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Abstract

Gilutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treat-
ment and their rheological, thermal properties and freeze-thaw stability were evaluated.
Compared with the native GRF and GRS, the water-holding ability of modified GRF and
GRS were enhanced. Both the onset and peak temperatures of the modified samples
increased while the endothermic enthalpy change decreased significantly (p < 0.05). Mean-
while, dry heating remarkably increased the apparent viscosities of both GRF and GRS.
Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G")
values of modified GRF increased more greatly and the tand values decreased more
remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a
higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of
GRF is a more effective method than that of GRS, which omits the complex and tedious pro-
cess for purifying GRS, and thereby has more practical applications in the food industry.

Introduction

Rice starch is one of the important commercial cereal starches. Because of the unique physio-
chemical properties (such as small granules, low allergenicity, and increased freeze—thaw sta-
bility of pastes), rice starch has been applied as cosmetic dusting powder, photographic paper
powder, food thickener, and excipient for pharmaceutical tablets [1-2]. However, the close
conjunction between the starch granules and surrounding protein matrix results in difficult
isolation of rice starch. Currently, glutinous rice flour (GRF) has been widely used in both
novel and traditional foods such as sweet soup balls, infant foods, puffed grains and gluten free
products [3-4] due to the soft, high sticky nature and easily digestible carbohydrates after
cooking [5]. More importantly, GRF is rich in protein, mineral substances, and vitamins, and is
more nutritious than glutinous rice starch (GRS). However, GRF has negative aspects as well as
GRS, such as poor resistance to shear force, and low elastic gel-forming ability, leading to its
limited application in food industry. Therefore, it is necessary to enhance its inherent proper-
ties in accordance with the intended purposes in the products. Rice flour can be modified in
several ways, such as chemical, physical, and enzymatic methods [6-7]. Physical modifications
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involve pre-gelatinization and heat-moisture treatment [8-9], and have gained a wider applica-
tion [3, 10].

Dry heating is one newly developed physical modification method to produce modified
starches, which is simple, safe, and produces no pollution. In recent years, much attention has
been paid to the effect of dry heating on the pasting and thermal properties of starch and starch
with hydrocolloid [11]. Starch’s functional properties, such as oil-binding capacity and water-
binding capacity of potato, sweet potato, and taro starches, increased significantly when modi-
fied with ionic gums and dry heating [12]. Li et al. [13] studied that after dry-heat treatment,
the gel-forming ability of waxy rice starch with xanthan was strengthened, as both storage and
loss modulus values increased. Besides, dry heating with sodium alginate or carboxymethyl cel-
lulose (CMC) would enhance the paste viscosity of waxy maize starch [14]. Sun et al. [15] also
found that the gel structure of potato starch became more compact after dry heating with
CMC. In addition to starch, protein is the second most abundant biomass components in the
flour. Falade and Onyeoziri [16] have demonstrated that the peak viscosities of yam flour after
dry-heat treatment significantly increased. Sun et al. [11] reported that dry-heat treatment had
a more significant influence on the thermal properties of flour than of starch, and the difference
may be attributed to the existence of the non-starch components such as protein in the flour.
Dry heating on morphological, structural, and pasting properties of GRS and GRF was studied
by Qiu et al. [17], who found that the crystallinity of modified GRS and GRF were increased,
and the morphological structures of modified GRF were denser than that of modified GRS.

Because of the freeze—thaw stability is one of the key determinants for starches used as the
clean-label ingredients in frozen food products, and the rheological properties could adequately
reflect the viscoelasticity and stability of the GRF and GRS gels, which would help us better
understand the importance of the viscoelastic properties of GRF and GRS suspension utilized
in the fields of food industry. Although the rheology and freeze-thaw stability of different types
of starches or flours via physical modification methods such as pregelatinization and heat-
moisture treatment have been investigated in previous literatures [8-10], for dry-heat treat-
ment, as a new physical modification method, no detailed information (containing our previ-
ous article) can be obtained about its effect on the rheological, freeze-thaw stability and
thermal properties of GRF and GRS. To fill this knowledge gap, we aimed to investigative the
differences in the rheological properties and freeze-thaw stability between the modified GRF
and GRS via dry heating for their better application in food industries especially in high viscos-
ity food, and then to make further evaluate whether dry heated GRF can be used as a substitute
for GRS in food industry.

Materials and Methods
2.1 Materials

Glutinous rice grains (Longnuo 3) were obtained from the Rice Research Institute, Heilong-
jiang Academy of Agricultural Sciences (Heilongjiang, China). Analytical grade chemicals were
supplied by Tianjin Jiangtian Chemical Co. Ltd. (Tianjin, China).

