detecting the hybridization of oligonucleotides. Conventional nucleic-acid-based 
diagnostics by using real-time polymerise-chain-reaction facilities require large volume of space for set up, which 
makes it impossible for the technique to be realized into into portable devices and nano-scale information pro-
cessing systems. In contrast, the approach for DNA diognostics by employing graphene/Si-NWs biosensors can 
extremely reduce them to be portable and integrable.

The principal processes and mechanism for the selective and precise DNA detection by graphene/Si-NWs 
vertical-junction diodes are described as follows. A probe sequence (p-ss oligonucleotide, tta gcg cgg agt tgg gag 
cgg gag tcg) and a target sequence, which is complementary to the probe (t-ss oligonucleotide, cga ctc ccg ctc 
cca act ccg cgc taa), and dummy single strand oligonucleotide (tct tgc aca agt tta aga ggg aaa gga) (d-ss oligonu-
cleotide) are employed in this work20. The p-ss oligonucleotide is utilized as DNA acceptors for hybridization 
to t-ss oligonucleotide. The d-ss oligonucleotide having mismatched nucleotide sequences to those of p- and 
t-ss oligonucleotides is utilized for the negative control experiments. As shown in Fig. 1a, a solution containing 
p-ss oligonucleotide is dropped on the area without graphene in the devices, by which the surface of Si NWs is 
soaked, resulting in the decoration of Si NWs with p-ss oligonucleotide. The t- or d-ss oligonucleotide is then 
dropped on the devices. The t-ss oligonucleotide is well combined with the p-ss oligonucleotide on the surface 
of Si NWs because their nucleotide sequences are complementary with each other, but this cannot happen for 
d-ss oligonucleotide, as shown in Fig. 1b. Based on this mechanism, the graphene/Si NWs diodes are employed 
as biosensors for selectively and precisely detecting DNA-DNA hybridization. The electrical current of the bio-
sensors is increased only when the t-ss oligonucleotide is dropped on the p-ss oligonucleotide-decorated devices. 
Photoluminescence (PL) microscopy and spectroscopy of the oligonucleotide-decorated Si NWs also proves the 
DNA-sensing mechanism.

Figure 1.  Schematic illustrations describing structure and detecting mechanism of graphene/Si-NW-arrays 
biosensors. (a) Schematic diagram showing the mechanism of graphene/Si-NW-array biosensors for selectively 
detecting p- and t-, and d-ss oligonucleotides. The Si NWs are decorated with p-ss oligonucleotide in advance 
for the sensing tests of t- or d- oligonucleotide. (b) Schematic diagram of complementary ss oligonucleotide 
pairs of p- and t-ss oligonucleotides, and incompatible ss oligonucleotide pairs of p- and d-ss oligonucleotides.
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Results
Fabrication of surface-modified Si NWs.  The fabrication procedures of graphene/Si-NWs biosensors are 
schematically illustrated in Fig. 2. The Si NWs were fabricated by metal-assisted chemical etching (MaCE) using 
the gold film with hole arrays as an etching catalyst21,22. The pattern of Au film was duplicated from the anodic 
aluminum oxide (AAO) template22. Figure 3a shows a typical scanning electron microscopic (SEM) image of 
the Au film on the Si substrate (p-type, resistivity, ρ =​ 1∼​10 Ω cm) before MaCE. The Au film-loaded p-type Si 
substrate was immersed in a mixture solution of hydrofluoric acid (HF) and hydrogen peroxide (H2O2) (volume 

Figure 2.  Schematic diagrams describing fabrication processes of graphene/Si-NWs biosensors. Schematic 
diagram of fabrication processes at each step: 1) preparing vertically-aligned Si-NW arrays by MaCE, 2) 
modifying the surface of Si NWs for sensing DNAs, 3) forming the vertical junction of graphene/surface-
modified Si NWs, and 4) finally completing graphene/Si-NWs vertical-diode-type biosensors by depositing top/
bottom metal contacts. These fabrication steps are detailed in the text.

