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Abstract

Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. 

Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. 

Other ultrasound imaging domains, hampered by related difficulties, have benefited from 

computer-based image-segmentation methods. Yet, so far, no such methods have been proposed 

for EBUS. We propose image-segmentation methods for 2D EBUS frames and 3D EBUS 

sequences. Our 2D method adapts the fast-marching level-set process, anisotropic diffusion, and 

region growing to the problem of segmenting 2D EBUS frames. Our 3D method builds upon the 

2D method while also incorporating the geodesic level-set process for segmenting EBUS 

sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for 

nearly 80% of test cases. For the remaining cases, the only user-interaction required was the 

selection of a seed point. When compared to ground-truth segmentations, the 2D method achieved 

an overall Dice index = 90.0%±4.9%, while the 3D method achieved an overall Dice index = 

83.9±6.0%. In addition, the computation time (2D, 0.070 sec/frame; 3D, 0.088 sec/frame) was two 

orders of magnitude faster than interactive contour definition. Finally, we demonstrate the 

potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy 

system.
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Index Terms
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I. INTRODUCTION

As part of the lung-cancer staging process, a physician performs bronchoscopy to collect a 

tissue sample of suspect diagnostic regions of interest (ROIs) [1]. Guided by live 

endobronchial video, the physician navigates the bronchoscope through the patient’s airways 

toward an ROI. When the physician reaches the airway closest to the ROI, the localization 

phase of bronchoscopy begins, whereby the physician refines the bronchoscope’s position 

for final tissue biopsy.

Unfortunately, most ROIs, be they lymph nodes or nodules, lie outside the airways, implying 

they are invisible to the bronchoscope. This forces the physician to “guess” at appropriate 

airway-wall puncture sites, resulting in missed biopsies and low yield. In addition, a 

videobronchoscope’s lack of extraluminal guidance information risks patient safety: nearby 

major vessels could be accidentally punctured by poorly selected biopsy sites. To address 

these issues, endobronchial ultrasound (EBUS) now exists that provides in vivo visualization 

of extraluminal anatomical structures [1]–[3].

State-of-the-art dual-mode bronchoscopes integrate a video-bronchoscope and a convex-

probe EBUS into one device to provide both endobronchial video and fan-shaped EBUS 

imagery [2], [3]. With such a device, the physician uses endobronchial video for 

bronchoscopic navigation and later invokes EBUS for localization. To enable visualization 

of extraluminal anatomy, the EBUS device provides an EBUS video stream, where each 

frame represents a 2D B-mode gray-scale image of the scanned anatomy [4]. During 

localization, the physician sweeps the EBUS probe along the interior airway-wall surface 

near the ROI and examines the EBUS video stream. The physician continues the sweep until 

the EBUS presents a satisfactory confirming view of the ROI. In this way, the physician 

gains a mental impression of the relevant 3D local extraluminal anatomy. To complete the 

examination, the physician makes an ROI diameter measurement, if desired, and performs 

the indicated biopsy.

EBUS has become a standard procedure for cancer-staging bronchoscopy [1]. Studies have 

shown that EBUS-guided tissue biopsy is more accurate in predicting central-chest lymph 

node status than CT or positron emission tomography (PET) [5]. Unfortunately, EBUS is 

challenging to use, as procedural success depends on a physician’s dexterity, training, and 

procedure frequency [6]. Executing a suitable EBUS sweep trajectory for localizing an ROI 

poses a complex 3D problem. Furthermore, mentally inferring 3D information from a 

sequence of 2D EBUS images is very difficult. In reality, the physician essentially discards 

the EBUS video stream and makes decisions based only on discrete 2D frames; the 

physician does not have the benefit of a true 3D presentation.
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Computer-based methods for segmenting EBUS images could help alleviate these issues. 

Such methods would enable more straightforward ROI measurements than the current 

interactive approach. They would also assist in integrating the 3D information present in the 

video stream. Lastly, they could serve as a major aid in enabling live image-based procedure 

guidance. Unfortunately, little research has been conducted to date in devising 2D or 3D 

image-analysis methods for endobronchial ultrasound [7]–[10].

Nakamura et al. applied interactive 2D analysis of EBUS images using a general-purpose 

image-processing toolbox [7]. Nguyen et al. performed simple MATLAB-based texture 

analysis of manually segmented EBUS frames [8]. Fiz et al. applied computer-based fractal 

analysis to 2D EBUS images, but did not consider image segmentation [9]. Finally, 

Andreassen et al. considered the reconstruction of 3D image volumes for EBUS sequences 

collected from cadavers, but relied upon tedious manual interaction to segment the 

individual 2D images [10]. Thus, no automatic or semi-automatic computer-based methods 

currently exist for segmenting 2D EBUS images or sequences of EBUS images. We propose 
image-segmentation methods for 2D EBUS images and 3D EBUS sequences. We also 
demonstrate their applicability in an image-guided bronchoscopy system.

The issues highlighted above for EBUS are reminiscent of the well-known issues arising in 

interpreting image sequences encountered in other ultrasound imaging domains, such as 

echocardiography, angiography, obstetrics, et al. [11]. This has spurred much progress in 

these domains in devising methods for segmenting 2D images and 3D image sequences 

[12]–[14]. Given the dearth of research in EBUS image analysis, we derived inspiration 

from these efforts for our work.

Before continuing, we summarize the requirements for segmentation methods in the EBUS 

domain. First, a method must be able to segment ROIs having variable sizes and shapes; at 

times, the ROIs may appear incomplete within the EBUS probe’s limited fan-shaped field of 

view. Second, we require robustness to high noise and resilience to uncertain probe contact 

in the air/tissue medium. Third, the method must be usable during a live (real-time) 

procedure; this requires a computationally efficient method that entails little or no user 

interaction (fully automatic or semi-automatic). Section II elaborates further on these 

requirements.

Regarding previous ultrasound segmentation research, early intravascular-ultrasound work 

drew upon traditional methods such as edge enhancement/detection and active contour 

analysis [15], [16]. Unfortunately, we have verified that such methods are ill-suited to EBUS 

images, which suffer significantly from wide shape and size variations, partially arising from 

the EBUS probe’s sometimes uncertain contact with the air/tissue medium [17], [18]. 

Related to this point, intravascular ultrasound probes operate in a blood/tissue medium that 

arguably depicts vessels with relatively well-defined elliptical region borders. Also, other 

ultrasound imaging domains, such as echocardiography, breast and liver cancer, and 

obstetrics, draw upon external probes that maintain relatively consistent contact with the 

tissue interface.
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Regarding fully automatic ultrasound segmentation methods, Haas et al. proposed a method 

for segmenting ultrasound images based on a Markov-process model applicable to 2D and 

3D sequences [19]. Unfortunately, the authors recommended applying the method off-line, 

because of its computation time. Other methods have been shown to run in real-time, yet 

require some form of prior shape knowledge or force ROIs to fit a predetermined shape 

model [20], [21].