2.2 Preparation of glutinous rice flour and starch

The rice grains were ground into flour using cryogenic milling as described by Hasjima et al.
[18] with some modification. Rice grains (1,000 g) were steeped in 2 times volume deionized
water container which placed in a refrigerator (Haier BCD-225SLDA, Qingdao, China) at 4°C
for 2 h, then the water was drained off and put into a high speed blender (FW100, Tianjin,
China) which grinded the grains into powders. GRF within the retort pouch was dried in a hot
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air oven at 45°C until the moisture content reduced to 7.0%, and then the dried GRF passed
through a 100-mesh screen.

Glutinous rice starch was prepared using the alkaline steeping method [19] with some mod-
ifications. Rice grains (1,000 g) were soaked in 2 times volume 0.35% (w/v) sodium hydroxide
solution at 4°C for 24 h. The supernatant was drained off and the rice grains were ground with
a blender, and then passed through a 100-mesh screen. The slurry was centrifuged at 3,000
rpm for 15 min, the supernatant was decanted off, and the starch layer was re-slurred with tri-
ple-volume deionized water. The step of washing the starch layer with deionized water was
applied four times. Subsequently, the starch was neutralized with 1 N hydrochloric acid to pH
7. Precipitated starch was collected by centrifugation at 3,000 rpm for 15 min, the supernatant
was removed. Afterward, the starch cakes was dried in a hot air oven at 45°C for 24 h until the
moisture content reduced to 7.0%. The moisture content was measured by a Sartorius AG
moisture meter (MA-45). The dried GRS was ground to pass through a 100-mesh sieve.

2.3 Dry-heat treatments of glutinous rice flour and starch

The flours and starches were modified by dry-heat treatment according to Lim et al. [14], with
some modifications. The GRF (7.0%, w/w, moisture content) was also heated for 0, 2, and 4 h
at 130°C (GRF, GRF2 h, GRF4 h) in the oven (876A-2, Shanghai, China), and GRS (7.0%, w/w,
moisture content) was heated for 0, 2, and 4 h at 130°C (GRS, GRS2 h, GRS4 h), respectively.
After dry-heat treatment, the treated samples were cooled to the room temperature and then
stored in 50 mL plastic tubes with caps to prevent them from being affected by damp condi-
tions for further analysis. Untreated GRF and GRS were used as controls.

2.4 Determination of chemical compositions of glutinous rice flour and
starch

The proximate compositions of GRF and GRS were analyzed according to AOAC methods
[20] for the determination of moisture, ash, protein, and crude fat contents. The protein con-
tent of the rice flour samples was determined by the Kjeldahl method [21]. The result was mul-
tiplied by the factor 5.95 to convert to crude protein content.

2.5 Differential scanning calorimetric (DSC) measurement

Thermal parameters of all the samples were measured using a differential scanning calorimeter
(DSC1; Mettler Toledo, Schwerzenbach, Switzerland) equipped with a thermal analysis data
station and data recording software (STAR@ SW 9.20), as described by Ahmed et al. [22]. Each
sample (approx. 4 mg) and distilled water (8 mg) were placed in an aluminum pan, then sealed
in the aluminum hermetic pan and then kept at 4°C for 24 h. The scanning temperature range
and the heating rates were 25-120°C and 10°C/min, respectively. In all measurements, the
thermogram was recorded with an empty aluminum pan as a reference. During the scans, the
space surrounding the sample chamber was flushed with dry nitrogen to avoid condensation.
The transition temperatures reported are the onset (To), peak (T'p), conclusion (Tc) and gelati-
nization temperature range (Tc—To). The gelatinization enthalpy change (AH) estimated by
integrating the area between the thermogram and a baseline under the peak, was expressed in
Joules per gram of dry basis sample.

2.6 Freeze-thaw stability

Syneresis of freeze-thawed GRF and GRS gels were determined as described by Sun and Yoo
[23], with minor modifications. An aqueous suspension of sample (5 g/100 g) was heated at
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95°C under constant mild agitation for 30 min and then cooled to room temperature in an ice
water bath. The paste was weighed (15 g) in centrifuge tubes and subjected to successive freeze-
thaw cycles by freezing at -18°C for 24 h and thawing at 50°C for 30 min, followed by centrifu-
gation at 3,000 x g for 15 min. The supernatant eliminated from the gel was weighed, and the
extent of syneresis was expressed as the percentage of liquid separated per total weight of sam-
ple in the centrifuge tube. The syneresis percentage was calculated using Eq 1:

Syneresis(%) = Ws/W x 100 (1)

where W is the weight of the water separated from the gels, and W is the weight of the gel.

