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Abstract

Human influenza viruses are rapidly evolving RNA viruses that cause short-term respiratory infections with substantial
morbidity and mortality in annual epidemics. Uncovering the general principles of viral coevolution with human hosts is
important for pathogen surveillance and vaccine design. Protein regions are an appropriate model for the interactions be-
tween two macromolecules, but the currently used epitope definition for the major antigen of influenza viruses, namely
hemagglutinin, is very broad. Here, we combined genetic, evolutionary, antigenic, and structural information to determine
the most relevant regions of the hemagglutinin of human influenza A/H3N2 viruses for interaction with human immuno-
globulins. We estimated the antigenic weights of amino acid changes at individual sites from hemagglutination inhibition
data using antigenic tree inference followed by spatial clustering of antigenicity-altering protein sites on the protein struc-
ture. This approach determined six relevant areas (patches) for antigenic variation that had a key role in the past antigenic
evolution of the viruses. Previous transitions between successive predominating antigenic types of H3N2 viruses always
included amino acid changes in either the first or second antigenic patch. Interestingly, there was only partial overlap
between the antigenic patches and the patches under strong positive selection. Therefore, besides alterations of
antigenicity, other interactions with the host may shape the evolution of human influenza A/H3N2 viruses.
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1. Introduction

Influenza viruses are pathogens with single-stranded RNA ge-
nomes that cause short-term infections of the respiratory tract
(Molinari et al. 2007; World Health Organisation (WHO) 2009).
Three genera of viruses (A-C) circulate in humans, with influenza
A viruses causing the most infections. Influenza A viruses pos-
sess up to fourteen genes encoded on eight genome segments

(Wise et al. 2009, 2012; Das et al. 2010; Jagger et al. 2012). They are
further classified into subtypes based on the surface proteins
hemagglutinin (HA) and neuraminidase (NA). Eighteen and
eleven variants of HA and NA exist, respectively, which can infect
a wide range of different hosts (Webster et al. 1992; Medina and
Garcia-Sastre 2011; Tong et al. 2012, 2013). Currently, the sub-
types HIN1 and H3N2 are endemic in the human population. The
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H1N1 subtype descends from the swine-origin influenza A/HIN1
virus, which, since its introduction into the human population in
2009, has replaced the previously circulating HIN1 subtype in an-
nual epidemics (Garten et al. 2009).

The surface proteins HA and NA are of particular importance
for the evolution and adaptation of human influenza viruses
(McHardy and Adams 2009). Amino acid changes on the surface
of the globular head region of NA and in the epitope regions of
HA result in alterations of antigenicity and reduced recognition
by the host’s immune response, which is known as antigenic
drift (Shih et al. 2007; Cattoli et al. 2011; Sandbulte et al. 2011).
Reduced recognition by antibodies improves attachment of the
viral receptor binding site (RBS) to sialic acid residues on the
host cell surface, which initiates an infection (Wiley and Skehel
1987). The antigenic drift of type A and B influenza viruses ne-
cessitates almost annual updates of the human influenza virus
vaccine (Dormitzer et al. 2011) so that it includes antigenically
similar strains to the predominant circulating antigenic vari-
ants (Russell et al. 2008). Sites where alterations directly affect
receptor avidity have been described for influenza A/HIN1
viruses, which change as part of viral adaptation to hosts with
different levels of immune protection (Hensley et al. 2009).

Measures of positive selection can indicate sites that are rel-
evant for the adaptation of human influenza viruses to variable
environmental conditions, which include escape from immune
recognition by antibodies generated in response to previous in-
fections or vaccinations (Bush et al. 1999; Medina and Garcia-
Sastre 2011). Thus sites under positive selection have been pre-
viously used as a proxy to determine the antigenically relevant
sites of HA. Protein sites with a significantly increased ratio of
non-synonymous to synonymous mutations on HA (Fitch et al.
1997; Bush et al. 1999; Suzuki 2004; Suzuki and Gojobori 1999)
and regions under positive selection including T- and B-cell epi-
tope sites (Suzuki 2006) have been described. Sophisticated
maximum likelihood approaches have been developed that es-
timate the degree of positive selection for individual sites
(Nielsen and Yang 1998; Yang 2000; Pond, Frost, and Muse 2005);
extensions of these approaches allow the dN/dS ratio to vary
along both sites and lineages (Yang and Nielsen 2002;
Kosakovsky Pond et al. 2008, 2011; Nozawa, Suzuki, and Nei
2009;; Yang and dos Reis 2011; Murrell et al. 2012). Application of
these techniques to HA has determined overlapping sets of sites
under positive selection (Yang 2000; Nei 2005; Kosakovsky Pond
et al. 2008; Murrell et al. 2012). Alternative approaches to mea-
sure positive selection exist; for example, Meyer and Wilke
(2012) devised a method that identifies sites in protein-coding
sequences based on the exposure of an amino acid combined
with its dN/dS (Meyer and Wilke 2012), and Bhatt, Holmes, and
Pybus (2011) described a site frequency-based method to calcu-
late the rates of adaptive evolution (Bhatt, Holmes, and Pybus
2011). Finally, pairs of sites where changes might be affected by
epistatic interactions can be identified based on evolutionary
distances in a phylogenetic tree (Kryazhimskiy et al. 2011).

Determination of the sites under selection can be improved
by consideration of the protein structure, as the interaction of
flexible macromolecules such as human antibodies and the vi-
ral surface proteins is likely to include multiple proximal resi-
dues of both interacting proteins. For instance, as well as
sequentially linear epitopes, conformational epitopes have
been described as having sequentially discontinuous residues
which are in close three-dimensional proximity (Barlow,
Edwards, and Thornton 1986; Huang and Honda 2006). We have
recently described a graph-cut based clustering method to de-
tect areas of sites under positive selection with arbitrary shapes

on the structures of several human influenza A virus proteins
(Tusche, Steinbriick, and McHardy 2012).