More recent ultrasound image-segmentation research has drawn upon the versatile level-set 

paradigm [12]–[14], [22]–[27]. Level sets offer a framework for combining region- and 

gradient-based information into a flexible contour propagation process [28]. To gain the 

benefits of the level-set method while also being computationally efficient, a few ultrasound 

applications employed the common variant referred to as the fast-marching method [22], 

[23]. Other applications, especially those considering 3D sequences, employed the more 

elaborate geodesic level-set approach [24]–[26]. Also, given the high-noise and relatively 

simple form of ultrasound images, a few applications supplemented the level-set method 

with some form of anisotropic diffusion and/or multi-scale pyramidal analysis [25], [26]. A 

notable issue with all of these methods, including those of the early research, is that they 

require some form of user interaction to initialize, be it an initial contour or interactively 

selected seed points [15], [16], [20]–[27].

As Section II describes, our proposed 2D segmentation method adapts the fast-marching 

technique, anisotropic diffusion, and pyramidal decomposition to the problem of segmenting 

2D EBUS frames. Our 3D method builds upon the 2D method while incorporating the 

geodesic level-set method to the problem of segmenting 3D EBUS sequences. Section III 

provides validation results using data from lung-cancer patients. The results show the 

efficacy and computational efficiency of the methods. Detailed parameter-sensitivity tests, 

given in the on-line supplement, further demonstrate method robustness. As our long-term 

goal is to incorporate computer-based EBUS analysis into the cancer-staging work flow, 

Section III also illustrates the potential of the computer-based EBUS analysis methods 

during image-guided bronchoscopy. Finally, Section IV offers concluding comments.

II. METHODS

Fig. 1 illustrates the EBUS data-acquisition process and associated 3D coordinate systems. 

The EBUS probe sweeps a short linear trajectory along the airway-tree’s interior surface. 

This results in a 2D sequence of EBUS frames Il (x, y), l = 1, 2, …, N,, where the sequence 

sweeps out a 3D subvolume V situated about a target ROI. Each 2D image Il, with 3D image 

space coordinates (x, y, z), maps into the World space V′ with coordinates (x′, y′, z′).

EBUS devices employ a fan beam, similar to that encountered for imaging the liver and 

heart [22], [24]–[26]. The resulting images consist of 300 × 300 pixels, where a non-zero 

fan-shaped 60° sector Ω corresponds to the EBUS probe’s scan region (Fig. 1c) [3]. As the 

EBUS scan spans a range of 4 cm over the y-axis, Il ’s pixel resolution Δx = Δy = 0.133̄ mm. 

Within this context, we have two goals: 1) segment individual 2D EBUS frames Il; and 2) 

perform 3D segmentation of an ROI over an entire sequence Il, l = 1, 2, …, N.
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In standard practice, the physician sweeps the device so that a target ROI appears centered in 

the EBUS frame and situated ≈1–2 cm from the airway surface. Being “centered” implies 

that a biopsy needle inserted through the bronchoscope’s needle entry port is able to pierce 

the ROI (Fig. 1c).

Lymph nodes and nodules usually appear as hypoechoic regions surrounded by hyperechoic 

boundaries (Fig. 2). Blood has low echogenicity and absorbs more ultrasonic energy than its 

surroundings. Hence, these structures appear as dark homogeneous regions surrounded by 

bright borders, and the EBUS segmentation problem entails a search for connected clusters 

of pixels whose intensities are lower than their neighbors.

Three factors adversely affect the ultrasonic signal’s transmission [4]. First, as the signal 

propagates through tissue, its energy becomes progressively attenuated. Second, the EBUS 

probe often does not maintain proper contact with the airway wall; i.e., air intervenes 

between the probe/wall interface. As air strongly reflects ultrasonic energy, it greatly reduces 

the effective propagation depth of the transmitted signal. Finally, a saline-filled balloon, 

commonly used to improve EBUS contact, sometimes contains air. Overall, these factors 

limit EBUS’s practical range to < 4 cm, reducing the confidence of image findings further 

from the EBUS transducer. Thus, regions far from the transducer tend to have less certain 

boundaries and contrast, making them difficult to discern.

In addition, two other EBUS limitations impact a region’s form in an image. First, the wave 

interference phenomenon known as “speckle” degrades the image such that the noise level 

and contrast vary depending on local signal strength [29], [30]. Second, while ultrasound-

wave reflections highlight region borders in an EBUS image, the reflected values depend on 

the incident angle between the ultrasonic signal transmission and the medium interface. This 

orientation dependence results in missing border components. Overall, EBUS images have a 

granular appearance corrupted by drop-outs.

Our segmentation methods, discussed below, strive to mitigate these limitations by enabling 

robust ROI definition.

A. 2D EBUS Segmentation

2D EBUS segmentation accepts a single 2D EBUS frame I as input, where we drop the 

subscript “l” for convenience. In principle, the method extracts all large isolated dark regions 

depicted in I, where at least one region appears approximately situated near the middle of I. 
The basic method has four steps:

1. Image Filtering: Using a combination of anisotropic diffusion and 

pyramidal decomposition, reduce noise and sharpen image borders.

2. Seed Selection: Select seed points for candidate ROIs, where selected 

seeds lie within a central needle-accessible subregion of the EBUS scan 

region Ω.

3. Initial ROI Segmentation: Drawing upon the selected seeds, perform a 

level-set-based segmentation on the filtered image to arrive at initial ROI 

definitions.
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4. ROI Finalization: Finalize ROI shapes.

The subsections below give details for each of these steps.

1) Image Filtering—To improve the efficacy of subsequent segmentation operations, we 

begin by filtering input EBUS image I. Our approach draws upon past research, which 

showed that a combination of anisotropic diffusion and pyramidal decomposition effectively 

reduces speckle noise in ultrasound images while also preserving and sharpening region 

borders [25], [26], [29], [30]. An additional benefit of pyramidal decomposition is that the 

computation time of subsequent segmentation steps is greatly reduced.

Letting Ik denote the pyramidal decomposition of image I at level k, our approach initializes 

the 0th pyramid level by setting k = 0 and Ik = I. Next, the following operations are run:

1. Apply adaptive anisotropic diffusion to Ik.

2. Decimate image Ik via the operation

(1)

to create the next pyramid level, where (1) downsamples Ik by a factor of 

two in both the x and y dimensions.

Anisotropic diffusion is based on the well-known relation

(2)

where I is the input image, t is a scale-space parameter with larger t corresponding to a 

coarser scale, “div” denotes the divergence operator, ∇I corresponds to the gradient of I, |∇I| 
equals gradient magnitude, and c(·) is the conduction coefficient [31]. Drawing upon Steen’s 

suggestion, we let

(3)

where gradient-threshold parameter σ̂ is calculated via

(4)

and
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(5)

is a local maximum likelihood estimate of the image signal at (x, y), σn corresponds to the 

level of image detail to preserve, and s(x, y) equals the average value of I(x, y) in a 3 × 3 

neighborhood about (x, y) [29]. Equations (3–5) constitute an approach that locally adapts to 

the noise level about each pixel (x, y). In this way, the diffusion process can preserve edges 

of differing strength depending on the strength of the local signal. Unlike Steen, who preset 

σn to a fixed value, we estimate σn via the robust median absolute-deviation estimator [30].

