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Substantial Reduction of 
Parenchymal Cerebral Blood Flow 
in Mice with Bilateral Common 
Carotid Artery Stenosis
Yorito Hattori1, Jun-ichiro Enmi2, Satoshi Iguchi2, Satoshi Saito3, Yumi Yamamoto3, 
Kazuyuki Nagatsuka1, Hidehiro Iida2 & Masafumi Ihara1,3

The bilateral common carotid artery stenosis (BCAS) mouse model, which replicates chronic cerebral 
hypoperfusion and white matter ischemic lesions, is considered to model some aspects of vascular 
cognitive impairment. Cerebral blood flow (CBF) changes in the brain surface post-BCAS have been 
demonstrated by laser speckle flowmetry, but CBF levels in the brain parenchyma remain unknown. 
Adult C57BL/6J male mice were subjected to BCAS using external microcoils. Brain magnetic resonance 
angiography (MRA) was conducted to visualize the intracranial main arteries while arterial spin labeling 
(ASL) was used to measure cortical and subcortical parenchymal CBF levels before and after BCAS. 
Brain MRA showed anterior circulation flow was substantially decreased until 14 days post-BCAS, which 
gradually but incompletely recovered over the following 14 days, with probable growth of collaterals 
from the posterior cerebral artery. ASL showed that cortical and subcortical parenchymal CBF remained 
decreased at approximately 50% of the baseline level during 1 and 14 days post-BCAS, recovering to 
approximately 70% at day 28. CBF levels in the parenchyma were lower than the cortical superficial 
region in the BCAS model and remained decreased without recovery during the first 2 weeks post-
BCAS. These results suggest that the BCAS model reliably replicates chronic cerebral hypoperfusion.

Vascular cognitive impairment (VCI) is the second most common form of dementia after Alzheimer’s disease 
(AD)1, and the prevalence of mixed dementia with clinical and pathological features of both VCI and AD is 
increasing as a cause of age-related senile cognitive impairment2,3. Vascular factors are thought to be important 
mechanistic components of age-related cognitive impairment. To investigate the molecular mechanisms, sev-
eral rodent models have been established4, including bilateral common carotid artery stenosis (BCAS) model5–7,  
reliably demonstrating chronic cerebral hypoperfusion, white matter ischemic damage (e.g., rarefaction and gliosis),  
and spatial working memory impairment. Using the BCAS model, previous reports have measured cerebral blood 
flow (CBF) in the brain surface containing subsurface microvessels in a depth of up to approximately 0.5 mm by 
laser speckle flowmetry (LSF) or laser doppler flowmetry8. Consequently, the CBF profiles in deep brain struc-
tures, such as the white matter and caudoputamen, after BCAS surgery remains unknown and, thus may not 
replicate those observed in subcortical VCI patients with low cerebral parenchymal CBF especially in the frontal 
lobe. We hypothesized that parenchymal CBF was lower than the brain surface or subsurface CBF after BCAS 
surgery and thus measured regional CBF levels using arterial spin labeling (ASL) magnetic resonance (MR) per-
fusion imaging and brain MR angiography (MRA).

Results
Physiological Parameters.  Heart and respiratory rates were monitored during magnetic resonance imag-
ing in all mice. Heart rates ranged 239‒​578 beats per minute, and respiratory rates 30‒​109 breaths per minute.
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Brain MRA.  BCAS surgery showed that the MRA signal in the anterior circulation including the internal 
carotid artery, anterior cerebral artery and middle cerebral artery, substantially decreased from day 1 to 14 after 
surgery, with incomplete recovery of the signal over the following 2 weeks (Fig. 1). These results indicate that CBF 
in the anterior circulation was acutely reduced from day 1 after BCAS, but that cortical superficial CBF was more 
likely gradually compensated for by collateral growth from the posterior to anterior circulation.

