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ABSTRACT

The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB)
response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumula-
tion of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and
RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and
RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8-
and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating
enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitina-
tion-dependent DDR signaling and the choice of DNA-repair pathway.

INTRODUCTION
DNA double-strand breaks (DSBs) are the most deleterious type of
DNA damage. DSBs must be detected and repaired immediately for
cell survival. DSB repair pathways include error-free homologous
recombination (HR) and error-prone non-homologous end joining
(NHEJ). The optimum repair pathway may be actively selected to
maintain genomic integrity. The most feasible mechanism for regulat-
ing the choice of DNA-repair pathway is DNA DSB response (DDR)
signaling. The detection of DSBs by the MRE11•RAD50•NBS1
(MRN) complex initiates DDR signaling, which is transduced by
Ser/Thr kinase ataxia telangiectasia mutated (ATM)-dependent
phosphorylation and ring finger protein 8 (RNF8)- and RNF168-
dependent ubiquitination, leading to the recruitment of the tumor
protein p53 binding protein 1 (53BP1) and receptor-associated
protein 80 (RAP80) to DSB sites. 53BP1 and RAP80 indirectly sup-
press HR and promote NHEJ. However, the relationship between
RNF8- and RNF168-dependent DDR signaling and DNA-repair
pathway choice remains to be elucidated. Several deubiquitinating
enzymes (DUBs) have recently been identified as negative regulators
of RNF8- and RNF168-dependent DDR signaling, and the depletion
of some of these DUBs results in biased DNA-repair pathway choice.

Accumulating evidence suggests a model in which the opposing roles
of RNF8/RNF168 and DUBs in ubiquitination-dependent DDR
signaling support the choice of DNA-repair pathway.

DNA-REPAIR PATHWAY
DSBs are mainly repaired by NHEJ and HR. NHEJ directly ligates
the DSB ends. If the overhangs of the DSB ends are compatible or
the ends of the DSBs are blunt without other lesions present, the
ends can be ligated without loss of nucleotides. When the overhangs
of the DSB ends are incompatible or the ends of the DSBs have asso-
ciated lesions, the ends of the DSBs are processed by nucleases
before ligation. Subsequent DNA repair by NHEJ can lead to nucleo-
tide loss [1, 2], and thus NHEJ is generally considered to be an error-
prone DSB repair pathway. Upon the generation of DSBs, the Ku 70/
80 heterodimer binds to the DSB end and protects it from degrad-
ation. The Ku 70/80 heterodimer recruits the DNA-dependent
protein kinase (DNA-PK) catalytic subunit (DNA-PKcs). DNA-
PKcs undergoes autophosphorylation, and DNA-PKcs subsequently
phosphorylate other NHEJ component proteins such as Artemis [3].
X-ray repair cross-complementing protein 4 (XRCC4), XRCC4-like
factor (XLF) and paralog of XRCC4 and XLF (PAXX) align DSB
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ends for efficient ligation, and ligase IV ligates the DSB ends [3–7].
HR restores the lost DNA sequence at DSB sites, using an undam-
aged DNA sequence on the identical sister chromatid as a template
[8]. During the first stage of HR, the DSB ends are processed, thus
generating a 3′-single strand DNA (ssDNA) overhang. This process,
also called DNA end resection, is initiated by Mre11 in the MRN
complex and/or by CtBP-interacting protein (CtIP) [9, 10]. The
ssDNA overhang is rapidly bound by replication protein A (RPA),
which is thought to remove secondary structures and protect the
ssDNA from degradation [11]. Breast cancer 2 (BRCA2) facilitates
the replacement of RPA with RAD51, and the resultant RAD51-
ssDNA filament searches for a homologous DNA sequence on the
identical sister chromatid. The RAD51-ssDNA filaments then invade
the identical sister chromatid and anneal to the complementary
ssDNA. DNA polymerases synthesize DNA by using the undamaged
DNA strand template [8]. Thus, HR repairs DSBs without nucleotide
deletion or alteration. Although HR and NHEJ are the main DSB
repair pathways, additional mechanisms of DSB repair include alter-
native NHEJ (in which DNA ends are resected and repaired in a Ku
70/80-, ligase IV-, XRCC4- and XLF-independent manner) and
other non-canonical repair pathways [3].

