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ABSTRACT

Since the initial observations made at the beginning of the last century, it has been established that solid tumors
contain regions of low oxygenation (hypoxia). Tumor cells can survive in these hypoxic conditions and are a major
factor in tumor radioresistance. This significance has resulted in hypoxia becoming the most cited biological topic
in translational radiation oncology. Identifying hypoxic cells in human tumors has become paramount, and the
ability to do this has been improved by the help of new imaging techniques and the use of predictive gene profiles.
Substantial data confirm the presence of hypoxia in many types of human tumors, although with considerable het-
erogeneity among individual tumors. Various approaches have been investigated for eliminating the hypoxic popu-
lation. These include increasing oxygen availability, directly radiosensitizing or killing the hypoxic cells, indirectly
affecting them by targeting the tumor vascular supply, increasing the radiation dose to this resistant population, or
by using radiation with a high linear energy transfer, for which hypoxia is believed to be less of an issue. Many of
these approaches have undergone controlled clinical trials during the last 50 years, and the results have shown that
hypoxic radiation resistance can indeed be overcome. Thus, ample data exists to support a high level of evidence
for the benefit of hypoxic modification. However, such hypoxic modification still has no impact on general clinical
practice. In this review we summarize the biological rationale, and the current activities and trials, related to identi-
fying and overcoming hypoxia in modern radiotherapy.
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THE HYPOXIA PROBLEM
Significance of hypoxia

The first studies suggesting the importance of oxygen in radiotherapy
were made as far back as the early 1900s. In 1909, Schwarz demon-
strated that the radiation response of skin was decreased if the blood
flow in the irradiated area was reduced by compression [1]. One year
later, Müller reported that tissues in which the blood flow was stimu-
lated by diathermia showed a more prominent response to radiation
[2]. These indirect studies were followed by sporadic experimental
and clinical observations indicating the importance of a sufficient
blood supply for an adequate radiation response. Eventually this led
Gray and co-workers, in the early 1950s, to both postulate that
oxygen deficiency (hypoxia) was a major source of radiation resist-
ance [3], and from histological data from patients with carcinoma of
the bronchus to suggest that hypoxia can exist in human tumors as a
result of a diffusion limitation of oxygen [4].

This concept of oxygen diffusing from blood vessels and being
utilized by the tumor cells, thus resulting in diffusion gradients, with
cells at the end of these gradients being oxygen-deprived or chronically
hypoxic, was the working hypothesis for hypoxia until the 1980s. It was
then suggested [5] and shown [6] that tumor hypoxia could also be
acute, arising as a result of transient fluctuations in tumor blood flow.
The current use of ‘chronic and acute’ to describe hypoxia in tumors is
probably an oversimplification of the real situation [7]. Chronic hypoxia
generally refers to prolonged and reduced oxygen concentrations that
influence radiation response, but there is evidence that oxygen concen-
trations that are higher, yet below normal physiological levels, are often
found [8], and these may influence malignant progression. Furthermore,
reduced perfusion can be both partial as well as total [9], and while cells
under the former condition would be oxygen deprived, with the latter
they would be starved of oxygen and nutrients and as such their survival
and response to therapy would be expected to be different.
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Imaging tumor hypoxia
The difficulty has always been in applying definitive techniques that
not only show that hypoxia exists in human tumors, but also that
such measurements correlate with outcome from radiation therapy.
Generally, these approaches involve indirect estimates (for review see
[10, 11]). The earliest attempts at identifying tumor hypoxia focused
on the vascular supply, since this was the oxygen supplier. Endpoints
included: immunohistochemical estimates of intercapillary distance,
vascular density, and distance from tumor cells to the nearest blood
vessel; oxyhemoglobin saturation determined using cryophotometry,
or non-invasively with near infrared spectroscopy or magnetic reson-
ance imaging (MRI); or measurements of tumor perfusion using
MRI, computed tomography, or positron emission tomography
(PET). Hypoxia was later shown to upregulate gene/protein expres-
sion; thus, it was suggested that endogenous markers could be used
to identify hypoxia. The principal markers have included hypoxia indu-
cible factor 1 (HIF-1), carbonic anhydrase IX (CAIX), the glucose
transporters GLUT-1 and GLUT-3, and osteopontin (OPN). These
have been applied either individually or combined with other endogen-
ous markers as gene signatures. More popular techniques involve mea-
surements of the binding of exogenous markers. This can be achieved
following immunohistological analysis of biopsied sections, using pimo-
nidazole or EF5. It can also be done non-invasively with PET, single-
photon emission computed tomography (SPECT), or MRI analysis of
radioactively labeled nitroimidazoles (i.e. [18F]-labeled misonidazole or
fluoroazomycin arabinoside (FAZA); [123I] labeled azomycin arabino-
side); or PET imaging of [60–64Cu]-ATSM (copper (II)-diacetyl-bis
(N4-methylthiosemicarbazone). The most direct method involves
determining oxygen partial pressure (pO2) distributions with polaro-
graphic electrodes.