2.7 Measurement of static rheological parameter

GRF and GRS suspensions (12%, w/v) were prepared by adding the powders (3 g) to distilled
water (25 mL) in an aluminum can (36 mm diameter). The suspensions were gelatinized via

a rapid viscosity analyzer (RVA, Model 4D, Newport Scientific, Australia) according to the
methodology by Sun et al. [15]. The obtained hot pastes were immediately transferred to the
platen of a rheometer (MCR102, Anton Paar, Austria), which was equipped with a smooth par-
allel plate measuring geometry (50 mm diameter, 1° cone angle) at the gap size 1 mm. The con-
tinuous shear tests were performed at 25°C over the shear rate range of 0.01-300 s to measure
the influence of the shear rate on the apparent viscosity and shear stress, as well as to describe
the steady shear rheological properties of the samples, and the data were fitted to the well-
known the power law model of Herschel-Bulkley (Eq 2):

T=1+K-)" (2)

Where 1 = shear stress (Pa), 1, = yield stress (Pa), K = consistency coefficient (Pa-s"), y = shear
rate (s™), and n = flow behavior index. Furthermore, n is the flow behavior index, which dem-
onstrates the extent to which the liquid departs from Newtonian fluid.

2.8 Measurement of dynamic rheological parameter

The dynamic rheological properties of GRF and GRS were measured (MCR102, Anton Paar,
Austria) according to previous literature by Sopadea et al. [24]. The freshly prepared hot sam-
ple pates (12%, w/v) from RV A were put into the testing platform of the dynamic rheometer,
and were added to the peltier plate, and the parallel plate geometry (50 mm) at gap 1 mm.
After removing the excess suspension and placing silica oil to the edge of the plate, the fre-
quency sweeps were performed at 25°C over the angular frequency range of 0.1-70 rad/s. The
0.5% strain was in the linear viscoelastic region according to the strain sweep results (data not
shown) with the frequency of 1 Hz. The mechanical spectra were obtained to record the storage
modulus (G"), loss modulus (G"), and loss tangent (tand = G"/ G') as a function of the frequency
(w) determined in triplicate.

2.9 Statistical analysis

All experiments were conducted at least three times, and then experimental data were analyzed
using an analysis of variance (ANOVA) and were expressed as mean values + standard devia-
tions. Differences were considered at a significance level of 95% (p < 0.05). Pearson’s correla-
tion coefficients among parameters were calculated using the Statistical Package for the Social
Sciences (SPSS) v 17.0 software.
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Table 1. Chemical Composition of glutinous rice starch (GRS) and glutinous rice flour (GRF).

Sample Starch (%) Protein (%) Lipid (%) Moisture content (%)
GRS 99.3240.76° 0.4920.01° 0.030.01° 7.01+0.13?
GRF 87.23+0.74° 6.78+0.17% 0.71+0.12% 7.21+0.34%

Values of means followed by different lowercase letters in the same column are significantly different (p < 0.05). Values expressed are means + standard
deviations (n = 3).

doi:10.1371/journal.pone.0160371.t001

Results and Discussion
3.1 Chemical composition

The chemical compositions of GRF and GRS samples are presented in Table 1. GRS had much
higher contents of total starch (91.78%) compared to GRF (83.59%). GRF contained noticeably
higher amounts of protein and lipid compared to rice starch. Protein, lipid, and ash in GRF
were 7.78%, 0.97%, and 0.45% (dwb, %), whereas those in GRS were 0.49%, 0.30%, and 0.26%
(dwb, %), respectively. Previous studies have shown that rice starch contained 0.07-0.68% pro-
tein and 0.01-0.35% ash [25] whereas rice flour contained 71-91% starch, 7-11% protein,
0.87-8.10% lipid and 0.46-1.10% ash [25-26]. Similarly, Falade and Christopher [27] found
that the fat and protein contents of rice starches varied from 0.04 to 0.35 and 0.35-0.48%,
respectively. Differences in the chemical compositions of GRS and GRF would influence

their thermal and gel properties, as well as the susceptibility of flour and starch to dry-heat
treatment.

3.2 Thermal properties

The thermal parameters of native and modified GRF and GRS are given in Table 2. The onset
temperature (To) of native GRS was 59.08°C, which was in accordance with Zhu et al. [25]
who reported the To of the rice starches ranged from 58.80 to 70.40°C. After dry-heat treat-
ment, the gelatinization endotherms of the modified starch and flour shifted to a higher tem-
perature with a prolongation of dry-heat treatment time. The peak temperature (Tp) of flour
had the highest increase of about 4.7°C after dry-heat treatment, which was from 63.07°C
(GRF) to 65.09°C (GRF2 h) and 67.79°C (GRF4 h). Moreover, Chen et al. [28] reported

that the increase in the gelatinization temperature of modified starch and flour has been attrib-
uted to amylose-amylose, amylose-amylopectin interactions, as well as chemical bonding/

Table 2. Gelatinization parameters of glutinous rice starch (GRS) and glutinous rice flour (GRF).