The antigenic differences between viral strains can be as-
sessed with hemagglutination inhibition (HI) assays. These deter-
mine the strength of an interaction between a viral isolate and
an antiserum elicited against another viral strain based on the
concentration-dependent inhibition of red blood cell agglutina-
tion by a viral isolate with an antiserum, which is determined
from a series of dilution steps (Hirst 1943). HI assays are routinely
used in the global surveillance program of human influenza vi-
ruses by the WHO, as the antigenic novelty of circulating strains
relative to previous predominating and vaccine strains is a rele-
vant factor for their future epidemic potential. Using antigenic
cartography, high-dimensional distance matrices between pairs
of antigens and antisera derived from HI titers can be projected
into a lower-dimensional space and the structure of the data can
be visualized. This has revealed that clusters of antigenically sim-
ilar strains predominate in epidemics for several years before be-
ing replaced by strains of a novel ‘antigenic cluster’ or ‘variant’
(Lapedes and Farber 2001; Smith et al. 2004). The original defini-
tion of the epitopes recognized by antibodies (Wiley, Wilson, and
Skehel 1981) is broad and includes 131 out of 328 sites of the en-
tire HA1 chain of HA. Recent computational studies therefore
aimed to identify the key antigenicity-altering sites of the epi-
topes. Information gain (Huang, King, and Yang 2009), multivari-
ate linear models (Lee et al. 2007) and similar scoring schemes
(Liao et al. 2008; Liao, Lin, and Lin 2013) have been used to esti-
mate the association between amino acid changes and changes
in antigenic type. Lees, Moss, and Shepherd (2011) used the ge-
netic variability in ‘cells’ on a three-dimensional grid on the pro-
tein structure, with similar regression models being used to
weigh substitutions in preselected clusters as predictors for anti-
genic distances (Lees, Moss, and Shepherd 2011). Sun et al. (2013)
used ridge regression to infer antigenic weights for amino acid
changes (Sun et al. 2013). We recently used HI assay data to infer
antigenic weights for individual branches of a phylogenetic tree
(Steinbriick and McHardy 2012). The antigenic weight of amino
acid changes and the average impact of changes at individual
protein sites can be determined from this antigenic tree. Koel
et al. (2013) experimentally quantified the antigenic impact of
changes at individual and pairs of sites involved in antigenic
cluster transitions for HA in H3N2 viruses (Koel et al. 2013). They
found that seven positions that had altered in past antigenic
cluster transitions have had a substantial antigenic impact.
However, not all permutations of the observed changes could be
tested due to the effort required, and the authors noted that
changes at other sites may have had collective effects on anti-
body binding or they may have been compensatory mutations
that were necessary to retain function. Computational methods
that link genetic to phenotypic information are not limited to ex-
ploring subsets of sites but can also return predictions that might
include ‘antigenic hitchhiker’ changes. Hitchhikers are (near)
neutral changes that are introduced into a strain shortly before
or after an antigenicity-altering change. As the strain then shows
a significant change in antigenicity relative to other strains, the
contributions of the individual amino acid changes to this anti-
genic difference cannot be distinguished from one another. Thus
‘antigenic hitchhikers’ may falsely be determined as being rele-
vant for the antigenic evolution of the virus. Similarly, epistatic
effects may lead to a suppression or enhancement of the anti-
genic impact of individual changes and therefore to problems in
determining the most relevant sites.

We provide a description of the most relevant areas
(patches) for alteration of antigenicity of the viral HA protein
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from human influenza A/H3N2 viruses, as measured by HI assay
data. We derived these by following a computational approach
combining genetic, phylogenetic, antigenic, and structural in-
formation. The antigenic weights for the individual HA sites
were first inferred by antigenic tree inference. We then deter-
mined antigenicity-altering patches of sites on the three-
dimensional structure of HA using a graph-cut clustering of sites,
based on their spatial proximity and antigenic weights. Our
method considers all HA1 residues and is not restricted to the
study of a shorter list of candidate sites. Consideration of the
spatial arrangement of sites on the protein structure allowed
the removal of potential hitchhiking changes without real anti-
genic effect, which were identified in the inference of site-
specific antigenic weights using the antigenic tree, as the removed
sites with antigenic weight that were located far from other such
sites on the HA structure. We show that the patches provide an al-
ternative to the historically broad definition of epitope sites
(Meyer and Wilke 2015) in characterizing the antigenic evolution
of human influenza A/H3N2 viruses. The overall method was im-
plemented in a software package named AntiPatch.

2. Materials and methods

Our method comprises two steps: First, antigenic weights were in-
ferred for individual protein sites from the HA sequences and HI
data using antigenic trees, with the data and methodology adapted
from Steinbriick and McHardy (2012). Next, clusters of residues on
the protein structure with large antigenic impact were identified
with a graph-cut clustering approach (Tusche, Steinbriick, and
McHardy 2012), using a novel parameter optimization procedure.
In the following sections, we describe each step in more detail.

2.1 Inference of antigenic weights

We inferred antigenic weights for the HI assay dataset and asso-
ciated sequences from Smith et al. (2004), following the method-
ology described in Steinbriick and McHardy (2012), with
modifications as detailed below. Briefly, the HI assay data of
Smith et al. (2004) were used and the associated HA1 sequences
were downloaded from the GISAID EpiFlu database (Bogner et al.
2006). The collection comprised 258 seasonal human influenza A/
H3N2 virus isolates from 1968 to 2003; the complete list of GISAID
identifiers can also be found in Steinbriick and McHardy (2012).
The sequence data were used to infer a phylogenetic tree with
PhyML (Guindon and Gascuel 2003) and Garli (Zwickl 2006) under
the GTR+I+T'y model selected with Modeltest (Posada 2008). To
root the tree, a related avian sequence, A/duck/33/1980, was used
and subsequently removed from the study. Ancestral sequences
were reconstructed for all internal nodes of the tree using PAML
v4.5 under the JTT + I'y + F model (Jones, Taylor, and Thornton
1992; Yang 2007) inferred with ProtTest (Darriba et al. 2011).
Amino acid changes between parent and child node sequences
were then mapped to the branches of the tree. Note that this ap-
proach does not allow us to account for uncertainty in state re-
construction. However, we previously found that the level of
variation in state reconstruction is very low for the data used
here (Steinbriick and McHardy 2012), probably because of the
temporal nature of the data, where the paths between internal
nodes and leaf nodes tend to be short.