Because HR requires sister chromatids, HR is restricted only to
late S and G2 phases of the cell cycle. In contrast to HR, NHEJ
repairs DSBs throughout the cell cycle. That is, both HR and NHEJ
are available in late S and G2 phases. How do cells choose the DNA-
repair pathway in G2 phase? Recent studies have provided clues to
answer this question.

DNA-REPAIR PATHWAY CHOICE
In response to DSBs, various molecules are recruited to DSB sites.
The accumulation of these molecules at DSB sites is clearly visible as
foci (generally called ionizing radiation induced foci: IRIF) in the
nucleus through immunofluorescence microscopy. 53BP1 and breast
cancer 1 (BRCA1) are the best-known molecules that form foci at
DSB sites. 53BP1 is considered to be an NHEJ-promoting protein
because 53BP1-null cells exhibit ionizing radiation (IR) sensitivity,
and 53BP1 knockout mice exhibit abnormalities in V(D)J recombin-
ation and class switch recombination [12, 13]. Several groups have
recently revealed that the ATM-mediated phosphorylation of 53BP1
recruits Rap1 interacting factor 1 (RIF1) and PAX transcription activa-
tion domain interacting protein (PTIP); these proteins promote

NHEJ by blocking DNA end resection in G1 phase cells [14–18]
(Fig. 1A). In contrast to the 53BP1•RIF1 complex, BRCA1 promotes
DNA end resection by recruiting activated CtIP to DSB sites [8, 19].
BRCA1 also recruits PALB2 and BRCA2, thereby facilitating RPA-
RAD51 exchange on ssDNA [20]. In addition, BRCA1 inhibits RIF1
recruitment to DSB sites, releases the blockade of DNA end resection
and promotes HR in G2 phase cells [14–17] (Fig. 1B). Thus, BRCA1
promotes HR. Although it is not clear whether the 53BP1•RIF1
complex physiologically inhibits BRCA1 accumulation at DSB sites
and promotes NHEJ in G2 phase, an attractive model is that the
53BP1•RIF1 complex promotes NHEJ in the early stages of DDR,
and the removal of RIF1 or the 53BP1•RIF1 complex by BRCA1 pro-
motes HR in the late stages of DDR in G2 phase cells.

BRCA1 also forms a complex with RAP80, Abraxas, BRCA1/
BRCA2-containing complex subunit 36 (BRCC36), BRCC45 and
mediator of RAP80 interactions and targeting subunit of 40 kDa
(MERIT40) [21–26]. This multiprotein complex is called the BRCA1-
A complex. Many radiation-induced BRCA1 foci are considered to
belong to the BRCA1-A complex (Fig. 2A) because the depletion of
RAP80 results in significantly diminished formation of BRCA1 foci
[27]. Although RAP80 plays a major role in recruiting BRCA1 to DSB
sites, RAP80-depleted cells exhibit over-resection, increased HR activity
and inefficient NHEJ [27, 28]. The enhanced HR in RAP80-depleted
cells is cancelled completely by the depletion of BRCA1 [27], suggest-
ing that BRCA1 promotes HR independent of RAP80, and RAP80
suppresses the HR-promoting function of BRCA1 (Fig. 2B). A recent
study has revealed that RAP80 recruits BRCA1 to DSB-surrounding
regions but not to DSB sites (Fig. 2A) [29]. This evidence strongly
suggests that RAP80 sequesters BRCA1 from the edge of DSBs and
fine-tunes the HR-promoting function of BRCA1. However, BRCA1
indirectly removes RAP80 and 53BP1 from the core of IRIF in G2
phase cells in the late stages of DDR [30] (details are described later).
The absence of 53BP1 and RAP80 permits DNA end resection and
RPA localization at the IRIF core (Fig. 2C). Thus, competition
between BRCA1 and RAP80 also affects DNA-repair pathway choice.