Each technique has its limitations. Although oxygen is delivered
to the tumor cells via the vasculature, deficiencies in either vascular
development, the oxygen-carrying capacity of the blood, or perfusion
are not the only reasons why hypoxia develops [7]. Endogenous
markers can be upregulated in response to stress factors that are not
hypoxia related; even under normoxic conditions, expression has
been reported to be induced by reactive oxygen species, cancer cell–
specific mutations, and activation of signal transduction pathways
[12]. Exogenous markers require time to identify hypoxic regions so
probably only detect chronic hypoxia, not acute, and there are clear
resolution issues with the various imaging approaches [11]. The tech-
niques that can produce direct estimates of tumor oxygenation are
generally invasive, thus not suitable for all tumors and are unlikely to
be used on a routine clinical basis [10, 11]. Nevertheless, data using
all the different approaches have not only shown that hypoxia exists in
tumors, but that its presence can have a significant negative influence
on patient outcome following radiation therapy [11]. This is illustrated
in Fig. 1 for Eppendorf oxygen electrode measurements, PET-FAZA
scans, and gene signature estimates in patients with head and neck
squamous cell carcinomas. Such results clearly support the concept of
finding clinically applicable approaches to overcoming tumor hypoxia.

APPROACHES FOR DEALING WITH HYPOXIA
Increasing oxygen delivery

The most obvious approach to the hypoxia issue is to increase tumor
oxygen delivery. Indeed, this was applied relatively early in patients by

allowing them to breathe high-oxygen-content gas under hyperbaric
(typically 3 atmospheres) conditions [16]: hyperbaric oxygen was
expected to saturate the blood with oxygen more than normobaric
conditions. Positive clinical outcomes were obtained, as shown in
Table 1. However, the complexity of the procedure and patient com-
pliance led to this approach being stopped [17]. Pre-clinical studies
had also shown that the radiosensitizations produced by normobaric
oxygen and carbogen (95% oxygen + 5% carbon dioxide) were quite
substantial [18, 19], so clinical trials using carbogen were initiated.
The early studies failed to show any dramatic improvement in
outcome [20, 21], which may have resulted from a failure to achieve
the optimum pre-irradiation gas breathing time; experimental studies
have shown this to be critical for enhancing radiation response and
that it varies from tumor to tumor [19, 22, 23]. Later studies in which
short pre-irradiation breathing times were applied gave conflicting
results, with either a benefit [24] or no improvement obtained [25].
The failure in the latter study may have been the result of a size limi-
tation, whereas the former positive study may have been due to the
fact that nicotinamide was included in the treatment regime. While
carbogen breathing will most likely affect chronic hypoxia it is likely
to have limited influence on acute hypoxia. Pre-clinical studies have
now demonstrated that nicotinamide is an effective treatment for pre-
venting transient fluctuations in tumor blood flow and thus reduces
acute hypoxia, although the mechanism is not known [26]. Those
results led to the suggestion and subsequent demonstration that
effective hypoxic modification would be possible by combining nico-
tinamide (to target acute hypoxia) with a modifier of chronic hypoxia
[27]. Those studies and others eventually led to the clinical evalu-
ation of carbogen with nicotinamide in patients with bladder cancer
in the BCON (Bladder, CarbOgen, and Nicotinamide) trial [28],
and in head and neck cancer patients in the ARCON (Accelerated
Radiation, CarbOgen, and Nicotinamide) trial [29]; both studies
reported positive improvements in outcome.

Transport of oxygen in the blood supply is via hemoglobin; thus
considerable attention has been applied to finding various methods
to target hemoglobin, thereby improving oxygen delivery to tumors.
The most obvious approach is to increase hemoglobin levels.
Attempts to do this using transfusion produced conflicting results,
with either an increase [30] or no effect [31] on radiation response
reported. Increasing hemoglobin concentration by stimulation with
erythropoietin (EPO) has also been investigated [32]. Pre-clinical
studies showed that this was an effective method for overcoming
anemia and for improving radiation response; however, although it
was also successful in correcting anemia in patients, those that
received EPO and radiation had a poorer outcome than patients who
were irradiated without EPO. This negative outcome has been attrib-
uted to the fact that EPO is a growth factor and thus probably stimu-
lated tumor growth.