We employ a standard implementation of iterative relation (2), using the mean-absolute error 

as a stopping criterion [30], [31]. In addition, we iterate the two-stage filtering method twice, 

given I2 as the final output. For simplicity, we will refer to this image as I in the discussion 

to follow. Fig. 3a illustrates Image Filtering.

2) Seed Selection—Seed Selection examines the filtered image to isolate a set of ROI 

seed pixels S = {s1, s2, …, sM}. It draws upon the premise that the physician centers target 

ROIs in the EBUS image so that a biopsy needle can successfully puncture the ROI. Based 

on this premise, Seed Selection searches a rectangular central region situated just beyond the 

EBUS probe’s transducer and locates isolated dark regions that can be pierced by a biopsy 

needle. To perform the search, a thin vertical strip approximating a biopsy needle’s shape 

pans across the central region to locate candidate dark-region cross-sections, which in turn 

results in selected seed points.

For the EBUS scenario, filtered image I consists of 75 × 75 pixels, with pixel resolution Δx 
= Δy = 0.533̄ mm. The EBUS probe’s fan-shaped scan region Ω emanates from the image’s 

top center. Because the contact region of the EBUS transducer/balloon assembly produces 

an uninformative zone demarcated by bright hemispherical lines, the image’s informational 

portion begins at y = 5 (Fig. 1c). Thus, we define the 17 × 70 (0.90 cm × 3.7 cm) region just 

below this point as the central region Ωc, where 17 pixels corresponds to the width of the 

EBUS probe’s top contact region in I (Fig. 4a). Each valid ROI R must intersect Ωc; i.e., we 

must be able to locate at least one seed sm ∈ Ωc such that sm ∈ R.

Continuing, define the vertical needle strip Nj having dimensions 5 × 70 pixels (0.26 cm × 

3.7 cm), in line with the 0.18 cm diameter of a standard 22-gauge TBNA needle. This strip 

will be panned across central region Ωc one column at a time, implying 13 distinct strip 

positions, Nj, j = 1, 2, …, 13, fit within Ωc (Fig. 4a). Thus, R must intersect at least one of 

these strip positions, which in turn implies that R intersects Ωc. That is, there must be at least 

one Nj such that we can locate at least one seed sm ∈ Nj and sm ∈ R. In general a prospective 

ROI could result in multiple seeds being selected across > 1 strip positions.

Given this set up, Seed Selection proceeds as follows. First, we calculate the mean intensity 

value μ of pixels constituting the central EBUS scan region Ωc. Next, for each Nj, j = 1, 2, 

…, 13:
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1. Compute the average strip intensity profile (Fig. 4b)

2. Search profile N̅
j for connected low-intensity valleys of points having 

width w > W, where a low-intensity point y satisfies N̅
j (y) < μ.

3. For each valley, derive its valley centroid yc. Next, locate pixel (x, yc) in 

strip Nj having minimum intensity value. (x, yc) denotes a candidate seed 

point sm for this valley. Retain the valley’s width w and centroid yc in a 

feature vector fm = [yc w]T characterizing sm.

4. Apply a support-vector machine (SVM) classifier to determine the validity 

of each candidate seed sm by evaluating cost

where “·” denotes vector dot product, b is a bias term, and (vn, αn), n = 1, 

2, …, 16, denote the nth support vector and associated weight for the 16 

support vectors we use to define the SVM classifier [32]. If C(sm) > 0, 

then seed sm is retained as a valid seed in S (Fig. 4c).

Fig. 3b gives an example of Seed Selection.

Threshold W determines the method’s sensitivity to detecting dark ROI valleys. Overly 

small values produce false-positive seeds, especially within small shadow-artifact regions. 

We chose W = 5 in line with the width of the needle strips.

To train the SVM, we used the 2D EBUS images pertaining to 20 consecutive ROIs from 

cases F through I of the 52-ROI database described in Section III-A. These ROIs span the 

variety of structures observed in EBUS, including lymph nodes, vessels, and nodules [18]. 

To each of the images, we applied Image Filtering (Section II-A1) and steps 1–3 of the Seed 

Selection process. This resulted in 271 potential candidate seeds and associated feature 

vectors. By manually examining these candidate seed locations in the EBUS images, we 

marked 222 candidates as valid seeds. The remaining 49 seeds were designated as false 

positives. Next, we used these data to produce a classifier defined by 16 support vectors and 

associated weights, using a standard SVM implementation [33]. The resulting classifier gave 

a true positive valid-seed rate of 96% (213/222), while rejecting 100% of false-positive 

seeds.

EBUS procedure conventions (Section II-B) dictate that an EBUS sweep focus attention on a 

truly valid ROI. Thus, the central-region Ωc does not need to completely cover an ROI to 

enable seed selection, and it obviously does not take into account image data to the left and 

right of Ωc. “ROIs” completely outside Ωc are either too small to be significant or too distant 

from the EBUS device’s needle port to enable satisfactory biopsy.
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As Section III demonstrates, Seed Selection finds seeds automatically for roughly 80% of 

proper ROIs. For 2D EBUS frames where Seed Selection fails to identify a seed, the user 

can interactively select a seed, as done previously in other ultrasound imaging domains [22], 

[27]. For our work, we provide a graphical user interface, whereby the user specifies a seed 

by performing a simple mouse click within the ROI depicted in the currently displayed 

EBUS frame. This operation is simpler than what the physician currently performs when 

making live EBUS-based ROI diameter measurements.

3) Initial ROI Segmentation—Given filtered image I and seed set S, a level-set-based 

technique defines an initial region segmentation R. The level-set paradigm offers greater 

flexibility than deformable-contour analysis in that it readily incorporates local and global 

region shape/intensity characteristics [24], [28]. Furthermore, the paradigm is robust to 

initialization, since it smoothly handles region topological changes; e.g., regions evolving 

from separate seeds can merge into one ROI. The level-set paradigm is especially suitable 

for ultrasonic images, in that it can robustly segment ROIs exhibiting varying shape/intensity 

properties and missing boundary components.