Figure 3.  SEM images at each step for fabricating of graphene/Si-NWs biosensors. Planar SEM images 
of (a) Au mesh with hole arrays on the Si substrate, (b) Si-NW arrays prepared by MaCE, and (c) uniformly-
transferred graphene on the top of Si NWs. (d) Tilted SEM image of graphene/Si-NWs biosensors, clearly 
showing the uniform contact between graphene and Si NWs.
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ratio; HF:H2O2 =​ 1:1) for around 3 min at room temperature (RT) to produce Si NWs. The prepared sample was 
washed out by deionized (DI) water and was subsequently moved into aqua regia (volume ratio; HCl:HNO3 =​ 3:1) 
to remove the Au film selectively. Si NWs were cleaned in DI water again. Figure 3b is a plan-view SEM image 
confirming the formation of vertically-aligned Si NW arrays.

In previous studies, amine groups and glurataldehyde were employed for biomolecule immobilization 
on silicon surfaces23–25. The aligned vertical Si-NW arrays were soaked into piranha solution (volume ratio; 
H2SO4:H2O2 =​ 3:1) for the passivation of Si NW surface with amine group and glutaraldehyde, thereby form-
ing the hydroxide (-OH)-terminated Si NWs that are easily reactive with amine (-NH2) groups, as shown in 
Fig. 2. The sample was then coated with the 3-aminopropyl triethoxysilane (3-APTES) solution to form the 
amine-terminated surface. Subsequently, 3-APTES solution was replaced by glutaraldehyde solution to form glu-
taraldehyde linkers on the surface of Si NWs, which makes it possible for DNAs to be covalently bonded with the 
surface-modified Si NWs26,27. For the immobilization of p-ss oligonucleotide on the surface-modified Si NWs, the 
p-ss oligonucleotide is functionalized with –OH28.

Fabrication of graphene/Si NWs biosensors.  For formation of uniform top electrode on Si NWs, poly 
methyl methacrylate (PMMA)-coated chemical-vapor-deposition (CVD) graphene was transferred onto tips 
of surface-modified Si NWs, dried by nitrogen gun, and baked on the hotplate at 75 °C for 4 h. The graphene 
sheet should not cover the entire Si NW tips to secure some part of them, on which the DNA solution can be 
dropped for DNAs to be spread on the entire surface of Si NWs. The Raman spectrum of graphene on the SiO2 
substrate shows the D/G ratio of ~0.1 and the G/2D ratio of ~0.47, indicating high-quality monolayer graphene 
(Supplementary Fig. S1)29. Then, the PMMA on graphene was selectively removed in acetone for 1 h. In Fig. 3c, 
the regions of Si NWs with/without graphene are clearly contrasted. A cross-sectional SEM image in Fig. 3d 
confirms well-transferred graphene onto the tips of Si NW while uniformly-contacted. Finally, 50-nm-thick Au 
film was deposited on graphene to form a robust metallic top electrode. The molar concentration of each oligonu-
cleotide solution was controlled from 0.1 to 1000 nM (0.001–10 pmole for 10 μ​L). 10-μ​L solutions of the prepared 
oligonucleotides were dropped onto the surface of the device without the top graphene layer.

Electrical response.  The graphene/Si-NWs diodes show typical asymmetric I-V curves (Supplementary Fig. S2).  
The conductivity under forward bias is almost twice as large as that under reverse bias, originating from the forma-
tion of vertical quasi-Schottky junction between graphene and surface-modified Si NWs (Supplementary Fig. S3).  
The I-V curves were characterized for various molar fractions of each oligonucleotide under a forward bias 
(Supplementary Fig. S4 for the full forward-biased I-V curves). Sensor performances were analyzed at 1 V, which 
belongs to the active bias region. As shown in Fig. 4a, the current increases gradually as the mole fraction (np) of 
p-ss oligonucleotide increases from 10 up to 500 nM, and above 500 nM, it saturates. The current saturation might 
come from almost full coverage of the p-ss oligonucleotide on the surface of Si NWs. We studied the effect of the 
t-ss oligonucleotide mole fraction (nt) on the sensing properties for the device treated by p-ss oligonucleotide at 
a np of 1000 nM. For the positive control experiments, the solutions containing t-ss oligonucleotide with various 
mole fractions were dropped on the device. As shown in Fig. 4b, the device also shows a gradual increase in 
current as nt varies from 0.1 to 500 nM, and above 500 mM, the current almost saturates, which can be similarly 
understood as in the variation of np. The current is enhanced by 0.1 mA (~​19% increase) even at an extremely-low 
mole (0.1 pM) of t-ss oligonucleotide, indicating very-sensitive biosensing. The current increases to ~​0.76 mA at 
the saturation point, corresponding to ~​120% enhancement. For negative control experiments, solutions con-
taining d-ss oligonucleotide with various mole fractions (nd) were dropped on the device. This resulted in the 
decrease of the current. For example, the current decreases by ~​4 and ~​30% at nd =​ 10 and 40 nM, respectively. 
However, by further increase of nd, no significant nd dependence is observed, as shown in Fig. 4b.