RNF8- AND RNF168-DEPENDENT DDR
SIGNALING FACILITATES THE RECRUITMENT

OF 53BP1 AND RAP80 TO DSB SITES
The signaling cascade from the detection of DSBs to the accumula-
tion of 53BP1 and RAP80 has been well studied (Fig. 3). Upon the

Fig. 1. The 53BP1•RIF1 complex suppresses HR, and BRCA1 promotes HR. (A) The 53BP1•RIF1 complex suppresses DNA
end resection in G1 phase. (B) BRCA1 inhibits RIF1 accumulation at DSB sites and enables DNA end resection in G2 phase.
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generation of DSBs, the ends of the DSBs are detected by the MRN
complex, which triggers the activation of ATM [31]. Subsequently,
ATM phosphorylates histone H2AX in the region surrounding the
DSBs, thus forming γH2AX. The mediator of DNA damage-check-
point 1 (MDC1) then localizes to DSB sites by binding to γH2AX
and is phosphorylated by ATM [32]. The phosphorylation of MDC1
promotes the recruitment of RNF8, and RNF8, in conjunction with
the E2 conjugating enzyme UBC13, adds a lysine (K) 63-linked ubi-
quitin chain to histone H1; this chain serves as a scaffold for recruit-
ment of ubiquitin binding proteins and does not induce protein
degradation [33] (Fig. 3A) [34–39]. RNF168 then interacts with the
K63-linked ubiquitin chain conjugated on ubiquitinated H1 through
its ubiquitination-dependent DSB recruitment module 1 (UDM1),
which consists of LR motif 1 (LRM1), UIM- and MIU-related UBD
(UMI) [40], and motif interacting with ubiquitin 1 (MIU1)
(Fig. 3A) [39, 41]. After binding to the ubiquitin chain, RNF168
ubiquitinates histone H2A on K15 (H2AK15Ub) at DSB sites, and
53BP1 interacts with H2AK15Ub through its ubiquitination-depend-
ent recruitment (UDR) motif (Fig. 3A) [42]. RNF168 itself also
interacts with ubiquitinated histone H2A through UDM2, which con-
sists of MIU2 and LRM2, thus amplifying the ubiquitination-depend-
ent DDR [39, 41]. Although histone H2A ubiquitination on K15 is
mediated by UBCH5a or UBCH5c and not UBC13 in vitro [42, 43],
53BP1 forms foci at DSB sites when all UBE2D family E2-

conjugating enzymes (UBCH5a, UBCH5b, UBCH5c and UBCH5d)
are simultaneously depleted by siRNA [44]. Therefore, the E2 that
conjugates ubiquitin on K15 of histone H2A in vivo remains to be
elucidated.

For the retention of 53BP1 at DSB sites, an interaction between
the Tudor domain of 53BP1 and K20-dimethylated histone H4
(H4K20Me2) is required (Fig. 3B) [45]. H4K20me2 is abundant in
normal nuclei but is constitutively masked by the polycomb molecule
L3MBTL1 [46] and the demethylases JMJD2A and JMJD2B [47]. At
DSB sites, these proteins are ubiquitinated by RNF8 and RNF168, and
removed from chromatin in a valosin-containing protein (VCP)/p97-
dependent manner. Non-K63-linked ubiquitination is required [46–
48]. After these proteins are removed from DSB sites, 53BP1 binds to
the exposed H4K20me2 through its Tudor domain (Fig. 3B).

RAP80, a component of the BRCA1-A complex, has tandem ubi-
quitin-interacting motifs (UIMs) that enable specific binding to the
K63-linked ubiquitin chain [22, 23, 49]. It is unclear whether RNF168
synthesizes K63-linked ubiquitin chains with UBC13 [39], but the
recruitment of RAP80 to DSB sites depends on RNF168 (Fig. 3C)
[37]. The K63-linked ubiquitinated protein to which RAP80 binds has
not been identified.