For 2D segmentation, the level-set methodology introduces a hypersurface function ϕ(x, y, 
t), which embeds the (x, y)-space ROI contour C as the zero-valued level set of this function 

[28]. In particular, let C(t) represent the contour’s propagating front evolving over t 
consisting of all pixels (x, y) such that ϕ(x, y, t) = 0; or, stated equivalently,

(6)

The general level-set evolving equation is given by

(7)

with appropriate initial conditions for ϕ(·, ·, 0), where F is the so-called speed function. As t 
advances, ϕ(x, y, t) evolves. Because ϕ covers the entire image and, hence, includes ROI 

front C(t) per (6), it automatically handles topological changes to C(t) as t advances. Various 

local and global factors influencing the segmentation process are readily incorporated into F, 

including: 1) image features, such as intensity and gradient; and 2) front features, which 

depend upon the shape and position of the evolving front.

Numerical implementation involves: 1) discretizing (7) or its equivalent into an iterative 

process; and 2) choosing speed function F and initial conditions. For 2D EBUS 

segmentation, we apply the computationally efficient fast-marching method [22], [23]. 

Instead of solving the general level-set equation (7) for ϕ, the fast-marching method solves 

the Eikonal equation, a special case of (7) given by

(8)
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(8) uses the observation that pixel distance ∝ speed × arrival time, where T is an arrival time 

function. Our level-set-based method expands the seed set S into set R ∈ I, where

(9)

T models the evolution of ROI fronts C, where T (x, y) equals the “time” that C(t) crosses 

pixel (x, y) in image I. Because contour front C always expands during the process — or, 

equivalently, R grows outward from the seeds, T is a monotonically increasing function. For 

our application, we construct F by first computing the image gradient

We then apply a sigmoid filter

(10)

to highlight a selected range in G(x, y) [27]. Finally,

(11)

In (10–11), parameters a and d denote the width and center of the desired gradient window, 

while h controls how fast F varies. We default these parameters to a = 25.5, d = 76.5, and h = 

5. Overall, F ≈ 1.0 for pixels having low gradient magnitude and is near zero for pixels 

having high gradient magnitude. Thus, as (8) iterates, the evolving C(t) swiftly propagates 

through smooth, homogenous regions, while slowly moving, or stopping, near region 

boundaries. For our problem, we apply the well-known upwind approximation [28]

(12)

to iteratively solve (8), where

(13)
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Algorithm 1 incorporates (9–13) into a region-segmentation algorithm. The algorithm first 

initializes F, T, and R for all image pixels. In addition, seed set S begins a min-heap data 

structure ℒ, where the minimum arrival-time pixel always lies at the top of the heap. Next, 

the main while loop invokes an evolution process, whereby the ROI contour front marches 

across the image resulting in pixels being progressively added to R. The while loop 

terminates when ℒ is empty.

Algorithm 1 draws inspiration for the concepts of alive pixels, old/current arrival times 

To/Tc, and the adaptive arrival-time threshold TR from [22], [28]. It represents a specially 

tailored form of fast-marching image segmentation for EBUS, where our procedure for 

handling boundary pixels is new in that it guards against leakage through boundary gaps, 

which could result in excessive region growth. It also employs the modified speed function 

(10–11), better suited to EBUS images. Fig. 3c illustrates Initial ROI Segmentation.

4) ROI Finalization—Because the fast-marching method constructs ROIs based on 

gradient information, it extracts a significant portion of ROI pixels situated in homogeneous 

locations. Nevertheless, image noise, which is well-known to greatly affect image-gradient 

values, limits ROI completeness. ROI Finalization performs complementary region growing 

based on intensity information to identify pixels missing from ROIs. Starting with filtered 

image I and initial segmentation R, ROI Finalization proceeds as follows:

1. Identify connected components in R. These correspond to distinct ROIs 

Ri, i = 1, 2, …, requiring finalization.

Algorithm 1

Initial ROI Segmentation

1: Inputs: seed set S, filtered image I

2: // Initialize data structures

3: for all p ∈ I do

4:   Compute F (p) using (10–11)

5:   if p ∈ S then

6:     T (p) = 0, R(p) = 1

7:   else

8:     T (p) = ∞, R(p) = 0

9: S → ℒ // Begin the heap

10: Tc = To = 0

11: while ℒ ≠ ∅ do

12:   // Make heap’s top pixel, which has min T (p), alive

13:   pop(ℒ) → p, Alive(p) = TRUE

14:   Tc = T (p), ΔR = 0

15:   // Locate pixels constituting R
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16:   if Tc − To ≥ 2 then

17:     TR = To + 1

18:     for all q ∈ I such that R(q) ≠ 1 do

19:       if T (q) ≤ TR then

20:         R(q) = 1

21:     exit

22:   else if Tc − To ≥ 1 then

23:     TR = Tc

24:     for all q ∈ I such that R(q) ≠ 1 do

25:       if T (q) ≤ TR then

26:         R(q) = 1, ΔR = ΔR + 1

27:     if ΔR ≤ Δmin then

28:       exit // Avoid potential ROI leakage

29:   else

30:     To = Tc

31:   // Check 4-neighbors of p

32:   for all q ∈ (p) such that ¬Alive(q) do

33:     Compute T (q) using (eq:FastMarching) // Update arrival time

34:     if q ∉ ℒ then

35:       q → ℒ // Add to heap

36:   heap-sort(ℒ) // Resort the heap

37: fill-holes(R) → R // Fill holes in final output

38: return R

2. For each ROI Ri, i = 1, 2, …, do the following:

a. Compute Ri ’s mean μi and variance .

b. Add neighbor (x, y) to Ri if

(14)

3. If the total number of pixels added to all regions is ≤ Rmin, stop the 

process. Otherwise, iterate step 2.

Test (14) assumes that pixels (x, y) constituting Ri abide by normal distribution 

[25] and

(15)

Such pixels nominally belong to the same distribution as Ri. For our implementation, we 

used the default Qmin = 0.95, which immediately sets δmin = 1.96 in (14–15). We also set 

Rmin = 3%. Fig. 3d illustrates a finalized segmentation.
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B. 3D EBUS Segmentation

Referring to the Fig. 1 scenario, the physician sweeps a volume in accordance with three 

EBUS procedural conventions:

1. The sweep focuses on one ROI R.

2. The device moves slowly along the sweep trajectory.

3. The device maintains contact with the airway wall so that R remains 

continuously visible.

More specifically, the physician invokes EBUS when the bronchoscope reaches a pre-

designated ROI such as a lymph node (typical long-axis length ≥ 1 cm). The sweep 

generally spans ≈ 2 cm and takes 1–2 sec to complete. Therefore, given a 30 frames/sec 

video rate, individual frames Il are typically spaced < 1 mm apart. Hence, R’s shape clearly 

changes incrementally between consecutive frames; i.e.,

(16)

where Rl represents the 2D cross-section of R on frame Il. Lastly, if the EBUS breaks 

contact with the airway wall, then the resulting frames are unlikely to provide useful data.

We now present a method for segmenting R across an entire sweep sequence. Exploiting 

condition (16), our method uses a previous frame’s segmentation Rl−1 to initialize an 

adjacent frame’s segmentation Rl. Next, a geodesic level-set process refines this estimate. 