Assay data were normalized as described by Smith et al.
(2004). The normalized antigenic distances between pairs of in-
fluenza antigens and antisera were used to infer an ‘antigenic
tree’ (Steinbriick and McHardy 2012), with antigenic weights for
the branches of the phylogeny being determined using the
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non-negative least squares optimization. To account for the
asymmetric nature of HI assay data, both antigenic ‘up’ and
‘down’ weights were inferred for branches on the path between
antigen—-antisera pairs in the tree, in accordance with the direc-
tionality of the measurements, from an antigen to the root of
the tree (up) or from the root to an antiserum (down) (see Fig. 2
from Steinbriick and McHardy (2012)). To assess the antigenic
weight of a particular amino acid position, we used the average
of all available antigenic ‘up’ or ‘down’ weights of the branches
with an amino acid change at this position. In contrast to our
earlier study, only internal branches were considered, as we ob-
served a tendency towards systematic bias and that highly vari-
able antigenic weights were assigned to the terminal branches,
caused by single isolate variations. To avoid assigning large
weights to positions based on little data and to penalize the es-
timated weight for a lack of data, we divided the weight of each
branch with a reconstructed change for this position by the total
number of amino acid changes on the branch. If three or fewer
branches contributed antigenic weights to an amino acid posi-
tion, we considered the estimate for this site to be less reliable.

2.2 Spatial coordinates and surface accessibility

The protein structure model (PDB identifier 3HMG) of the HA of
human influenza A/H3N2 viruses was obtained from the RCSB
database (Berman et al. 2000). The coordinates of the C, atoms
were used to represent the spatial coordinates of the corre-
sponding amino acid residues. To classify residues as exposed
or buried, the relative solvent accessibility (RSA was computed
by estimating the accessible surface area (ASA) with CCP4 (Lee
and Richards 1971; Winn et al. 2011) and normalization with the
respective maximum surface area. A measurement for normali-
zation was initially proposed by Chothia (1976) and recently im-
proved by Tien et al. (2013) as previous maximum surface area
measurements underestimated the largest allowed ASA (Tien
et al. 2013). Residues with an RSA of 5 per cent or more were de-
fined as exposed, following Tien et al. (2013). To determine the
influence of the protein structure on our results, we repeated
our complete analysis with an influenza structure based on a
more recent viral strain (PDB identifier 2YP7), a structure of an
HA trimer in connection with a neutralizing antibody (1QFU)
and a structure predicted from the consensus of all 258 se-
quences used in our antigenic tree inference (prediction was
performed with the Phyre 2 webserver (Kelley and Sternberg
2009)). The identified patches were identical for the different
structures. We also found that the root mean square deviation
between these structures and the 3HMG model was very small:
0.794 A for 2YP7, 0.427 A for 1QFU, and 0.526 A for the consensus
structure, as determined on the C,, N, and O atoms of the pro-
tein head with the ‘super’ command in Pymol v1.5 (Schrodinger
2010), without additional refinement cycles. For the graph-cut
clustering, residue coordinates were normalized so that the
largest dimension of the protein was of length one, to ensure
the normalized variance of input variables in the optimization.

2.3 Clustering and visualization

We used the antigenic weights of individual sites and the spa-
tial coordinates from the protein structure model as input for a
graph-cut-based clustering to infer dense patches of sites with a
large antigenic impact. As described in Tusche, Steinbriick, and
McHardy (2012), this divides the set of all analyzed sites into
relevant (Pos) and irrelevant (Neg) subsets. The Neg set thus in-
cluded sites for which the analyzed datasets did not provide
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sufficient evidence for antigenic impact; however, this does not
preclude that changes at some of these sites might be of anti-
genic relevance, which would be observed only when analyzing
different datasets. The graph-cut approach was applied to a
graph where each node n represented a protein site. Two addi-
tional nodes P and N represented the Pos and the Neg sets. Each
residue n was connected with an edge to both P and N, and to all
its neighboring residues on the protein structure within a dis-
tance of 6. Edges to P and N were weighted with a(n) and a(n), re-
spectively, and edges between residues m and n are weighted
with the proximity exp(—dist(m,n)), where dist(m,n) measures
the Euclidean distance between the C, atoms of the amino acid
residues. For a residue n, we set a(n) to be equal to the antigenic
weight of that residue and a(n) = a — a(n), with a being the larg-
est antigenic weight in the data. The measure exp(—dist(m,n))
was large if the residues m and n were close to each other. The
graph-cut divided the set of all residues by placing the nodes
into the positive class that 1, had a large antigenic weight a(n),
2, were close to other nodes in the positive class and 3, were far
away from nodes in the negative class. This was achieved by
searching for the set of edges with minimal costs which, when
removed, cut all paths between P and N:

> X

nePos m e POS

e-disttmm) | /g<z am+ Yy a(n)),

nePos neNeg

m € Ds(n)

where D;(n) corresponds to the neighboring residues within a
distance of  to n, and p determines the size of the positive and
negative classes. Based on the value of f, the result gradually
changes between two extreme (and undesirable) cases: It either
assigns all sites to one of the two classes (=0, Neg in our imple-
mentation) or distributes sites between Pos and Neg (large ), so
that n € Posd(n) + =n € Neg a(n) (the right part of the cost equa-
tion) is minimal. The latter case ignores spatial distances and we
refer to it as ‘saturation’. To determine the optimal value for f,
we performed a parameter search. Since the value of $ required
for saturation is dependent on the size of the protein, the total
number of residues and their antigenic weights, we iteratively in-
creased f§ by one and defined f°* as the first § for which we did
not observe updates in the assignments for 1,000 iterations (our
implementation returns a warning and an empty result when f
reaches 5,000). We then set the final value for f°* (i.e. we set f to
the value returning a compromise between the two extreme
cases as a result). We set § for Ds(n) to 22 A, which is half the di-
ameter of the largest epitope in the HA of subtype H3 (epitope D
has a maximum diameter of ~44A). Subsequently, the selected
residues were grouped into patches if their pairwise distances
were less than 6. Any remaining single residues were discarded.
The resulting patches were visualized on the original protein
structure with PyMOL v1.4 (Schrodinger 2010).