The increase of the current can be explained by surface-doping effect of DNAs. When the p-ss oligonucleo-
tide is attached on the surface of Si NWs, the DNA oligonucleotide, acidic bio-species, attract electrons from Si 
NWs11, thereby injecting holes into the valence band of Si NWs. Even when t-ss oligonucleotide is hybridized to 
p-ss oligonucleotide on the surface of Si NWs, the holes will be also donated into the Si NWs because the hybrid-
ization of these oligonucleotides is due to hydrogen bonds formed by base paring without any exchange of charge 
carriers. As a result, the density of holes in the valence band increases, thereby shifting the Fermi level to the 
valence band, resulting in the increase of the current through the biosensor. On the other hand, the unhybridized 
d-ss oligonucleotide is chemically more unstable than the hybridized DNAs, and they can be therefore folded and 
precipitated onto the unspecific surface of Si NWs. The agglomerated and precipitated d-ss oligonucleotide on the 
surface of Si NWs can donate a number of electrons to Si NWs, resulting in the decrease of current30, as shown 
in Fig. 4b. The precipitation of d-ss oligonucleotide lump is also confirmed by a PL microscopic image that will 
be shown below.

The extremely-high sensitivity of the graphene/Si NW biosensors can be understood by following two factors. 
As one factor, graphene and vertically aligned Si NW arrays act as the efficient carrier collector and the active 
material, respectively. Graphene can be well contacted with Si NW tips without any other coverage of side sur-
faces of Si NWs, which makes the sensors more efficient than shown in the previous reports17. As another factor, 
the extremely-high density (~109/cm2) and thin diameter (~50 nm) of the Si NWs are very beneficial to the gen-
eration of the large charge carriers from the surface of Si NWs.

Endurance.  The endurance properties of the graphene/Si NWs biosensors were studied to check their detec-
tion repeatability for the t-ss oligonucleotide. Double stranded oligonucleotide is negatively charged because it 
possesses the negatively charged phosphate groups. When sodium chloride is added to the solution of double 
stranded oligonucleotide, the sodium and chloride ions are separated in the solution. Therefore, the positive 
sodium ions are attached to the negative charged phosphate group of the double stranded oligonucleotide, thereby 
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neutralizing the negative charges. Eventually, the double stranded oligonucleotide is dehybridized, resulting in the 
generation of the two single stranded oligonucleotides. The hybridized oligonucleotides were detached from the 
surface of Si NWs by washing out the device in a solution of sodium chloride at 10 mM and subsequently drying 
it in the air, resulting in denaturation of the double stranded oligonucleotides. 1000 nM p-ss oligonucleotide was 
then dropped on the device, and the current was measured to check whether the combined double stranded p- 
and t-ss oligonucleotides were well dehybridized and t-ss oligonucleotide was removed with almost no damage 
on the device. Subsequently, 0.1 nM t-ss oligonucleotide was dropped to be hybridized to p-ss oligonucleotide on 
the surface of Si NWs, which resulted in the increase of the current to the level recorded in the previous meas-
urement. These consecutive processes were repeated for ten times. As shown in Fig. 4c, the conductivity change 
is very uniform with standard deviations ranging ~1 to ~10% through the cyclic experiments for ten times. These 

Figure 4.  Responsivity of graphene/Si-NWs biosensors. (a) Current of a graphene/Si-NWs biosensor 
as a function of mole fraction of p-ss oligonucleotide. (b) Current of a graphene/Si-NWs biosensor as a 
function of mole fraction of t- or d-ss oligonucleotide loaded on the surface of NWs decorated with 1000 nM 
p-ss oligonucleotide in advance. The error bars in (a,b) indicate 6%. (c) Endurance histogram for ten-times 
consecutive sensing of 0.1 nM t-ss oligonucleotide loaded on the surface of NWs decorated with 1000 nM 
p-ss oligonucleotide in advance. The hybridized p- and t-ss oligonucleotides were well dehybridized and t-ss 
oligonucleotide was removed without any damage on the device by treatment with sodium chloride.
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results suggest that the endurance of graphene/surface-modified-Si-NWs bio-sensor shows almost negligible 
degradation even when DNAs with extremely-low molar fraction down to 0.1 nM are detected.