The evidence described above suggests that the RNF8- and
RNF168-dependent DDR signal suppresses HR and promotes NHEJ
by recruiting 53BP1 and RAP80.

Fig. 2. BRCA1 promotes DNA end resection, but the BRCA1-A complex suppresses excessive DNA end resection. (A) RAP80
binds to the K63-linked ubiquitin chain, forms the BRCA1-A complex and sequesters BRCA1 from DSB ends, enabling the
suppression of excessive DNA end resection. The BRCA1•CtIP complex and BRCA1•PALB2•BRCA2 complex promote HR.
(B) In the absence of RAP80, BRCA1 localizes to DSB sites independently of RAP80 and extensively promotes DNA end
resection and HR. (C) BRCA1 and POH1 remove RAP80, ubiquitin chain and 53BP1 from the IRIF core, enabling DNA end
resection. Ub: ubiquitin.
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Fig. 3. RNF8 and RNF168 promote the accumulation of 53BP1 and RAP80 at DSB sites. (A) RNF8 conjugates the K63-linked
ubiquitin chain on histone H1 with UBC13. RNF168 accumulates at DSB sites by binding to K63-ubiquitinated histone H1 and
then ubiquitinates histone H2A on K15 (H2AK15Ub). (B) 53BP1 interacts with H2AK15Ub and K20-dimethylated histone H4
(H4K20diMe). L3MBTL1, JMJD2A and JMJD2B are ubiquitinated and removed from DSB sites before 53BP1 accumulation.
(C) RAP80, a component of the BRCA1-A complex, interacts with the K63-linked ubiquitin chain at DSB sites. Ub: ubiquitin, P:
phosphate, Me: methyl.
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SUPPRESSION OF RNF8- AND RNF168-
DEPENDENT DDR BY DUBS AFFECTS THE

CHOICE OF DNA-REPAIR PATHWAY
In phosphorylation-dependent DDR signaling, phosphatases counter-
act ATM-dependent phosphorylation. For example, protein phospha-
tases PP4 and PP2A dephosphorylate γ-H2AX [50–52]. Similarly,
DUBs counteract ubiquitination-dependent DDR signaling [53].
OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) is an
OTU family DUB that is involved in the RNF8- and RNF168-
dependent DDR. OTUB2 does not exhibit strong linkage specificity

but efficiently cleaves K63-, K48- and K11-linked ubiquitin chains
[54]. In cells, OTUB2 suppresses the recruitment of RNF168 to DSB
sites in a DUB activity-dependent manner. OTUB2 also deubiquiti-
nates L3MBTL1 in vivo and in vitro [48]. Thus, OTUB2 counteracts
RNF8 (Fig. 4). However, OTUB2 does not suppress histone ubiquiti-
nation induced by RNF168 overexpression [48]. (Notably, overex-
pressed RNF168 can bypass RNF8 and induce core histone
ubiquitination in the absence of RNF8 [37]. Therefore, overexpressed
RNF168 can ubiquitinate core histones in OTUB2-overexpressing
cells in which RNF8-dependent ubiquitination is strongly suppressed
[48].) In OTUB2-depleted cells, the conjugation of ubiquitin and
accumulation of RNF168, 53BP1 and RAP80 at DSB sites are signifi-
cantly accelerated during early phases of the DDR [48], and total
DSB repair is upregulated. However, DNA end resection and HR are
suppressed in OTUB2-depleted cells [48]. Thus, the RNF8-RNF168
axis primarily suppresses HR and promotes non-HR-type DSB repair,
e.g. NHEJ, and OTUB2 enables the initiation of HR by suppressing
the excessive accumulation of 53BP1 and RAP80 in an early phase of
the DDR (Fig. 5).