Finally, as with the 2D method, the segmentation is finalized. The method then iterates this 

process for succeeding frames. More specifically, for EBUS sequence Il, l = 1, 2, …, N, the 

method involves the following steps:

1. For I1, apply 2D segmentation to produce R1.

2. For Il, l = 2, 3, …, N,

a. Filter and decimate Il.

b. Initialize ROI contour

where ∂Rl−1 signifies the boundary of Rl−1.

c. Using C, apply a geodesic level-set process to Il to evolve 

Rl.

d. Perform ROI finalization on Rl.

e. If Rl ≠ ∅, continue iteration. Otherwise, terminate, as 

frame Il does not contain R, implying that the ROI is no 

longer visible in the sequence.
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2D segmentation uses the complete method of Section II-A. The image filtering/decimation 

and ROI-finalization steps employ the methods of Sections II-A1 and II-A4, respectively.

The geodesic level-set process of step 2c entails the core of the method. The process solves 

the general level-set equation (7) and draws upon a more sophisticated speed function than 

(11). In particular, a special case of (8) with F(x, y) = 1 for (x, y) is first solved; i.e.,

(17)

where T̂(x, y) is simply equal to the shortest Euclidean distance between pixel (x, y) and the 

given initial estimate C, and T̂(C) = 0 [28]. Next, initial conditions for ϕ are set as a signed 

distance function [26]:

(18)

Continuing, the speed function is given by

(19)

where F is the function (11) and ε and η are parameters. Because the F(x, y) term only 

allows for expansion in one direction, previous researchers omitted this term in F̂ to avoid 

potential contour leakage over large boundary gaps in ultrasound images [24]. Our method, 

however, includes F(x, y) to better enable supplemental contour evolution toward high-

gradient boundaries. By adjusting ε, the method limits contour overgrowth through small 

boundary gaps, commonly seen in EBUS images. Quantity κ, which denotes the curvature 

of ϕ, is a geometric term that regularizes the propagating level-set front’s smoothness, where 

[28]

(20)

Also, the η-dependent component of (19) is a stabilizing advection term that attracts the 

level-set front toward region boundaries. Finally, combining (7) and (19) gives

(21)

which represents our tailored form of the geodesic level-set equation for EBUS 

segmentation.
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For digital implementation, we discretize and solve (21) iteratively using the finite forward-

difference scheme

(22)

where τ is a parameter, D±x and D±y are given by (13) and the D0x and D0y terms and ϕx, 

ϕxx, etc., constituting κ are digitized similarly [18], [28].1

Therefore, given Il and C from steps 2ab, the geodesic level-set process (step 2c) runs as 

follows:

1. Initialize ϕ(·, ·, 0) using (17) and (18).

2. For t = 0, 1, …,

a. ∀(x, y) ∈ Il, update ϕ(x, y, t) using (20) and (22).

b. If ℰt > ℰmin, continue iterating. Otherwise, terminate the 

process.

3. Define the segmented region via

ℰt is the root-mean-squared difference of the evolving contour front 

between consecutive iterations, where only pixels neighboring a contour 

pixel are considered in ℰt. In our implementation, we default ε = 8 and η = 

10 in (19), τ = 0.1 in (22), and ℰmin = 0.02.

Fig. 5 depicts an application of the complete 3D EBUS segmentation method over a 40-

frame EBUS sequence. It is important to realize that the fast-marching method is not 

applicable here, since fast marching requires the initial contour to either monotonically 

increase or decrease from one frame to the next. This is clearly not the case here, as a 

region’s 2D shape can clearly expand or shrink from one frame to the next. The geodesic 

level-set method is, of course, more complex than the fast-marching method. Nevertheless, 

condition (16) typically ensures that initial contour C provides a good starting estimate for 

Rl+1, resulting in a minimal computational penalty for running the method.

1Note that (11) in [24], which is a simpler version of our (22), has a sign error.
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We point out that it is possible to apply the 2D method of Section II-A to every sequence 

frame on a frame-by-frame basis. Unfortunately, since automatic seed selection is likely to 

fail for some sequence frame, this naive approach works poorly in general and we do not 

recommend it [18].

On the other hand, the automatic 3D segmentation method can diverge toward incorrect 2D 

segmentations (either excessively shrinking or expanding), but this is easily corrected by 

applying a key-frame-based method. Briefly, the system automatically identifies a frame Il in 

the segmented EBUS video stream in which the number of segmented ROIs changes from 

the preceding frame Il−1. The user then interactively repeats the 2D method on the given 

frame. Finally, the automatic 3D method restarts M frames preceding this key frame (frame 

Il−M) to process the remainder of the sequence. Section III-B illustrates this method, with 

more detail given in [18].

III. RESULTS

We tested the proposed segmentation methods using data from 13 lung-cancer patients. For 

all procedures, the physician used a standard Olympus BF-UC180F linear ultrasound 

bronchoscope (6.9 mm distal-end diameter; 10 MHz transducer) [3]. This device gives both 

endobronchial video and B-mode endobronchial ultrasound imagery. To evaluate method 

performance, we used the following well-known evaluation metrics [14]:

where FDR is the false discovery rate (measure of segmentation leakage), and R and G are 

the segmented and ground-truth versions of an ROI. Below, we give test results for the 2D 

and 3D methods and conclude with an application of our methods in a complete 

bronchoscopy guidance system. The on-line supplement provides additional results and 

sensitivity analysis for the proposed segmentation methods.

A. 2D EBUS Segmentation Tests

During a conventional EBUS ROI localization sweep, the physician first examines the 

resulting EBUS video stream and then picks a representative 2D EBUS frame to verify the 

ROI and make measurements. In keeping with this procedure, we selected representative 

EBUS test frames for 52 ROIs from the 13 patient studies. These included 24 lymph nodes, 

26 central-chest blood vessels, and 2 suspect cancer masses.

Before testing method performance, we first established ground-truth segmentation results. 

To do this, an experienced EBUS technician employed the semi-automatic live wire to 

define ground-truth contours for all ROIs. The live wire is a popular semi-automatic 

contour-definition method that enables substantially more reproducible segmentation results 

than manual region tracing [34], [35].

We next benchmarked ground-truth reproducibility. For the test, two experienced EBUS 

technicians (includes the technician who established the original ground truth for all ROIs) 
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and a novice EBUS user segmented four ROIs drawn from 4 human cases, spanning a range 

of region complexity and noise level. Each technician performed three trials of the 

segmentation task, spaced over a period of three weeks to reduce memory. During each trial, 

a technician followed the conventional EBUS protocol: 1) examine the EBUS video for an 

ROI; 2) based on the video observation, segment the selected 2D frame using the live wire. 