Other approaches for improving oxygen delivery that have been
investigated include the use of artificial blood substitutes that can
carry more oxygen than hemoglobin [33] and manipulators of the
oxygen unloading capacity of blood by modifying the oxy-hemoglo-
bin dissociation curve [34]. Although these approaches improved
tumor oxygenation status and radiation response in pre-clinical
studies, none reached controlled clinical testing. More recent studies
suggest the potential of increasing the oxygen diffusion distance by
inhibiting cellular oxygen consumption with metformin [35]. Although
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this agent is already used clinically in treating diabetes and may be asso-
ciated with decreased rates of some cancer types [36], it is still too
early to say whether this will be effective at decreasing tumor hypoxia
in patients.

Targeting hypoxic cells
The most extensively investigated approach to the hypoxia problem is
the use of agents that specifically target the hypoxic cells. This has
been achieved using agents that either directly sensitize the hypoxic
cells to radiation or preferentially kill them. In the early 1960s it was
shown that the efficacy of hypoxic radiosensitisation was directly

related to electron-affinity [37], and that led to in vitro studies dem-
onstrating that highly electron-affinic nitroaromatic compounds could
preferentially radiosensitise hypoxic cells [38]. These compounds
were also found to be effective at enhancing tumor radiation response
[39]; these agents are considered to be oxygen mimetics, but unlike
oxygen they are not rapidly metabolized by the tumor cells through
which they diffuse and thus reach all the cells in tumors, especially
the hypoxic cells.

Clinical evaluation was started very early with metronidazole in
brain tumors [40], but it was soon replaced by misonidazole and a
large number of clinical trials were undertaken [17, 39]. Unfortunately,

Fig. 1. Demonstration that the presence of hypoxia measured in head and neck squamous cell carcinomas prior to radiation
therapy had a negative influence on outcome. (A) Overall survival in 397 patients in which oxygen estimates were obtained with
the Eppendorf electrode. The patients were divided into two groups based on whether the percentage of oxygen values ≤2.5
mmHg were below (less hypoxic than) or above (more hypoxic than) the median value of 19%. (B) Disease-free survival in 40
patients that had received an injection of [18F]-labeled FAZA 2 h prior to PET imaging. They were separated into having hypoxic
or non-hypoxic tumors based on whether the tumor-to-muscle ratio was above or below 1.4, respectively. (C) Locoregional
failure in 156 patients in which a 15-gene hypoxia classifier was applied to biopsy material to separate the tumors into more or
less hypoxic. Composite figure from a number of sources [13–15].

Table 1. Medical Research Council (MRC) multicenter randomized trials with hyperbaric oxygen (HBO)

Site and study No. of patients Endpoint Response Statistical significance

HBO Air

Head and neck carcinoma

MRC 1st trial (1977) 294 Control (5 years) 53% 30% P < 0.01

MRC 2nd trial (1986) 106 Control (5 years) 60% 41% P < 0.05

Uterine cervix carcinoma

MRC (1978) 320 Control (5 years) 67% 47% P < 0.001

MRC (1978) 320 Survival (5 years) 37% 25% P < 0.01

Bronchogenic carcinoma

MRC (1978) 51 Survival (2 years) 15% 8% n.s.

MRC (1978) 123 Survival (2 years) 25% 12% P < 0.05

Carcinoma of the bladder

MRC (1978) 241 Survival (2 years) 28% 30% n.s.

Endpoints were Control (locoregional control) or Survival; n.s. = not significant. Modified from [17].