Proteasome (prosome, macropain) 26S subunit, non-ATPase, 14
(PSMD14/POH1), a component of the proteasome, is a JAMM/
MPN(+) DUB involved in DNA-repair pathway control. POH1 is
recruited to the IRIF core in a BRCA1-dependent manner, and pro-
motes the clearance of RAP80, the ubiquitin chain and 53BP1 from
the IRIF core in G2 phase cells in the late stages of DDR [30]. The
detailed molecular mechanism remains to be elucidated, but one pro-
posed model is that POH1 degrades RAP80 and the loss of RAP80-
dependent protection of the ubiquitin chain promotes the removal of
ubiquitin, leading to the removal of 53BP1 from the core of IRIF
[30]. RAP80 and ubiquitin chains persist at the IRIF core in POH1-
depleted cells, but the ubiquitin chains are removed from the IRIF
core when POH1 and RAP80 are simultaneously depleted [30], sug-
gesting that DUBs but not POH1 degrade ubiquitin chains. However,
it is also possible that POH1 and other DUBs redundantly cleave the
ubiquitin chain [30, 55]. POH1 also plays a role in maintaining

Fig. 4. OTUB2 suppresses RNF8-dependent
ubiquitination. OTUB2 deubiquitinates K63-
linked ubiquitin chain synthesized by RNF8-
UBC13 and suppresses excessive accumulation
of RNF168 at DSB sites. OTUB2 also
deubiquitinates L3MBTL1, properly maintains
it on chromatin and suppresses the excessive
accumulation of 53BP1. Ub: ubiquitin, Me:
methyl.

Fig. 5. The role of the opposing activities of RNF8-RNF168 (ubiquitination) and OTUB2 (deubiquitination). (A) OTUB2 fine-
tunes RNF8-dependent ubiquitination and suppresses the recruitment of excessive RNF168, RAP80 and 53BP1 to DSB sites,
enabling the proper choice of DNA-repair pathway. (B) Accelerated RNF8-dependent ubiquitination results in excessive
accumulation of RNF168, RAP80 and 53BP1, in turn promoting NHEJ and suppressing HR. Ub: ubiquitin.

Ubiquitination and repair pathway choice • i37



JMJD2A on chromatin, which suppresses 53BP1 recruitment to chro-
matin [55]. After RAP80 and 53BP1 have been cleared from the IRIF
core, nucleases promote DNA end resection, allowing HR to proceed
(Fig. 2C). Thus, POH1 relieves the barriers imposed by 53BP1 and
RAP80 in the late stages of DDR and induces the switch from NHEJ
to HR [30]. This IRIF core model is reasonable and attractive, but it
should be noted that another group has reported that depletion of
POH1 does not affect DNA end resection [55].

BRCA1/BRCA2-containing Complex Subunit 3 (BRCC3/BRCC36),
a component of the BRCA1-A complex, is another JAMM/MPN(+)
family DUB involved in RNF8-RNF168-dependent DDR signaling
[26]. BRCC36 specifically cleaves the K63-linked ubiquitin chain on
histone H2A [56], and BRCC36-depletion enhances 53BP1 IRIF in
RNF8-depleted cells, indicating that BRCC36 and RNF8 play oppos-
ing roles in ubiquitination-mediated DDR [26]. Although the sup-
pressive role of BRCC36 in RNF8-dependent DDR suggests that
BRCC36 promotes HR, the depletion of BRCC36 increases HR effi-
ciency [27]. This discrepancy is probably due to inefficient accumula-
tion of the BRCA1-A complex at DSB sites in BRCC36-depleted
cells [57]. However, the physiological role of BRCC36 in DNA-
repair pathway choice remains to be elucidated.

Many other DUBs (e.g. OTUB1 [58, 59], ubiquitin specific pep-
tidase 34 (USP34) [60] and USP44 [61]) have also been reported to
be involved in RNF8-RNF168-dependent DDR. These DUBs are
extensively reviewed in [53]. Among these DUBs, OTUB1 exhibits
an interesting non-canonical function as a DUB. OTUB1 is an OTU
family DUB specific for the K48-linked ubiquitin chain [62]. When
OTUB1 cleaves the K48-linked chain, two ubiquitin binding sites in