PL response.  PL microscopy and spectroscopy were performed to check whether the t-ss oligonucleo-
tide is well hybridized to the p-ss oligonucleotide-decorated Si NWs. The p-, t-, and d-ss oligonucleotides have 
their-own distinguished fluorescence labels of red, orange, and green colors, respectively. For labelling, different 
fluorophores are attached to the oligonucleotides. Figure 5a shows PL microscopic images of Si NWs decorated 
with p-ss oligonucleotide only and the hybrids between p-ss oligonucleotide and t- or d-ss oligonucleotide. The 
p-ss oligonucleotide emits red PL. When t-ss oligonucleotide is added, orange-color PL is clearly observed over 
whole area. On the other hand, when d-ss oligonucleotide is added, the red-color PL is not changed even though 
some scattered green PL is observed from several spots of Si NWs, possibly originating from agglomerated and 
precipitated d-ss oligonucleotide-lumps. This indicates that d-ss oligonucleotide cannot be hybridized to p-ss 
oligonucleotide.

To clarify the origin of each color from the PL images, the PL spectra were measured for the Si NWs decorated 
with the three different oligonucleotides species by using a visible laser (λ​ =​ 488 nm) as the excitation source. 
Figure 5b shows PL spectra of solutions containing solely p- oligonucleotide and its mixture with t- or d-ss oli-
gonucleotide. The PL of p-ss oligonucleotide solution is peaked at ~591 nm with a shoulder at ~650 nm, corre-
sponding to a range of red color. The PL of t-ss oligonucleotide solution is peaked at ~557.5 nm with a shoulder 
at ~600 nm, corresponding to a range of orange color. When the solution of p-ss oligonucleotide is mixed with 
that of t-ss oligonucleotide, the PL of t-ss oligonucleotide is blue-shifted by ~2.5 nm, as more clearly shown in the 
inset, together with an enhancement of the shoulder at ~600 nm. To further confirm the slight blue shift, the PL of 
mixture solution of p- and t-ss oligonucleotides was measured for various mixing ratios (Supplementary Fig. S5).  
The peak position of PL spectra is gradually blue-shifted as the relative mole fraction of p-ss oligonucleotide 
increases. These sequential peak shifts seem to be strongly related with the hydridization between p- and t-ss 
oligonucleotides, possibly resulting in the energy transfer between both kinds of DNAs30–33. However, the PL 
microscopic image is still seen as orange color because the PL at ~557.5 nm is dominant. On the other hand, the 
PL of d-ss oligonucleotide solution is peaked at ~547 nm, corresponding to green color. When the solution of p-ss 
oligonucleotide is mixed with that of d-ss oligonucleotide, two separated PL peaks corresponding to each oligo-
nucleotide are observed without any significant peak shift. These results are consistent with the data of absorption 
spectra (Supplementary Fig. S6). The absorption peak of the p- and t-ss oligonucleotides mixture is same with 
that of t-ss oligonucleotide. In contrast, the absorption spectrum of p- and d-ss oligonucleotides mixture shows 
two separated peaks clearly corresponding to each of them. These results further confirm that dummy oligonu-
cleotide cannot be hybridized to p-ss oligonucleotide.