•i92 M.R. Horsman and J. Overgaard



most misonidazole trials were unable to generate significant improve-
ments in radiation response, although a benefit was seen in some trials,
particularly the Danish Head and Neck Cancer (DAHANCA 2) study
[41], as shown in Table 2. Part of the failure to see any benefit was
attributed to the fact that the drug doses necessary for effective radio-
sensitization also produced substantial dose-limiting clinical toxicity.
Further clinical studies focussed on identifying more efficient or less
toxic hypoxic sensitizers (Table 2). The first of these was a European
trial with pimonidazole in uterine cervical cancer, but the preliminary
results were disappointing [42]. Etanidazole was then tested in two
other multicenter trials in head and neck cancer, but the results showed
no benefit [43, 44]. Additional studies with nimorazole, a less efficient
sensitizer but less toxic drug, in head and neck cancer patients
(DAHANCA 5) showed a highly significant benefit in terms of
improved locoregional tumor control and disease-free survival [31]. A
more recent International Atomic Energy Agency (IAEA) trial with the
3-nitrotriazole compound sanazole (AK-2123) in uterine cervical
cancer also demonstrated a significant improvement in both local
tumor control and overall survival [45], while a Japanese randomized
trial with the 2-nitroimidazole doranidazole (PR-350) in locally
advanced pancreatic cancer reported a significant increase in long-term
survival [46]. To date, only one of these drugs has been incorporated
into standard radiotherapy treatment—nimorazole in head and neck
cancer—and that is only in Denmark, although additional clinical
testing is ongoing elsewhere.

Preferentially killing hypoxic cells is another direct approach to
targeting hypoxia that has become popular. This has been achieved
using non-toxic prodrugs that undergo enzymatic reduction to a cyto-
toxin under hypoxic conditions. Three basic classes of bioreductive
compounds have been developed. These are quinones, nitroaromatics
and N-oxides [47, 48]. The first compound recognized to possess
bioreductive activity was mitomycin C [49]. Clinical studies designed
to test its potential to overcome hypoxia produced conflicting results,
with either a benefit or no benefit obtained. A lack of response was
probably not surprising because mitomycin C shows only a small dif-
ferential in cell killing between hypoxic and aerobic cells. Attempts to
find more efficient quinones led to the development of porfiromycin
and EO9, but again no real additional benefit has been found clinic-
ally. Nitroimidazole radiosensitizers such as misonidazole have also
been found to be metabolized to cytotoxic products selectively in
hypoxic tumor cells [50]. However, these agents were only weakly
cytotoxic and moderately selective for hypoxic cells [51]. Neverthe-
less, the basic concept of using nitroimidazole compounds has led to
other agents being developed, including RSU1069, PR-104 and TH-
302, the latter compound showing significant selectivity for hypoxic
cells [52]; it is currently in clinical development. The lead aromatic
N-oxide developed was tirapazamine, and it had a hypoxic-aerobic dif-
ferential of up to 200 in murine cells and 50 in human cell lines [53].
Although results from Phase II trials generally showed promise, ran-
domized trials were somewhat disappointing. However, the potential

Table 2. Selected multicenter randomized trials with nitroimidazole radiosensitizers

Site and study No. of patients Drug Endpoint Response Statistical significance

RT + drug RT

Uterine cervix carcinoma

MRC (1983) 183 Pimo Control (4 years) 64% 80% P < 0.01

Survival (4 years) 36% 54% P < 0.05

IAEA (2007) 326 Sana Control (5 years) 61% 46% P = 0.005

Survival (5 years) 57% 41% P = 0.01

Head and neck carcinoma

DAHANCA 2 (1989) 626 Miso Control (5 years) 41% 34% P < 0.05

RTOG 85–27 (1995) 521 Eta Control (2 years) 40% 40% n.s.

Survival (2 years) 43% 41% n.s.

EORTC (1978) 374 Eta Control (2 years) 53% 53% n.s.

Survival (2 years) 54% 54% n.s.

DAHANCA 5 (1998) 414 Nim Control (5 years) 49% 33% P = 0.002

Survival (5 years) 52% 41% P = 0.01

Pancreatic carcinoma

JAPAN (2008) 46 Dora Survival (3 years) 23% 0% P = 0.02

Endpoints were Control or Survival; n.s. = not significant; RT = radiotherapy. The trials were the Medical Research Council (MRC) trial with pimonidazole (Pimo) [42],
the International Atomic Energy Agency (IAEA) trial with sanazol (Sana) [45], the Danish Head and Neck Cancer (DAHANCA) trials with misonidazole (Miso) [41]
and nimorazole (Nim) [31], the North American Radiation Therapy Oncology Group (RTOG) [43], the European Organisation for Research and Treatment of cancer
(EORTC) [44] trials with etanidazole (Eta), and the Japanese trials with doranidazole (Dora) [46].
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of such agents has led to the development of related compounds,
such as chlorambucil N-oxide and banoxantrone [47].