Temporal Profiles of Regional CBF Recorded by ASL.  To explore CBF in the deep brain structures 
after BCAS, we performed ASL before and after BCAS (Fig. 2). Cortical and subcortical parenchymal CBF levels 
changed in a similar manner over 28 days after BCAS. We first evaluated temporal CBF profile in percentage 
with baseline set at 100%. At day 1, cortical and subcortical parenchymal CBF acutely decreased to 55.4% and 
52.6% of their respective baseline levels in the coronal section at the bregma, and to 51.2% and 48.6% at the hip-
pocampal level, remaining nearly unchanged until day 14. At 14 days, the cortical and subcortical parenchymal 
CBF levels were 52.1% and 52.0% of the respective baseline levels at the bregma, and 50.9% and 51.2% at the 
hippocampal level. At 28 days, the cortical and subcortical parenchymal CBF levels recovered to 71.1% and 69.8% 
of the respective baseline levels at the bregma, and to 70.3% and 69.9% at the hippocampal level; however, not 
indicating CBF significantly increased at day 28 compared to day 14 (day 14 vs. day 28; p >​ 0.05). The CBF was 
relatively unchanged over 28 days after sham surgery (Fig. 2c,d). Cortical surface CBF, assessed with LSF, showed 
reduction after BCAS surgery, but to a lesser degree in comparison to parenchymal CBF, and gradually recov-
ered as early as day 1 (Fig. 2c)9. We subsequently evaluated absolute CBF values before and after BCAS or sham  
surgery. Subcortical CBF was significantly lower than cortical CBF before and after BCAS at the bregma (Fig. 2e) 
but not at the hippocampal level (Fig. 2f). Sham surgery induced only minimal changes of CBF, both at bregma 
and hippocampal levels (Fig. 2e,f).

Figure 1.  Intracranial arterial flow after bilateral common carotid artery stenosis (BCAS). Representative 
images of intracranial arterial flow obtained with a 7-tesla brain magnetic resonance angiography before and 
at 1, 7, 14, and 28 days after BCAS. Abbreviations: ICA: internal carotid artery; MCA: middle cerebral artery; 
ACA: anterior cerebral artery; PcomA: posterior communicating artery.
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Figure 2.  Temporal profiles of cerebral blood flow (CBF) of BCAS mice. (a) Regions of interest (ROIs) 
used in the analyses of cerebral blood flow (CBF) images obtained from arterial spin labeling (ASL) magnetic 
resonance perfusion imaging. The CBF values in cerebral cortex were calculated from the six blue ROIs, and 
red circles indicate ROIs of the subcortical area. (b) Representative multi-slice coronal CBF images obtained 
from ASL at the bregma and hippocampal levels. (c,d) Temporal profiles of CBF values which are presented 
as a percentage of the preoperative value in the cortical (open blue square) and subcortical (filled red square) 
parenchymal area of BCAS mice (n =​ 8), and in the cortical (black open circle) and subcortical (black filled 
circle) parenchymal area of sham-surgery mice (n =​ 5) at the bregma (c) and hippocampal level (d). For 
comparison, brain surface CBF profile (open gray triangle) at the bregma level before and after BCAS, assessed 
with laser speckle flowmetry in a previous report9, is superimposed (c). (e,f) Temporal profiles of CBF presented 
using absolute values (mL/100 g/min) in the cortical (open blue square) and subcortical (filled red square) 
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Discussion
In animal studies, CBF levels have been monitored using a variety of modalities including LSF, ASL, sin-
gle photon emission computed tomography (SPECT), and 15O-positron emission tomography (PET). 
Among them, ASL may exert a discriminative role in assessing CBF noninvasively in animal stud-
ies including ours10–12, as the current ASL method is robust and ready to provide useful hemodynamic  
information13,14. In the present study, using ASL, we showed that the BCAS model maintained a significantly 
lower CBF for at least 14 days, especially in the subcortical area, faithfully modeling ‘chronic’ cerebral hypoper-
fusion. This was in contrast with a previous finding of cortical surface CBF using LSF, which showed gradual and 
continuous CBF recovery over 28 days after the operation (Fig. 2c)9. The quicker recovery of the cortical superfi-
cial CBF could result from leptomeningeal anastomosis from the posterior to the anterior circulation.