We next pooled these results by computing the intra-observer and inter-observer 

reproducibilities given by

where BRi, Oj, l denotes the segmentation of Ri by observer (technician) Oj on trial l 

[34], [35]. Overall, the intraobserver/inter-observer reproducibilities had ranges [89.5%, 

97.0%] and [87.1%, 96.9%], respectively, with a typical standard deviation per ROI equal to 

a few percent. The mean interaction time to segment a 2D frame was 16 sec, excluding 

video preview. These benchmark results help establish the maximally attainable performance 

for 2D EBUS segmentation.

As a first test of method performance, we measured the sensitivity of the 2D method to 

parameter variations using a subset of typical ROIs. For each test, we varied one parameter 

in one of the four steps constituting the 2D EBUS segmentation method and fixed all other 

parameters to default values. The on-line supplement details these tests, with [18] giving 

complete results. We highlight the findings of these tests below.

• The mean Dice index of segmented ROIs improved from 81.1%±12.7% 

(no filtering) to 88.3%±4.5% with filtering. Without filtering, high noise 

and uncertain boundary segments result in excessive segmentation leakage 

and/or under-segmentation. Also, other tests varying the number of 

pyramid levels showed that three levels produced the best results.

• In a test where a user interactively varied seed location such that the user 

cooperated and placed the seeds in “sensible” locations (i.e., near the 

middle of the ROI), we found that the subsequent steps (Initial ROI 

Segmentation and ROI Finalization) were robust to seed-location 

variations and provided reproducible segmentations. In particular, 

segmentations varied <1% on average when the seed positions were 

varied. Automatic seed selection gave an aggregate Dice index = 89.1%

±5.2% versus 86.2%±6.2% when using interactively selected seeds. The 

automatic method often gives > 1 seed per ROI, which might account for 

the slightly better performance. The discussion below associated with 

Table II discusses the efficacy of automatic seed selection.

• Little bias appears to arise from the data used to train the SVM for Seed 

Selection. For the 20 ROIs used to train the SVM, the Dice index of 
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segmentation performance was 90.2%±5.9%, as opposed to 90.0%±4.9% 

for the complete 52-ROI set. We also performed a separate 2D 

segmentation test for the 32 ROIs not used in training the SVM; we 

achieved a Dice index = 89.7±4.3 for this test.

• Parameters d and Δmin in the fast-marching process of Initial ROI 

Segmentation could be varied significantly with respect to our chosen 

defaults without greatly degrading performance. Parameter d could safely 

be varied over the range [66.5, 101.5], while Δmin gave similar acceptable 

results for the range [5%, 10%].

• Regarding ROI Finalization, parameter Rmin enabled effective operation 

over the range [3%, 15%]. Qmin required a value in the vicinity of the 

default 0.95; low values could overly limit region growth, while a high 

value could result in excessive leakage.

Because leakage can be severe in EBUS segmentation, our strategy for picking parameters 

tended toward conservative segmentations. In addition, ROI Finalization proved to be an 

important step to fill in undersegmented ROIs arising after Initial ROI Segmentation. 

Specifically, we noted that the Dice metric increased from 72.7±9.4 after Initial ROI 

Segmentation to 86.9±6.4 after ROI Finalization. Finally, as pointed out in Section III-C, we 

have successfully applied the method in a live guidance scenario in an ongoing prospective 

patient study.

Table I breaks down the computation time for the method, based on tests done with three 

representative EBUS frames. We performed 10 runs for each frame to benchmark 

computation time. All code was implemented in Visual C++ and run on a Dell Precision 

T5500 workstation (dual 2.8 GHz 6-core Xeon processors, 24 GB RAM, an NVidia Quadro 

4000 graphics card with 2 GB of dedicated memory). In Seed Selection, we used OpenMP 

to process all strip positions Nj in parallel. For ROI Finalization, we broke out separate 

measures for region growing and image upsampling, which involves restoring the image to 

its original size and filling region holes. Image Filtering and ROI Finalization consume the 

large majority of computation time. Per the table, the method operated extremely efficiently.

Table II summarizes the 2D EBUS segmentation results for the 52-ROI test set, while Fig. 3 

gives a segmentation example. 41/52 ROIs (79%) were segmented effectively using the fully 

automatic method with a Dice index mean±SD equal to 90.0±4.5.

The remaining 11/52 ROIs (21%) were judged not to provide satisfactory automatic 

segmentations (Dice index mean±SD = 28.7±28.9, range [0.0, 78.6]). For all of these ROIs, 

automatic seed selection failed to select correct seeds, necessitating the need for interactive 

seed selection. In particular, for 4 ROIs, no automatic seeds were selected and, hence, no 

region was segmented. For 5 ROIs, the automatically selected seeds were both correct and 

incorrect, which resulted in corrupted segmentations. Finally, for 2 large diffuse ROIs, the 

automatic seeds were poorly located, resulting in unsatisfactory segmentations. Our 

empirical observations indicate that the following attributes characterize an ROI that our 

method fails to segment fully automatically: a) it is relatively far from the transducer; b) its 

appearance is heterogeneous and/or it contains calcifications; or c) no clear boundary exists 
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between the ROI and an adjacent artifact “region.” After running the semi-automatic method 

for these 11 problematic ROIs, wherein the user interactively selected a seed at a sensible 

location. the resulting segmentations had an aggregate Dice index mean±SD equal to 

90.2±6.3, a performance essentially identical to that for the 41 automatically segmented 

ROIs.

B. 3D EBUS Segmentation Tests

For 3D segmentation tests, we selected 14 EBUS sequences from 7 patients. 8 sequences 

focused on a lymph node, while the remaining sequences focused on a blood vessel (aorta, 

pulmonary artery, or azygos vein). In keeping with standard EBUS protocol, each sequence 

began with the desired ROI appearing in the first frame. To benchmark segmentation 

accuracy, we also constructed ground-truth segmentations for all sequences, wherein an 

expert EBUS technician used the live wire to interactively segment individual sequence 

frames.

We again begin with a parameter sensitivity test, as done for the 2D method. See the on-line 

supplement and [18] for details on these tests. Below are highlights of these tests; note that 

all parameters arise in the geodesic level-set process.

• Parameter τ could be varied widely over the range [0.0, 0.25], but 

anomalous results did occur for large values. Hence, the default τ = 0.10 

proved satisfactory.

• The range [5, 12] proved to be acceptable for ε (default ε = 8). Low 

values resulted in excessive leakage, while high values prematurely 

terminated the segmentation process.

• η enabled robust operation over the range [0.0, 20.0] (default: η = 10.0). 

Nullifying η, however, removes the advection term in F̂, a condition we do 

not recommend.

• ℰmin could be successfully varied over the wide range [0.001, 0.064] 

(default: ℰmin = 0.02). Low values could prematurely terminate the 

segmentation process, while high values enabled excessive leakage.

As we did for 2D EBUS segmentation, we again adopted a conservative strategy in selecting 

method parameters, favoring under-segmentation to over-segmentation (and potential severe 

leakage). We also note that the 3D method’s computation time averaged ≈ 0.088 sec/frame, 

per Tables III–IV.