OTUB1 interact with both proximal and distal ubiquitins of the K48-
linked ubiquitin chain [63]. One ubiquitin binding site that interacts
with the proximal ubiquitin includes the ∼45 N-terminal residues of
OTUB1 [63], and the other ubiquitin binding site that interacts with
the distal ubiquitin includes the ∼190 C-terminal residue of OTUB1
[64]. The depletion of OTUB1 results in persistent ubiquitin chain
formation at DSB sites, and the overexpression of OTUB1 inhibits
53BP1 IRIF, suggesting that OTUB1 is involved in RNF8- and
RNF168-dependent DDR. However, the inhibitory effect of OTUB1
is independent of its DUB activity because the catalytically inactive
mutant OTUB1C91S suppresses 53BP1 IRIF and core histone ubiqui-
tination as efficiently as wild-type OTUB1 [58]. How does OTUB1
inhibit ubiquitination-dependent DDR? Intriguingly, OTUB1 inhibits
UBC13 and UBE2D/2E-family E2 conjugating enzymes in a DUB
activity-independent manner [58]. For example, OTUB1 interacts
with ubiquitin-charged UBC13 through its OTU domain and with
ubiquitin conjugated on UBC13 through its N-terminal residue, and
it suppresses the E2 activity of UBC13 physically but not enzymati-
cally (Fig. 6) [58, 59, 65]. For activation of the inhibitory function,
free ubiquitin must bind to the distal ubiquitin-binding site of
OTUB1 [65]. Because the N-terminal residues are usually disordered,
OTUB1 cannot interact with ubiquitin that is charged on UBC13.
The binding of free ubiquitin to the distal ubiquitin binding site of
OTUB1 triggers conformational changes in the OTU domain and
the formation of a ubiquitin-binding helix in the N terminus of
OTUB1, promoting tight interaction between OTUB1 and ubiquitin-
charged UBC13 [65]. This mode of OTUB1 activity regulates DDR.
This allosteric regulation of OTUB1 suggests that a locally highly

Fig. 6. OTUB1 non-catalytically inhibits UBC13-dependent ubiquitination. OTUB1 interacts with ubiquitin-charged UBC13
(and UBE2D/2E family E2s) and inhibits E2-conjugating activity in a DUB activity-independent manner. A predicted model of
OTUB1 action in DDR is shown. Deubiquitination of ubiquitinated proteins increases the local free ubiquitin concentration at
DSB sites, enabling interaction with free ubiquitin and OTUB1. Free ubiquitin binding to the distal ubiquitin binding site of
OTUB1 induces a conformational change of OTUB1 (see main text). The free ubiquitin-bound OTUB1 tightly binds to
ubiquitin-charged UBC13 (and other E2 enzymes). The binding of OTUB1 to UBC13 (and other E2 enzymes) terminates
ubiquitination-dependent DDR by inhibiting the activity of UBC13 (and other E2s). N-ter.: N-terminal residue, PUbB: proximal
ubiquitin binding site, DUbB: distal ubiquitin binding site, Ub: ubiquitin.
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elevated concentration of free ubiquitin, which can be produced by
the deubiquitination of ubiquitinated proteins at DSB sites, promotes
interaction between OTUB1 and ubiquitin-charged E2 conjugating
enzymes. In this case, a physiological role of OTUB1 may be the ter-
mination of ubiquitination-dependent signaling at the end stage of
DDR (Fig. 6).

CONCLUSION
In conclusion, accumulating evidence suggests that the opposing func-
tions of RNR8/RNF168 and DUBs affect the choice of DNA-repair
pathway. Timely ubiquitination and the fine tuning of RNF8- and
RNF168-dependent ubiquitination are probably keys for the appropri-
ate choice of DNA-repair pathway. Some questions remain to be
answered. How are the enzymatic activities of RNF8, RNF168 and
DUBs regulated in the local area surrounding DSBs? What regulates
the balance of ubiquitination and deubiquitination? Are there cell
cycle-specific or DSB structure-specific regulations? Answering these
questions will reveal the fundamental regulatory mechanism of DNA-
repair pathway choice.
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