ASL, however, has some limitations; for example, it can suffer from the existence of prolonged transit time, i.e. 
the time it takes for tagged water to travel from the labeling position to the imaging slice, leading to an erroneous 
overestimation of CBF reduction15. This error is known to be particularly significant in humans because of the 
large size of the brain. By contrast, the small size of the mouse brain makes the transit time much smaller and the 
travel distance of tagged water much shorter than those in humans, minimizing the error16. Some studies have 
nevertheless reported an overestimation of CBF reduction even in rodent models of ischemia when conducted 
using 2.35 Tesla MRI17. As the present study was carried out at higher magnetic field strength of 7 Tesla, T1 relax-
ation time increases, resulting in less signal decay of tagged water during the traveling and relatively accurate 
estimation of CBF15. Therefore, the severity of hypoperfusion might have been somewhat overestimated but this 
could be minimal in the present study with no doubt about chronic cerebral hypoperfusion in the BCAS model.

The quick recovery of CBF assessed with LSF has been thought to be one of the drawbacks of the BCAS model 
because the temporal CBF profile is apparently different from that of VCI patients who suffer from continuous 
CBF reduction which can cause ischemic/hypoperfusive changes. However, the results of the present study indi-
cate that cortical and subcortical parenchymal CBF levels are continuously reduced at least for 14 days, with 
lower levels in the subcortical area. Such continuous hypoperfusion moderate in severity at least for 14 days, may 
explain why white matter damage starts to develop at 14 days after the BCAS operation5. This model can there-
fore be used to explore potential VCI treatments that may increase CBF and restore cognitive impairment after 
chronic cerebral hypoperfusion.

Methods
Animals.  Male C57BL/6J mice aged 10 weeks (weighing 22‒​27 g; Japan SLC, Hamamatsu, Japan) were 
used and given access to food and water ad libitum. All animal experimental protocols were approved by the 
Institutional Animal Care and Use Committee at the National Cerebral and Cardiovascular Center, and were 
performed in accordance with the Guidelines for Proper Conduct of Animal Experiments established by Science 
Council of Japan. All procedures were performed under anesthesia and all efforts were made to minimize 
suffering.

Study Design.  C57BL/6J male mice were subjected to BCAS (n =​ 8) and sham surgery (n =​ 5). Temporal 
changes of CBF were measured with ASL (7 Tesla, BioSpec 70/30 USR; Bruker BioSpin, Ettlingen, Germany) and 
with brain MRA (BioSpec 70/30 USR) before and at 1 day, 7 days, 14 days, and 28 days after BCAS or sham surgery.

Surgical Procedure of BCAS Surgery.  Through a midline cervical incision, both common carotid arteries 
were exposed. Microcoils with an internal diameter of 0.18 mm (Sawane Spring, Hamamatsu, Japan) were applied 
to the bilateral common carotid arteries. Anesthesia was induced with 2% isoflurane and maintained with 1.5% 
isoflurane in 80% nitrous oxide and 20% oxygen. Rectal temperature was maintained between 36.5 °C and 37.5 °C 
(Supplementary Video 1).

MRA and ASL.  All MR scans such as MRA and ASL were performed using a 7-Tesla horizontal bore imaging  
system equipped with a gradient system capable of a maximum gradient amplitude of 669 mT/m and a slew 
rate of 7989 T/m/s as previously described with some modification10. The temporal change of subcortical 
CBF levels can be successfully monitored in a mouse hypoperfusion model after carotid surgery using ASL10. 
Radiofrequency transmission was performed using an 86-mm inner diameter volume coil. Signal was detected 
using a four-channel receive-only phased-array surface coil. The mice were anesthetized using isoflurane (4% for 
induction and 1.5–1.8% for maintenance) in 1.2 L/min room air mixed with 0.1 L/min oxygen. The animal was 
placed in a prone position, and the head fixed with a bite bar and ear bars. Body temperature was monitored by 
rectal thermometer and maintained with a warm waterbed and warm air. Heart rate and respiratory rate were 
continuously monitored.