2.4 HA phylogeny used for evaluation

For further evaluation of the relevance of the identified antigenic
patches for the evolution of human influenza A/H3N2 viruses, we
inferred a phylogeny from 7,127 HA sequences of seasonal hu-
man influenza A/H3N2 isolates, sampled between 1968 and 2014.
The sequences were downloaded from NCBI's Influenza Virus
Resource database (Bao et al. 2008). A multiple sequence align-
ment was calculated with MUSCLE (Edgar 2004) and used to infer

a phylogenetic tree with FastTree under the GTR model (Price,
Dehal, and Arkin 2009). To root the tree, A/Hong Kong/1-1/1968
was used. Ancestral states for the amino acid sequences were re-
constructed for all internal nodes of the tree using our implemen-
tation of the Fitch algorithm (Fitch 1971). Amino acid changes
between parent and child node sequences were then mapped to
the branches of the tree, and the tree was visualized using
Cytoscape v3.1.1 (Shannon et al. 2003).

3. Results

3.1 Distribution of antigenic weights

We used antigenic tree inference (Steinbriick and McHardy
2012) to map the antigenic distances derived from HI titers be-
tween viral strains and reference antisera onto a phylogenetic
tree. The phylogeny was constructed from the corresponding
sequences of the HA1 subunit of HA from human influenza A/
H3N2 viruses sampled between 1968 and 2002 (Section
Materials and Methods). Subsequently, amino acid changes
were reconstructed for the branches of the tree using ancestral
character state reconstruction with PAML v4.5 (Yang 2007).
Antigenic weights for individual sites were inferred from these
data as the mean of all antigenic weights of the branches with a
mutation at this position (Materials and Methods section). As
we had previously observed a tendency towards systematic bias
and noise for the antigenic weights of terminal branches
(Steinbriick and McHardy 2012), caused by single isolate varia-
tions, we only considered internal branches.

To characterize the sites with antigenic weights, we first vi-
sualized their distribution on the protein structure of HA of in-
fluenza subtype H3 and determined the RSA for each residue
(Fig. 1). There were six buried sites with antigenic weights in the
epitopes (RSA <5%). These sites might not be directly involved
in antibody interactions but could contribute to antigenic evolu-
tion by compensating for stability or any fitness disadvantages
caused by nearby antigenic changes. Epitope sites had more sur-
face exposure than sites outside the epitopes (P = 1.597 x 10°°,
Kolmogorov-Smirnov test; Hy: epitope values have a larger RSA
value) and a smaller portion of buried sites (52 out of 131 epi-
tope sites versus 123 out of 180 non-epitope sites; Fig. 2).
However, as there was no significant correlation between sur-
face exposure and the antigenic weight (r=0.139 with Pearson’s
correlation; P=0.215) for sites with non-zero antigenic weights
on HA1, we included both surface and buried residues in our
subsequent antigenic patch inference, as buried sites might be
located close to key antigenic regions on the protein surface
and changes here might indirectly affect antigenicity.

Not surprisingly, sites in the epitopes had larger antigenic
weights than sites outside these regions (P =3.114 x 10° %,
Kolmogorov-Smirnov test; Hi: epitope sites have larger anti-
genic weights). Still, 93 out of the 131 epitope sites had no anti-
genic impact assigned and thus had no discernible relevance for
immune evasion in the past. Within the epitope sites, a ten-
dency for sites with weights to cluster was evident (Fig. 1b), and
many sites were found in the vicinity of the RBS in the globular
head of the protein. As expected, the sites outside the epitope
regions were mostly assigned low antigenic weights: 167 out of
180 had no antigenic weight, including forty-nine of the fifty-
seven exposed sites. The remaining thirteen sites with
antigenic weights were mostly found at disconnected positions
outside the head region or within the stem. Even though there
are sites in the stem recognized by broadly neutralizing anti-
bodies, alterations at these sites do not affect receptor
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Figure 1. Antigenicity-altering effects of protein sites on the influenza A/H3N2 HA surface. (A) Location of the five epitope regions A-E, colored according to the legend.
(B) Inferred antigenic weights for residues on the surface of the HA1 chain of HA protein for human influenza A/H3N2 viruses. The value of the weight is shown with a
blue-red gradient for one subunit of the HA homotrimer in three different orientations. The globular head is indicated in yellow; HA2 is colored dark gray. It is evident
that not all epitope sites have large antigenic weights and that sites with large antigenic weights are mostly found as spatial clusters within the epitope sites and not
outside the epitopes. Sites with antigenic weights outside of the head are not supported by the known biology of the antibody-HA interactions and any likely antigenic

hitchhikers found in genotype-phenotype inference.

recognition but affect viral entry into the cell, and would not be
recognized by an HI assay (Laursen and Wilson 2013; DiLillo
et al. 2014). Thus these thirteen sites are likely to be antigenic
hitchhikers that have been falsely identified as being relevant
by antigenic tree inference, due to their co-occurrence with an-
tigenicity-altering changes on the branches of the tree.