Probably one of the best approaches for targeting hypoxic cells is
the use of hyperthermia, since heat can both sensitize and kill
hypoxic cells [54]. Pre-clinical studies have clearly shown that irradiat-
ing tumors and at the same time heating them to temperatures up to
43°C can substantially enhance radiation response [54]. This has
been attributed to a sensitization affect mediated through an

inhibition of radiation-induced DNA repair [55, 56]. However, if a
time interval is introduced between the radiation and heat treatments,
sensitization is lost, yet an enhancement of radiation response is still
observed [54]. This effect has been attributed to heat simply killing
those cells that are hypoxic [57, 58]. Regardless of the mechanism for
the heat effect on radiation, there is now good clinical evidence that
hyperthermia can substantially improve tumor response to radiation
in a number of different clinical sites, as illustrated in Table 3.

Table 3. Meta-analysis of randomized clinical trials comparing radiation only with radiation and hyperthermia

Tumor site No. of trials No. of patients Response Odds ratio (95% CI)

RT + HT RT

Advanced breast 2 143 68% 67% 1.06 (0.52–2.14)

Prostate 1 49 81% 79% 1.16 (0.28–4.77)

Mixed 3 442 39% 34% 1.24 (0.84–1.82)

Head and neck 5 274 51% 33% 2.08 (1.28–3.39)

Rectum 2 258 19% 9% 2.27 (1.08–4.76)

Chest wall 4 276 59% 38% 2.37 (1.46–3.86)

Bladder 1 101 73% 51% 2.61 (1.14–5.98)

Melanoma 1 128 56% 31% 2.81 (1.36–5.80)

Cervix 4 248 77% 52% 3.05 (1.77–5.27)

All trials 23 1919 52% 38% 1.80 (1.50–2.16)

Endpoints were all locoregional control, RT = radiation, HT = hyperthermia, CI = confidence intervals. Modified from [54].

Fig. 2. Schematic illustration that the growth and development of solid tumors requires they form their own functional
vasculature to supply essential oxygen and nutrients. Tumors achieve this from the normal host vessels by the process of
angiogenesis. Therapeutic targeting of the tumor vasculature can be achieved using various vascular targeting agents (VTAs).
These are either angiogenesis-inhibiting agents (AIAs), which can inhibit any one of the steps in the angiogenesis process, or
vascular-disrupting agents (VDAs), which damage the already established vasculature. Examples of both types of VTAs are listed.
Redrawn from [60].
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Vascular targeting agents
The growth and development of solid tumors requires they develop
their own functional vascular supply, which they do from the normal
host vasculature by the process of angiogenesis. This importance of
the tumor vascular supply makes it an attractive target for therapy,
and two major groups of vascular targeting agents (VTAs) have
emerged [59], as shown in Fig. 2. One approach involves preventing
the development of the tumor vasculature by inhibiting various steps
in the angiogenic process (angiogenesis inhibiting agents; AIAs). An
alternative method is to use agents that damage the already estab-
lished tumor vessels (vascular disrupting agents; VDAs). Although
both AIAs and VDAs show antitumor effects, they never result in
tumor control, even when used in combination [61, 62]. This has
led to the suggestion that their potential clinical application
would be when combined with more conventional treatments,
especially radiation [63]. In fact, numerous pre-clinical studies
have now shown that the response of tumors to radiation can be
significantly improved when animals are treated with either AIAs
or VDAs [61].

With both AIAs and VDAs, hypoxia has been implicated in the
mechanism for this enhancement of radiation response. For AIAs, the
consensus of opinion is that the improvement in radiation response

found in pre-clinical studies is the consequence of normalization of
the tumor vasculature resulting in a decrease in tumor hypoxia [64].
While there are certainly pre-clinical studies showing an improved
tumor oxygenation status with such treatments, there are just as many
studies showing no change and even a decrease in tumor oxygenation
[61]. These findings not only make it unclear as to the role of vessel
normalization in influencing the combination of angiogenesis inhibi-
tors with radiation, they also suggest that timing and sequencing of
the two modalities may be critical for an optimal benefit. With VDAs
the situation is less controversial. VDAs damage tumor vasculature
and as a result cause a severe reduction in tumor blood flow, leading
to ischemia and cell death [61]. The cells that die first are most likely
the hypoxic cells that are already oxygen and nutrient deprived, and the
improved antitumor responses observed when such agents are com-
bined with radiotherapy probably reflects an additive tumor response
resulting from the VDA eliminating treatment-resistant hypoxic tumor
cells while the radiotherapy acts against the aerobic tumor cell popula-
tion. However, there are indications that VDAs may induce hypoxia in
cells that were not previously hypoxic and that such cells survive this
treatment [61, 65]. This supports the concept that timing of VDA
therapy relative to radiation treatment is critical, and that for the best
affect the drugs should be given soon after irradiating.