Three-dimensional (3D) time-of-flight (TOF) MRA images were acquired using a fast low angle shot sequence 
with the following parameters: repetition time (TR)/echo time (TE), 22.43/3.30 ms; number of averages, 1; matrix 
size, 200 ×​ 200 ×​ 200; field of view (FOV), 2.0 ×​ 2.0 ×​ 2.0 cm3; spatial resolution, 100 ×​ 100 ×​ 100 μ​m3; and scan 

parenchymal area of BCAS mice (n =​ 8) and in the cortical (black open circle) and subcortical (black filled 
circle) parenchymal area of sham-surgery mice (n =​ 5) at the bregma (e) and hippocampal level (f). Two-way 
repeated measures ANOVA indicates that there are significant differences in CBF values between BCAS vs. 
sham-surgery group in the cortical or subcortical area (p <​ 0.01) at the bregma and hippocampal levels (c‒​f), 
and between cortical vs. subcortical area at the bregma level (p <​ 0.05; e). Unpaired t test indicates that there are 
significant differences between subcortical vs. cortical area pre-BCAS (#p <​ 0.05; e).
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time, 11 min 13 s. In 3D TOF MRA, tilted optimized non-saturating excitation pulse and flow compensation were 
employed. Maximum intensity projection images were reconstructed using AZEWIN (AZE, Ltd., Tokyo).

CBF measurement of coronal slices was carried out using a flow-sensitive alternating inversion recovery 
technique18,19, an ASL-based method. In each of the non-selective and slice-selective experiments, twenty-two 
images with different inversion times were acquired using rapid acquisition with relaxation enhancement (RARE) 
sequence with the following parameters: RARE factor, 72; TR/TE, 10000/46 ms; number of averages, 1; matrix 
size, 128 ×​ 128; FOV, 4.0 ×​ 4.0 cm2; in-plane spatial resolution, 313 ×​ 313 μ​m2; slice thickness, 1.0 mm; and num-
ber of slices, 1. The following inversion time values were used: 30, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 
1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1950, 2100, and 2300 msec. Total scan time was 8 min 24 s. The 
CBF image was calculated from the obtained 44 images using ParaVison 5.1 (Bruker BioSpin). Absolute CBF val-
ues were calculated from T1 relaxation time difference between nonselective and slice-selective experiments. The 
CBF images of two coronal slices (bregma level and hippocampus level (bregma level −​2.0 mm)) were acquired. 
Region of interest (ROI) analyses of CBF images were carried out using the Dr. View/LINUX R2.5.0 program 
(Asahi Kasei Information System, Tokyo). The ASL images were co-registered to the T2-weighted images for 
selection of ROIs by using the Dr. View/LINUX. In the corresponding slices of the T2-weighted image, circular 
ROIs with a diameter of 1 mm were symmetrically placed on cerebral cortex region and subcortical region includ-
ing corpus callosum, caudoputamen and hippocampus, and superimposed on CBF images. CBF values were 
expressed as a percentage of pre-operative value.

As a reference, T2-weighted images were acquired using the RARE sequence with the following parameters: 
RARE factor, 8; TR/TE, 3500/28.74 ms; number of averages, 2; matrix size, 200 ×​ 200; FOV, 2.0 ×​ 2.0 cm2; in-plane 
spatial resolution, 100 ×​ 100 μ​m2; slice thickness, 0.5 mm; gapless; number of slices, 35; and scan time, 2 min 55 s.

Statistical Analysis.  Statistical analysis was conducted using StatView (SAS Institute, Cary, NC, USA). All 
values are expressed as means ±​ standard deviation of the mean in the figures. Data were analyzed by unpaired 
t test or 2-way repeated measures ANOVA. Differences with p <​ 0.05 were considered statistically significant in 
all analyses.
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