Taken together, our findings indicated that 1, some sites
with antigenic weights seemed to cluster on the protein struc-
ture, particularly in epitope regions where this would be ex-
pected according to viral interactions with the host’s immune
system and 2, that antigenic tree inference returned in addition
to such plausible assignments (see also Steinbriick und
McHardy (2012)) a likely false set of antigenic weight assign-
ments for some sites, which was particularly evident for sites
located outside of the head region of HA1. We therefore devised
a method named AntiPatch to define the antigenically most rel-
evant patches of sites on the protein structure of HA1 by taking
additional spatial information into consideration.

3.2 Inference of antigenic patches

We determined spatial clusters of sites with large antigenic
weights on the three-dimensional structure of HA using a
graph-cut algorithm and residue clustering (Tusche, Steinbriick,
and McHardy 2012) with a newly derived parameter optimiza-
tion procedure (Section Materials and Methods). We identified
six antigenic patches of twenty-three residues overall in the
HA1 subunit of HA (Fig. 3, Table 1) associated with the altered
behavior of a viral isolate in HI assays. In terms of the identified
patch sites, the results of the patch inference method were ro-
bust to variations in the method and to variation of the struc-
tural information used and to the user-defined input parameter
delta (see below). One large patch (patch 1) includes ten resi-
dues, and five patches have four or fewer residues each. With
the exception of residue 272, all patch sites are part of the

epitopes. Patch 1 is located on top of the protein head and in-
cludes residues 189, 196, and 227 of the RBS (Skehel 2009). Patch
2 is located within epitope A and overlaps with the 130-loop of
the RBS. Patch 2 surrounds and includes residue 145, which has
repeatedly been reported as being under positive selection
(Bush et al. 1999; Kosakovsky Pond et al. 2008). Changes at this
site have very large antigenic weights (Smith et al. 2004; Lee
et al. 2007; Liao et al. 2008; Huang, King, and Yang 2009; Koel
et al. 2013; Liao, Lin, and Lin 2013). The other four patches are lo-
cated within epitopes C-E (Table 1).

To identify the influence of the size of the neighborhood
D;s(n) in patch inference, we assessed the effect of varying o
throughout the range from 1 to 65 A. After increasing the neigh-
borhood stepwise starting at § =22, we determined patches of
successively larger sizes, while the number of patches de-
creased down to a single patch at 6 =35. The sites that were as-
signed to the individual patches did not change drastically.
Only two sites (site 80 (at d =25) and site 262 (at é =45) with anti-
genic weights of 0.8 and 0.72, respectively) were additionally as-
signed to the patches (Supplementary Table S2). When we used
smaller values (6 < 22), this resulted in smaller patches and an
increase in the number of patches, as the patches were split up
into smaller ones (a decrease from ¢ =20 to d=15). For smaller
neighborhoods (9 =10), the number of patches decreased fur-
ther and for § <8, we did not find any patches. Only one addi-
tional site (site 262) was added to a patch (at 6=20) and
subsequently removed (at d=10). In summary, these experi-
ments showed that the sites placed in patches were robust to
variations in the size of the neighborhood parameter through-
out a large range of tested values.

3.3 Comparison to antigenic ‘clusters’

With the exception of positions 159, 186, and 227, all residues of
patch 1 had changed in past transitions between consecutive
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Figure 2. Distribution of antigenicity-altering effects. Antigenic weights are plotted versus the relative available surface area (RSA) for residues within the epitope re-
gions (blue) and outside the epitope regions (red) on HA of human influenza A/H3N2 viruses. Residues with an RSA of more than 5 per cent lie to the right of the dashed
gray line. On the side of the plot are histograms showing the number of sites with particular antigenic weights (right) or RSA values (top). Note that the histogram on the
right-hand side of this figure compares only the antigenic weights between non-epitopes and epitope sites, whereas the histogram at the top of this figure shows the

comparison of RSAs between non-epitope and epitope residues.

antigenic clusters of influenza A/H3N2 strains over the studied
time period (Smith et al. 2004). Of the twenty-three sites in-
cluded in the six antigenicity-altering patches, eighteen are
part of forty-five sites that have changed in antigenic cluster
transitions (Smith et al. 2004; Supplementary Fig. S1). Koel
et al. (2013) used site-directed mutagenesis to confirm that of
these forty-five sites, positions 145, 155, 156, 158, 159, 189, and
193 had the strongest antigenic impact on previous antigenic
evolution (Koel et al. 2013). Position 145 is included in patch 2;
all other sites, except for position 193, are part of patch 1,
which indicates the importance of these particular two
patches for antigenic evolution. Site 193 had the lowest anti-
genic impact of the seven changes in one transition between
predominating antigenic types and had no antigenic impact in
another, suggesting that it was less relevant than the other six
sites, which is in line with our other findings. Large antigenic
weights were also inferred for the remaining five sites of patch
1, namely residues 159, 186, 208, 227, and 272 (0.86, 0.79, 2.0,
1.5, and 0.8 antigenic units, respectively), indicating the rele-
vance of these sites for antigenic evolution. In fact, residue 208
was assigned the largest antigenic weight of all sites (Fig. 2). As
the five sites were not part of the antigenic cluster transitions,
these changes are likely to reflect antigenic variations be-
tween subsets of the strains that were never fixed in a new
predominating antigenic variant. As evolution is a stochastic

process, this does not preclude their relevance for antigenic
evolution.