Fig. 3. (A) FAZA-PET scan from a patient with a head and neck tumor; high FAZA activity was detected 2 h after injection and is
shown by the bright spot in the neck region. (B) FAZA activity in two SCCVII squamous cell tumors on the flanks of a C3H
mouse; FAZA activity, measured 2 h after injection is again shown by the two large bright areas and was recorded using an
animal dedicated micro PET. (C) Autoradiography section of one of the SCCVII mouse tumors showing microregional areas of
FAZA activity, which are unlike two large areas in Fig. 3B. (D) The same section as in C, but now stained for binding of the
hypoxic cell marker pimonidazole, which was injected 2 h prior to excision; note that the bright areas showing pimonidazole
binding are the same as those in the FAZA autoradiography image. Modified from [14, 67].
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Radiation-based approaches
It has been suggested that rather than add some form of modifier to
eliminate hypoxic cells, it may be possible to overcome hypoxia by
using radiation itself. If we can identify the hypoxic regions in tumors,
we could then simply increase the radiation to these areas, an
approach that is referred to as ‘dose painting’ [66]. The problem with
this approach is in truly identifying the hypoxic regions with current
technology. This is illustrated in Fig. 3. Using histological analysis of
hypoxic markers, we are able to separate clearly hypoxic and non-
hypoxic areas [67]. However, from PET scans of tumors, whether
animal or human, the hypoxic region appears as a solid mass; this is
simply because the region identified by each individual voxel is large
due to resolution issues. As a consequence, areas are being detected
that could contain both hypoxic and non-hypoxic cells. Furthermore,
the lack of hypoxic imaging in other areas does not mean that
hypoxia is not present, rather that the amount of hypoxia in a particu-
lar voxel is not large enough to raise the overall threshold value. It has
also been suggested that tumor hypoxia is dynamic rather than static,
thus hypoxia measured prior to the start of therapy may not be the
same as that during therapy. This was indicated in a PET study in
head and neck cancer patients in which considerable variability in
intratumoral uptake of [18F] misonidazole was reported between
repeated scans [68]. However, a more recent pre-clinical study using
FAZA-PET [69] and another clinical study in head and neck cancer
patients using [18F] misonidazole reported that the uptake between
repeated scans was highly reproducible [70]. There is also the ques-
tion of how much the radiation dose should be increased to have a
definitive effect on response. Based on these issues it would seem
more pertinent to simply increase the dose to the entire tumor in
which hypoxia has been identified and see whether this actually
makes a difference to outcome [11].

It has been established that as the linear energy transfer (LET) for
radiation increases, so the oxygen enhancement ratio (OER) decreases
[71, 72]. Based on historical data, the consensus of opinion has gener-
ally been that if radiation of a sufficiently high LET is applied then
hypoxia ceases to be an issue. However, a more recent comprehensive
summary of results from a range of different in vitro experiments [72]
has shown that the OER effect only disappears when the LET value is
∼500 keV/µm or greater, which is beyond what we can achieve clinic-
ally. Thus, although the use of high-LET radiation can certainly reduce
the impact of hypoxia, it is unlikely that using current technology it will
ever be possible to completely eliminate hypoxia, suggesting that even
with high-LET radiation some form of modifier needs to be included
in the treatment regime.

CONCLUSIONS
Current interest in cancer therapy focuses on the application of tar-
geted therapies. In that context, hypoxia must be considered the
ultimate target. It is a characteristic feature of most human tumors
that has a major negative influence on determining tumor response
to conventional therapy, as well as being an important factor in influ-
encing malignant progression, both in terms of the aggressive growth
of the primary tumor and its ability for metastatic spread. Numerous
clinically applicable techniques have been developed that allow us to
identify hypoxia in human tumors. Both pre-clinical and clinical
studies have shown that hypoxia can be reduced to improve the

outcome of radiation therapy. However, despite the fact that the
potential of hypoxia to modify radiation response was first identified
100 years ago, that we have known for some 60 years as to why
hypoxia influences radiation response, and that almost 40 years of
clinical trials have clearly shown we can successfully modify hypoxia,
hypoxic modification has still not been established as a standard treat-
ment with radiotherapy. Why this should be so is unclear, but from a
patient point of view this must be considered a totally unacceptable
situation that should be addressed.
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