Tables III and IV next give segmentation results, while Figs. 5 and 6 depict successful 

segmentation examples. Overall, automatic 3D segmentation was more conservative relative 

to the ground truth than automatic 2D segmentation (3D segmentation Dice index = 

83.9±6.0 versus 2D segmentation Dice index = 90.0±4.5). On the other hand, our 

conservative parameter choices appropriately resulted in a similarly low FDR (segmentation 

leakage) for both 3D and 2D segmentation (3D, FDR= 3.1±2.8; 2D, 3.1±3.1). Most 

importantly, the method successfully extracted the ROI over an entire sequence or a large 

portion of a sequence for all 14 test sequences.

Zang et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For 9/14 sequences, the ROI was successfully segmented on every frame (Table III). For the 

5 remaining sequences (Table IV), automatic segmentation resulted in 3D segmentations 

characterized by a seemingly viable Dice index = 76.8±7.6 (range, [62.2, 83.5]). A closer 

examination of these sequences, however, revealed that the evolving ROI segmentation 

either started to leak excessively, causing oversegmentation of subsequent frames, or 

disappeared altogether. Hence, corrective action was required to successfully segment these 

sequences over their entire extent. (We point out in passing that for 2 of these sequences, 

segmentation proceeded correctly for approximately the first 90% of sequence frames, while 

for the remaining 3 sequences, 3D segmentation succeeded fully automatically for many 

frames at the beginning of a sequence.) We note that these failures arose for the following 

reasons: a) the EBUS probe appeared not to maintain proper contact for the complete 

sequence; or b) the ROI exhibits— possibly over several consecutive frames — the 

characteristics highlighted earlier for automatic 2D-method failures.

For these 5 sequences, we applied the semi-automatic key-frame-based method highlighted 

in Section II-B, as illustrated by Fig. 7. Per Table IV, this semi-automatic approach resulted 

in a Dice index = 84.5±4.6, comparable to that achieved for the 9 automatically segmented 

sequences (M = 3 for the results).

C. Application to Image-Guided Bronchoscopy

Image-guided bronchoscopy systems have become an integral part of lung-cancer 

management [36], [37]. Such systems draw upon a patient’s chest computed-tomography 

(CT) scan to offer enhanced graphics-based navigation guidance during bronchoscopy [37]. 

Recently, a few clinical studies employed EBUS in concert with an image-guided 

bronchoscopy system, but these studies used EBUS “decoupled” from the guidance system 

[38], [39]. Related to this point, no existing guidance system incorporates automated 2D/3D 

EBUS analysis or provides specialized guidance suitable for EBUS localization.

Our group has been striving to fill these gaps by developing a new multimodal image-guided 

bronchoscopy system [40]. Fig. 8 illustrates some of the system’s capability for the lymph 

node of Fig. 1c. The physician first identified the node as PET avid, and hence suspicious, 

on the patient’s co-registered whole-body PET/CT study. Using the whole-body PET/CT 

study and a complementary high-resolution chest CT study, a procedure plan, consisting of 

an optimal airway route leading to the suspect node and image-based ROI information, was 

then computed to help guide subsequent bronchoscopy.

During bronchoscopy, the guidance system first facilitated bronchoscopic navigation toward 

the suspect node, as done with standard guidance systems. As shown in Fig. 8a, a global 3D 

airway-tree rendering indicates that the bronchoscope had reached a location appropriate for 

beginning EBUS localization. Next, during localization, the system gave an oblique CT 

section registered to the EBUS position. As shown in Fig. 8e, the CT section clearly 

indicates that the current EBUS position will intersect the ROI. This helps assert that the 

physician should sweep the EBUS about this location to get in vivo confirmation of the 

node. This sweep resulted in a 40-frame sequence about the node. Figs. 8d–f show a 

segmentation of the node on one EBUS section and co-registered oblique CT and fused 

PET/CT sections at this same location, while Fig. 8b shows a 3D EBUS segmentation and 
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reconstruction of the node mapped and fused into 3D CT (World) space. As discussed in 

[17], [18], the segmented sequence in space V was mapped into World space V′ to facilitate 

proper 3D reconstruction via a pixel nearest-neighbor (PNN) approach. A tissue biopsy of 

this site, as illustrated by Fig. 1c, revealed that the node was malignant. References [41], 

[42] provide further results for this multimodal system in an ongoing patient study.

IV. CONCLUSION

To the best of our knowledge, our methods are the first to be proposed for the computer-

based segmentation of 2D EBUS frames and 3D EBUS sequences. The methods proved to 

be robust to speckle noise and to situations where ROIs are only delineated by partially 

distinguishable boundaries. They also give the physician an objective reproducible means for 

understanding 2D and 3D ROI structure, thereby reducing the subjective interpretation of 

conventional EBUS video streams.

The 2D method offers a new combination of anisotropic diffusion, pyramidal 

decomposition, ROI seed selection, level-set analysis, and region growing, suitable for 

EBUS image segmentation. The automatic seed-selection technique is new, while the front-

end filtering/decomposition operations are tailored to our EBUS scenario. Our level-set-

based approach for initially defining the ROI (Algorithm 1) makes two significant departures 

from previously proposed fast-marching level-set-based ultrasound-segmentation methods 

[22], [23]. First, it modifies the conventional fast-marching method to enable cautious 

expansion of an ROI to avoid segmentation leakage through region-boundary gaps. Second, 

it considers the entire ROI in a computationally efficient process, as opposed to drawing 

only on the ROI’s outer contour [22] or using a computationally intense probabilistic 

approach [23]. In addition, the final region growing operation helps complete the ROI 

cautiously defined by the fast-marching process. In this way, we judiciously draw upon the 

respective strengths of the two segmentation approaches. The method’s computation time 

(0.070 sec/frame) was > 2 orders of magnitude faster than interactive contour definition via 

the “rapid” live wire (16 sec/frame).

79% of ROIs were segmented fully automatically with a mean Dice metric = 90.0% relative 

to ground truth. 21% were segmented semi-automatically with mean Dice metric = 90.2%, 

where the semi-automatic method was essentially identical the the automatic method with 

the addition of interactive ROI seed selection. These results compared favorably to those 

found in a ground-truth observer study, which drew upon interactive contour definition 

(inter-observer variability range = [89.5%, 97.0%]). Also, parameter sensitivity tests given in 

the on-line supplement asserted method robustness.

The 3D segmentation method builds upon on our 2D method to give an approach that proves 

to be computationally efficient over an entire sequence. A major innovation of the method is 

the geodesic level-set process used to compute initial ROI segmentations. The process 

modifies the method of [24] by using an augmented speed function that better enables the 

process to evolve an ROI. The process also adapts robustly to the limitations encountered in 

using EBUS throughout an input sequence. The results were again encouraging, with a 

slightly more modest correlation to ground-truth segmentations relative to single-frame 
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segmentation (mean Dice metric = 83.9%) and good robustness to parameter variations. The 

computation time was similar to that observed for the 2D method (0.088 sec/frame). The 

automatic method successfully segmented a major portion of all test sequences, with a semi-

automatic key-framed-based approach improving anomalous cases.