3.4 The role of antigenic patches in the evolution of
human influenza A/H3N2 viruses

To gain more detailed insight into the relevance of individual
patches, we studied their appearance in the ten antigenic clus-
ter transitions between 1968 and 2002 (Smith et al. 2004). Two
transitions (SI87-BE89, BE92-WU95) were accompanied by a sin-
gle change at position 145 of patch 2; four had several changes
in patch 1 (TX77-BA79, BA79-SI87), or in patch 1 and additional
patches (WU95-SY97, SY97-FUO02). The remaining four transi-
tions showed changes in patches 1 and 2, and other patches
(Supplementary Table S1). Thus changes in either patch 1 or 2
consistently seem to accompany antigenic cluster transitions,
whereas changes in the other patches occur more sporadically.
We then studied the genetic evolution of the influenza A HA
for the subtype H3N2 after 2002 and inferred a second phylog-
eny from 7,127 HA sequences sampled from 1968 to February
2014 (Materials and Methods section: HA phylogeny used for
evaluation). This shows the typical ‘cactus-like’ structure
(McHardy and Adams 2009), with a single surviving lineage con-
necting the early isolates from 1968, which are close to the root
of the tree, to the sequences from 2014. In addition to that, we
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Figure 3. Location of the inferred antigenic patches on influenza A/H3N2 HA. (A) Antigenic patches on the HA homotrimer, numbered according to Table 1. (B) Location
of epitope sites (dark green), antigenic patch sites (purple), and sites included in both sets (orange). Note that only residue 272 is not included in the overlap. (C)
Comparison of antigenic patch sites (purple) to patches of sites under positive selection (Tusche, Steinbriick, and McHardy 2012) (yellow) and to sites included in both
sets (orange). (D) Venn diagram showing the overlap of antigenic patches, patches under selection, and epitope sites (Supplementary Fig. S1). Note that there is no co-

herence between circle size and site counts.

Table 1. Identified antigenic patches, patch sites, and their place-
ment within the five epitope regions.

Patch no. Sites Epitope

1 131, 156, 158, 159, 189, 196, ABBBBB
155, 186, 217, 227 BBDD

2 137, 144, 145 AAA

3 50, 276, 272, 278 cc-c

4 62,75 EE

5 207,208 DD

6 174, 260 DE

Sites are enumerated according to the H3 numbering convention (Nobusawa,
Aoyama, and Kato 1991).

derived a larger subtree with a diverging lineage that includes
some of the circulating strains sampled between 2011 and 2013
(Fig. 4). Using a maximum parsimony reconstruction of the an-
cestral amino acid sequences for the internal nodes of the tree,
we inferred the amino acid changes for the branches. Changes
providing a selective advantage (e.g. by altering antigenicity of
the virus) will be enriched on the trunk of the phylogenetic tree,
which corresponds to the changes that became fixed in the evo-
lution of the influenza A/H3N2 population (Fitch et al. 1997,
Steinbriick and McHardy 2012).

After 2002, five antigenically distinct viral variants succes-
sively became predominant in the human population, named
after the respective vaccine strains used, A/California/7/2004,
A/Wisconsin/67/2005, A/Brisbane/10/2007, A/Perth/16/2009, A/
Victoria/361/2011 (Fig. 4) (Who 2005a,b, 2006, 2007a,b, 2008a,b,
2009, 2014). Amino acid changes by which the predominant var-
iants differed from the preceding ones are evident from the
trunk of the HA tree and from the backbone of a larger subtree

including A/Perth/16/2009. All variants except A/Wisconsin/67/
2005 differed by one or more amino acid changes in the anti-
genic patches from the previously circulating strains: A/
California/7/2004-like viruses differed most notably by the
N145K change in patch 2, which has been experimentally con-
firmed to result in an antigenic distance of 2.6-4 antigenic units
on its own (Smith et al. 2004). In the subsequent A/Wisconsin/
67/2005 variant, S193F and D225N were introduced. The D225N
change was shown to drastically reduce the HA receptor binding
avidity of the strain (Lin et al. 2012) and infections with these vi-
ral strains caused less illness. Notably, differences in receptor
binding avidity can also substantially influence HI assays (Lin
et al. 2012). Therefore, differences in the HI assays of A/
Wisconsin/67/2005-like viruses relative to the preceding variant
may have also been due to the lower receptor avidity, instead of
an alteration in antigenicity. This would be in line with the ab-
sence of changes in the antigenic patches that distinguished A/
Wisconsin/67/2005-like viruses from their precursors. The sub-
sequent A/Brisbane/10/2007 variant had amino acid changes
that were most notable in patch 3 (G50E) and a site in the neigh-
borhood of residues 137, 144, and 145 of patch 2 (K140I).
Subsequently, A/Perth/16/2009-like strains circulated that
had changes in patches 1 (K158N, N189K), 2 (N144K), and 4
(E62K). The subsequent A/Victoria/361/2011-like strains had two
of the same changes as A/Perth/16/2009 in patch 1 (K158N,
N189K) and, in addition, a change in patch 2 (N145S) at a site
that is known to alter antigenicity drastically, all located on the
trunk of the tree. The vaccine strain A/Victoria/361, however, in-
cluded additional changes (H156Q, G186V) in antigenic patch 1
and a change (S219Y) that is not found in a patch. In our evalua-
tion phylogeny, all changes were located on a terminal branch,
indicative of either egg-adaptation changes or infrequent
variants that are not likely to rise to predominance. An altered
antigenicity, due to egg-adaptation, was confirmed for
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A/Victoria/361 by the WHO (Who 2013) and (Skowronski et al.
2014), unlike other circulating strains. A/Victoria/361/2011 was
therefore replaced one year later by the WHO with A/Texas/50,
which represented a better match to circulating viruses (Who
2013; Barr 2014). It seems advisable that isolates with changes
in antigenic patches found on terminal branches should be ex-
cluded as candidates for a vaccine strain update, because of
their likely antigenic mismatch to other circulating strains.
Such isolates should be considered as vaccine strain updates
only if the changes are located on the root of a subtree, includ-
ing multiple isolates already sequenced within a particular sea-
son, particularly if these also demonstrate a substantial rise in
prevalence relative to previous seasons (Steinbriick and
McHardy 2011). Viruses with changes at site 145 in patch 2
(S145N then N145S) and with a change in patch 3 (N278K) were
circulating throughout 2013. These recent viral isolates thus
again had an S at position 145, and were antigenically similar to
one another and to the A/Victoria/361/2011-like vaccine strain
A/Texas/50/2012. Therefore, another vaccine strain update was
considered to be unnecessary (Who 2014).