Discussion
We demonstrated selectivity, accuracy, and stability of graphene/surface-modified vertical-Si-NWs biosensors for 
specific oligonucleotides sensing, originating from the unique properties of vertically-aligned Si NWs, including 
large surface area. The graphene in the biosensors acted as a role of carrier collecting layer on the Si-NW arrays, 
resulting in the dramatic enhancement of the sensitivity. The p-ss oligonucleotide as DNA receptors and the t-ss 
oligonucleotide as DNA donors, having complementary nucleotide sequences to the p-ss oligonucleotide, and 
d-ss oligonucleotide as negative control DNAs, having mismatched nucleotide sequences with those of p-ss oli-
gonucleotide, were employed to detect the DNA-DNA hybridization between specific oligonucleotides with the 
graphene/Si-NWs diode-type biosensor by analyzing the electrical and PL responses. The biosensors showed the 
responsivities of 19 to 120% for 0.1-pM to 1000-nM t-ss oligonucleotide, which is remarkably high compared to 
those previously obtained from single Si-NW device. The excellent reusability of the biosensors was confirmed by 
ten-times endurance tests. The PL microscopic image and spectra of the DNAs with PL markers also confirmed 
the mechanism of the selective DNA sensing by the graphene/Si-NWs biosensors.

Our approach utilizes graphene and vertically-aligned Si NW arrays for the building block of the prototypic 
biosensors, which enables the electrically-sensing DNA devices with outstanding sensitivities to be extremely 
reduced. The achievement of high-performance graphene/Si-NWs biosensors in view of the detectable molar 
fraction and the current sensitivity, as compared to the previously-reported graphene-based DNA-sensing per-
formances18,19, are therefore expected to open exciting opportunities for their diagnostic applications as a portable 
type or by their integration into the information-processing systems.

Methods
Fabrication of Au mesh.  The AAO disks were prepared in an electrochemical shell containing an oxalic 
acid solution at 40 V for 24 hr, and the barrier layer of AAO was then selectively removed in a solution of 5% 
H3PO4 for 30 min at 30 °C. The barrier-layer-opened AAO was utilized as the Au-mesh patterning templates. A 
25-nm Au film was deposited on the opened barrier-layer side of AAO. Subsequently, the AAO disk was removed 
in a KOH solution, thereby leaving only the Au mesh with aligned hole arrays. The KOH solution was then 
replaced to DI water. The Au mesh as catalyst of MaCE was transferred on the p-type Si substrate.

Preparation of graphene.  Large-area graphene layers were grown on 70-μ​m-thick Cu foils in a 
graphite-heater-based CVD quartz tube furnace at a growth temperature of 1000 °C with 10-sccm H2 and 
20-sccm CH4 flowing at a pressure of 3 Torr during growth34,35. The graphene/Cu stack was spin-coated with 
PMMA, and the Cu was then etched in a nickel etchant for 30 min. The graphene/PMMA stack is then placed in 
DI water before transferring to the surface-modified Si NW arrays.

Preparation and handling of oligonucleotide.  The synthesized oligonucleotides with specific sequences 
and fluorescent labels are provided from BIONEER Corporation. The purchased oligonucleotide was dispersed 
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Figure 5.  PL microscopic mapping images and spectra of DNA-decorated Si NWs. (a) Planar PL 
microscopic images and (b) spectra of Si NWs decorated with p-ss oligonucleotide, p- and t-ss oligonucleotides, 
and p- and d-ss oligonucleotides. The PL spectra of separate t- and d-ss oligonucleotides are also plotted for 
the comparisons with those of the hybridized oligonucleotides. The marked area in the PL microscopic image 
indicates green PL scattered from several spots of Si NWs after d-ss oligonucleotide is added and the inset in the 
PL spectra clarifies the peak shift. The scale bars indicate 15 μ​m.
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in DI-water of controlled volumes for making p-ss, t-ss, and d-ss oligonucleotide solutions at a molar fraction of 
1000 nM, which was further diluted to make the solutions in the range of molar fraction from 0.1 to 500 nM. 10 μ​L  
of the prepared solution was taken by using a micropipette, and dropped onto the opened surface of the device 
without the top graphene layer, so that the solution could be permeated into the gap of surface modified Si NW 
arrays (Supplementary Fig. S7).

Measurements.  I-V measurements to monitor the electrical signals of graphene/Si NWs biosensors were 
conducted using a Keysight B1500A semiconductor analyzer controlled by an installed program. The probe station  
was employed for the precise electrical contact on the top- and bottom-electrodes. The PL spectra were measured 
at RT by using a 488 nm line of Ar ion laser as an excitation source. The PL microscopy was carried out at RT 
using an epifluorescence microscope (Nikon Instruments). The light beam was focused on the sample surface 
through a microscope objective with magnifications between 20x and 40x.
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