Our results are, of course, biased by the ROIs selected in the patient studies. We, however, 

did accept cases as they became available per our IRB protocol’s patient-selection criteria. 

Hence, our results are unbiased from this standpoint. A major motivation of our work is the 

acknowledged difficulty physicians have in using EBUS and in interpreting EBUS imagery. 

Related to this need, we have integrated our methods into an image-guided system for live 

EBUS-based ROI localization during cancer-staging bronchoscopy [41], [42].

Further study could attempt to address the difficulty that arises when the EBUS temporarily 

loses contact with the airway wall, resulting in image obscuration. As another open area, 

radial-probe EBUS, which is inserted into the bronchoscope’s working channel, can image 

ROIs in the lung periphery [5], [38]. But since radial-probe EBUS is decoupled from the 

bronchoscope, it has also proven to be difficult to use. Computer-based analysis could help 

improve the utility of these devices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
EBUS data-acquisition scenario. (a) Schematic lay-out of EBUS sweep of a trajectory 

(dotted line) along an airway. Fan-shaped region indicates 2D sub-plane scanned by EBUS. 

(b) 3D local coordinate system for subvolume V bounding the 3D region swept by EBUS. 

(c) Image geometry for a convex-probe EBUS device [3]; the top curved portion represents 

the EBUS probe’s contact region within the airways. In this example, a biopsy needle is 

visible in the view. (station 4R lymph node, case I).
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Fig. 2. 
Example 2D EBUS images. Arrows indicate ROIs. (a) station 4R Lymph node (case I). (b) 

Azygos vein (case G).
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Fig. 3. 
2D EBUS segmentation method applied to station 4R lymph node of Fig. 2a. (a) Output 

after image filtering. (b) Result after seed selection; green and red crosses mark true- and 

false-positive seeds, respectively. (c) Initial segmentation of ROI (green). (d) Finalized ROI 

segmentation (green).
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Fig. 4. 
Seed Selection example (case G). (a) Configuration of the needle strip Nj panning across the 

image’s central region Ωc (yellow). N1 (magenta) is the left-most vertical strip, with 

succeeding strips shift to the right one column at a time. (b) Localization of candidate seeds 

for N1. Top view shows 5 × 70 array of image data defining N1 (turned sideways for easier 

viewing). Bottom view depicts the corresponding average intensity profile N̅1. Two low-

intensity valleys exist, having widths 20 and 11 pixels; each valley gives in a candidate seed. 

(c) Depiction of candidate seeds. Per the SVM analysis, 13 seeds (green crosses) were 

deemed to be true seeds, while 4 were rejected as false positives (red crosses).
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Fig. 5. 
3D EBUS segmentation method applied to a 40-frame sequence depicting a 4R lymph node 

(case L, sequence 1). Top row (a–e) focus on calculations for frame I21. (a) Previous 

segmentation result R20 (green) superimposed on frame I20. (b) Filtered version of I21. (c) 

Initial ROI contour C (red) superimposed on I21. (d) ROI R21 (green) after geodesic level-set 

analysis. (e) Final segmentation R21 (green). Bottom row depicts five sample frames for the 

complete segmentation across the sequence.
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Fig. 6. 
3D EBUS segmentation example for a station 7 lymph node (case L, sequence 3). 

Segmented ROI appears in green.
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Fig. 7. 
Semi-automatic method for correcting errors in fully automatic 3D EBUS segmentation 

(sequence 4, case I). (a) Since the aorta depicts incomplete boundaries in some frames, 

automatic segmentation gradually results in leakage (red circle) being introduced and the 

ROI breaking apart into multiple parts. (b) By interactively selecting frame 68 and restarting 

the automatic segmentation process three frames earlier, a correct segmentation results.
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Fig. 8. 
Multimodal image-guided bronchoscopy system applied to a station 4R lymph node (case I). 

(a) System view during navigation. Top left: bronchoscopic video; top right: registered CT-

based VB view; bottom: CT-based rendered airway tree, ROI (red), and bronchoscope 

location (orange can + green needle). All views are synchronized to the same 3D viewpoint. 

(b) System view during EBUS localization. Top: bronchoscopic video and CT-based VB 

view (green structure is the extraluminal node); bottom: rendered airway tree and fused 2D 

EBUS frame at current 3D location, 3D segmented node (yellow), and a parallelepiped 

delimiting the EBUS sweep region’s subvolume V. Parts (c–f) depict 2D views during 

localization synchronized to the same 3D viewpoint as the EBUS frame depicted in (b). (c) 

EBUS frame. (d) EBUS frame with segmented ROI (green) and ROI major and minor axes 

(major axis = 23 mm, minor axis = 12 mm). (e) CT oblique section clearly showing lymph 

node; yellow lines delimit the 2D fan-shaped region scanned by EBUS at the same 

viewpoint. (f) Fused PET/CT oblique section; white area highlights the overlapping ROI 

region in CT and PET.
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TABLE I

Computation time of 2D EBUS segmentation method.

Method Step Time (msec)

1. Image Filtering 36.73

2. Seed Selection 0.06

3. Initial ROI Segmentation 0.91

4. ROI Finalization

  a. Region Growing 4.94

  b. Upsample 27.05

TOTAL 69.69
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TABLE II

2D EBUS segmentation results. “No.” denotes the number of ROIs per case. “Auto” indicates the number of 

ROIs processed fully automatically. Evaluation metrics are listed as a [min, max] range over all ROIs for each 

case. The last six rows give aggregate results over various subsets of cases.

Case No. Auto Dice FDR

A 2 2 [84.5, 92.2] [4.1, 10.9]

B 2 2 [89.4, 91.5] [1.4, 1.6]

C 1 1 94.8 1.7

D 2 1 [84.1, 91.4] [3.6, 13.1]

E 1 0 85.1 11.9

F 3 3 [82.1, 94.4] [0.6, 0.6]

G 4 4 [78.5, 94.0] [0.0, 7.6]

H 12 8 [74.6, 95.3] [0.1, 6.9]

I 6 6 [85.2, 96.8] [0.6, 1.9]

J 5 4 [82.7, 94.6] [0.0, 3.3]

K 3 2 [89.7, 93.4] [3.7, 11.5]

L 8 8 [81.4, 92.4] [1.1, 8.8]

M 3 0 [91.7, 95.9] [0.9, 2.2]

overall 52 90.0±4.9
[74.6, 96.8]

3.4±3.5
[0.0, 13.1]

automatic 41 90.0±4.5
[78.5, 96.8]

3.1±3.1
[0.0, 10.9]

semi-automatic 11 90.2±6.3
[74.6, 95.9]

4.7±4.7
[0.1, 13.1]
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