In summary, antigenically novel variants that were becom-
ing abundant were detectable based on alterations in antigenic
patches, which were located on larger branches or the trunk in
the respective evaluation phylogeny, suggesting that this analy-
sis could aid in selecting vaccine strains. Isolates with alter-
ations in antigenic patches at terminal branches, such as A/
Victoria/361/2011, should not be considered as vaccine candi-
dates, as it is likely that such changes will not be abundant in
circulating viruses.

3.5 Comparison to patches under selection

We investigated the effect of the antigenic patch inference algo-
rithm by comparing sites with antigenic weights before and af-
ter the application of the algorithm to sites previously
determined to be in patches under positive selection (Tusche,
Steinbriick, and McHardy 2012). Before clustering, twenty-five
sites (out of eighty-two sites) with an antigenic weight were lo-
cated in patches, out of a total of thirty-five sites under positive
selection. After spatial clustering, this was reduced to thirteen
of twenty-three sites being located in antigenic patches (Fig. 3d,
Supplementary Fig. S1). Thus, the percentage of overlap be-
tween sites in patches under selection and antigenic sites was
substantially increased from 30 to 57 per cent by antigenic patch
inference, supporting the notion that false-positive antigenic
sites determined by antigenic tree inference alone were re-
moved by the patch inference. There was a significant enrich-
ment of sites under selection in antigenic patches in
comparison to the entire head region (hypergeometric distribu-
tion; N =230, K=35, n=23, k=13; Hy: sites under positive selec-
tion are sampled from antigenic patches and the overall head
region of HA at the same rates; P = 1.08 x 10’6). However, still,
a striking discrepancy was evident between sites in patches un-
der positive selection and antigenic patches (43 per cent; ten of
twenty-three antigenic patch sites were not part of patches un-
der selection), indicating that changes in antigenicity and mea-
surements thereof using currently available data do not allow
us to determine all the molecular changes that are relevant for
the adaptive evolution of HA of human influenza A/H3N2 vi-
ruses. The antigenic weights in antigenic patches were
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significantly different from those in the patches under positive
selection (two-sided Kolmogorov-Smirnov-test; Hp: both sam-
ples were derived from the same distribution; P =0.002). This in-
dicates that alterations of the antigenicity do not explain all the
sites in patches under evolutionary pressure, in line with
(Meyer and Wilke 2015). Possibly, sites that do not alter their an-
tigenicity but directly affect their binding avidity to sialic acid
residues on the host cell surfaces are under selection, which
has recently been described as affecting influenza A/HIN1 evo-
lution in mouse models (Hensley et al. 2009). In line with this
notion, six sites (192, 193, 197, 198, 199, and 229) that are found
only in patches under positive selection but not in the antigenic
patches are located in the RBS.

4. Discussion

Knowledge of the sites of influenza A/H3N2 viruses that alter vi-
ral antigenicity is of substantial importance for viral surveil-
lance and vaccine design (Gershoni et al. 2007; Lees, Moss, and
Shepherd 2011). Here, we combined genetic, evolutionary,
phenotypic, and structural information to detect regions on the
protein structure of HA of human influenza A/H3N2 viruses
where alterations had a large antigenic impact. We used the HI
titer measurements to determine the antigenic impact of
branch-associated amino acid changes in HA1 by inference of
an antigenic tree and, from this tree, the relevance of particular
amino acid changes and sites. A subsequent clustering of sites
based on their antigenic weights and spatial proximity revealed
that six areas of the HA1 subunit have been most relevant for
changing viral antigenicity over a 35-year period of viral evolu-
tion. The six identified patches are located in the protein head
region, mostly close to the RBS and within the known epitope
regions (Fig. 3). They include many previously described
antigenicity-altering sites and sites that have changed during
antigenic cluster transitions of human influenza A/H3N2
viruses. The ten antigenic cluster transitions during the
study period all included amino acid changes in either the first
or second antigenic patch, or both. Amino acid changes in
these two patches were also preferentially fixed and found on
the trunk of the HA phylogeny of viral strains since 2002.
This is a simpler model for the antigenic evolution of influenza
A/H3N2 viruses than the previous hypothesis, which stated
that changes in epitopes A and B are required for an anti-
genic cluster transition (Wilson and Cox 1990; Huang and Yang
2011).

Antibodies interact with influenza HA in three ways: they
disrupt viral attachment to sialic acids on the host cell surface,
they prevent the release of virions and they block viral fusion
with the host cell (Laursen and Wilson 2013; DiLillo et al. 2014).
Only the first interaction is associated with a hemagglutination
effect and can be quantified with an HI assay. Amino acid
changes in regions outside of the protein head region are un-
likely to show a signal in an HI assay, and we therefore re-
stricted our study to the HA1 subunit. HI titers are commonly
used to estimate antigenic characteristics of circulating viral
strains within the global surveillance network of the WHO
(Russell et al. 2008). However, titers may be imprecise or show
variable results (Who 2011; Steinbriick and McHardy 2012), and
measurements might be influenced by the effects of egg-adap-
tations (Lin et al. 2012), NA activity (Sandbulte et al. 2011) or al-
terations of receptor binding avidity (Li et al. 2013). To avoid
bias caused by egg-adaptation, we excluded terminal branches
from our antigenic tree analysis and thus considered only
amino acid changes that were supported by two or more viral
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strains (Materials and Methods section). For the identification of
further antigenically relevant regions in the influenza A NA pro-
tein, it should be straightforward to include measurements
characterizing NA alterations. Our method could easily be
adapted to similar phenotypic measures, such as data from a re-
cently described neutralization assay (Terletskaia-Ladwig,
Meier, and Enders 2013), if a suitable distance matrix comparing
the viral strains and a structural model could be made available.

Previously, computational methods that identified antigenic
sites based on their correlation with antigenic distances or loca-
tion on the protein structure have been suggested (Lee et al.
2007; Liao et al. 2008; Huang, King, and Yang 2009; Lees, Moss,
and Shepherd 2011). This is the first attempt to reconstruct and
redefine antigenic areas on the protein structure as a replace-
ment for the broadly defined epitope regions via joint consider-
ation of spatial, antigenic, evolutionary, and genetic
information. A refined definition of the antigenically relevant
sites as antigenic patches is further supported by Meyer and
Wilke (2015), indicating that the epitope sites themselves rely
on a historically imprecise definition and are rather broadly
grouped to epitope regions (Meyer and Wilke 2015). By integrat-
ing the available data on structure, evolution, and antigenicity,
we identified the antigenically relevant areas of HA, including
relevant sites with lower antigenic weights if these were in the
vicinity of a cluster of relevant sites on the protein structure.
This agrees with the underlying model of molecular interac-
tions between the viral surface proteins and host antibodies.
Lees, Moss, and Shepherd (2011) mapped sphere-shaped clus-
ters of amino acid substitutions between predominant strains
onto a grid of the HA protein structure to predict antigenic dis-
tances (Lees, Moss, and Shepherd 2011), which indicated a large
number (76) of potentially relevant sites. Here, we clustered all
HA residues together, based on their antigenic weights and lo-
cation on the protein structure without restricting our attention
to a particular set of substitutions or a specific cluster shape.
Sun et al. (2013) used ridge regression to infer antigenic weights
based on genetic and antigenic profiles, identifying thirty-nine
antigenicity-associated sites on the protein surface, but did not
consider their spatial distances. Of the total twenty-three
AntiPatch sites reported here, fourteen were found also by Sun
and colleagues. Of the other nine sites, five were involved in an-
tigenic cluster transitions and were assigned above-average an-
tigenic weights (an average of 1.2 antigenic units for the nine
sites; the average of all sites in HA1 is 0.13 antigenic units).
Huang, King, and Yang (2009) used a decision tree to detect the
‘antigenic critical positions’ that were relevant for classifying
antigenic clusters, without consideration of the protein struc-
ture (Huang, King, and Yang 2009). They described eleven sites,
including positions 137, 145, 156, 158, and 189 in patches 1 and
2, and positions 62, 260, and 278 in patches 3, 4, and 6. Residues
155 and 156 have been confirmed as being responsible for the
antigenic cluster transition to A/Fujian-like viruses in 2003 (Jin
et al. 2005). In our previous study, in which we described anti-
genic tree inference (Steinbriick and McHardy 2012), we used a
strict criterion to define relevance and described seven sites
with antigenic weights that were larger than one antigenic unit
(positions 112, 137, 144, 155, 156, 189, and 208). Here, by remov-
ing all sites with antigenic weights that were located far from
spatial clusters of antigenic sites on HA, we eliminated changes
that are likely to have no real effects on HI assay measurements
(such as changes in the stem region of HA) and have potentially
been identified due to their co-evolution with antigenicity-alter-
ing changes in the antigenic tree inference. Six of the seven
sites we described in Steinbriick and McHardy (2012) are located
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in the patches; five of them are in patch 1 or 2, which again
stresses the importance of these regions for antigenic evolution.

We observed a notably small overlap between sites in the
antigenic patches (thirteen of twenty-three patch sites) and
patches in the sites under selection (Tusche, Steinbriick, and
McHardy 2012). In comparison to other studies, four out of the
eighteen sites found by (Bush et al. 1999) were included in the
antigenic patches (sites 145, 156, 158, and 186). Patch sites 137,
155, 196, and 276 were also reported to be under positive selec-
tion elsewhere (Fitch et al. 1997; Kosakovsky Pond et al. 2008)
(Supplementary Fig. S1). Earlier, Smith et al. (2004) noted that
the sites involved in antigenic cluster transitions and the sites
under selection (Bush et al. 1999) seem to be distinct; however,
the authors compared sites under positive selection in a differ-
ent period from the one studied here using antigenic measure-
ments. Here, we directly compared antigenic patches with
patches under selection identified for the same period of time
and found that this was the case. The lack of overlap was also
apparent when comparing other studies reporting sites under
positive selection (Bush et al. 1999; Kosakovsky Pond et al. 2008;
Murrell et al. 2012) with studies reporting sites of antigenic im-
pact (Koel et al. 2013). These findings raise questions on the na-
ture of the selective advantage provided by changes at sites that
are under positive selection but do not seem to influence anti-
genicity. Possibly, such sites directly affect receptor binding
avidity instead of altering antigenicity, or alter the binding be-
havior to negatively charged cell surface structures. It is also
possible that additional antigenicity-altering sites might be
missed, due to limitations in the panels of ferret antisera used
in HI assays and their lack of similarity to the human immune
response (a recent article indicated such effects for current
H1N1 viruses (Linderman et al. 2014)), or their inability to detect
antibody-HA interactions for antibodies binding outside of the
head region. Indeed, observing changes in the sites under posi-
tive selection but which are distinct from the antigenic patches
could indicate these effects. The practical relevance of the
changes at these additional sites for shaping the antigenic evo-
lution of human H3N2 viruses remains to be determined, as the
observed antigenic patch changes allowed us to explain anti-
genic evolution over the examined time period, and also be-
came abundant or even fixed within circulating human viruses.
Taken together, however, the results indicate that more refined
models that include multiple factors shaping the evolution of
human influenza A viruses should be considered. Future work
could include modeling of avidity patches (based on their dis-
tance to the RBS) in the patch inference step, thus allowing HI
assay data tentatively to be dissected into the effects of altered
antibody-antigen interactions or of altered avidity, similarly to
the BMDS model of Bedford et al. (2014). Determining the sites
or patches of sites that are associated with phenotypes, such as
the host receptor’s binding avidity, protein stability, or binding
to the negatively charged phospholipids on the cell surface,
could provide further insight into the mechanisms shaping the
evolution of human influenza A/H3N2 viruses.

Software

A C++ program for the residue clustering and all datasets used
in this publication can be accessed at https://github.com/hzi-
bifo/AntiPatch/wiki.

Supplementary data

Supplementary data are available at Virus Evolution online.
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