Sample To/°C Tp/°C Tc/°C Tc-To/°C AHJ g™
GRS 59.08+0.10° 64.21+0.03¢ 72.09+0.02° 13.01+0.30° 12.09+0.252
GRS2h 60.42+0.02° 64.98+0.11° 73.10+0.12° 12.68+0.25¢ 11.66+0.21°
GRS4 h 61.59+0.03% 67.42+0.12° 72.80+0.334 11.21+0.20° 11.07+0.20°
GRF 57.21+0.06° 63.07+0.08° 74.49+0.122 17.2810.422 11.23+0.18°
GRF2h 58.68+0.134 65.09+0.12° 73.99+0.07° 15.3110.36° 9.74+0.15°
GRF4h 59.16+0.15° 67.79+0.042 72.26+0.14° 13.10£0.32° 8.93+0.10'

Values expressed are means * standard deviations (n = 3). Values of means followed by different lowercase letters in the same column are significantly
different (p < 0.05).

GRS2 h, 4 h: the glutinous rice starch pastes after dry-heat treatment at 130°C for 2, 4 h; GRF2 h, 4 h: the glutinous rice flour pastes after dry-heat treatment
at 130°Cfor 2,4 h.

To, Tp, Tc: onset, peak, conclusion temperature; Tc-To: gelatinization temperature range; AH: enthalpy change of gelatinization.

doi:10.1371/journal.pone.0160371.1002

PLOS ONE | DOI:10.1371/journal.pone.0160371 August 18,2016 5/16



@’PLOS ‘ ONE

Functional Properties of Dry-Heated Rice Flour

interactions that occur during heat-moisture treatment. However, the gelatinization tempera-
ture range (Tc—To) of dry heated GRF was significantly (p < 0.05) different from those of dry
heated GRS treated under the same conditions. The Tc—To of GRF were 17.28°C, 15.31°C, and
13.10°C, whereas those in GRS were 13.01°C, 12.68°C, and 11.21°C, respectively. The Tc—To of
native flour (17.28°C) was higher than that of native starch (13.01°C), indicating that other
components besides starch in the flour could affect the gelatinization of the crystalline region.
The Tc—To of the flour decreased obviously after dry-heat treatment compared with the con-
trol, while that of the modified GRS just had a slight reduction. These changes indicated that
dry-heat treatment had a more significant influence on the thermal properties of GRF than
GRS, and the difference may be attributed to the existence of the non-starch components such
as protein in the flour. The protein in native GRF may have some restrictions during gelatiniza-
tion and it may make the gelatinization temperature range wider as described by Puncha-
arnon and Uttapap [29]. Remarkable reductions were also observed in the endothermic
enthalpy change (AH) of both GRS and GRF after dry-heat treatment. The AH of GRS
decreased from 12.09 J/g (GRS) to 11.66 J/g (GRS2 h) and 11.07 J/g (GRS4 h), respectively. In
contrast, the flour showed a higher decrease in AH from 11.23 J/g (GRF) to 9.74 J/g (GRF2 h)
and 8.93 J/g (GRF4 h), respectively. This indicated that dry-heat treatment had a greater influ-
ence on the structure of flour than of starch. This finding confirmed the role of non-starch
components on properties of modified flours. In addition to rearrangement of starch chains
inside starch granules, as suggested by many researchers [30-31] interactions of starch granules
and other components in flours during dry-heat treatment would also strengthen the structure
of modified flours, as denoted by greater differences in enthalpy change before and after dry-
heat treatment of flour samples (1.49-2.10 J/g), as compared to the starch samples (0.43-1.02
J/g). A similar result was reported by Chung et al. [32] who found that adding xanthan to a
starch-phosphate mixture prior to dry-heat treatment resulted in reductions in the melting
enthalpy. They suggested that this was related to the interactions between starch molecules and
xanthan.

3.3 Freeze-thaw stability

Freeze-thaw stability of GRF and GRS gels measured as syneresis, were determined after the
Ist, 2nd, 3rd and 4th freeze-thaw cycle. The effect of dry-heat treatment on the amount of syn-
eresis in GRF and GRS gels are presented in Fig 1. The syneresis represents freeze-thaw stability
of gels, and the lower values showed better freeze-thaw stability. With increase in the number
of freeze-thaw cycle, higher syneresis was observed in the GRF and GRS, probably due to pro-
long mechanical treatment (centrifugation) that weakened a gel network of starch and starch
or protein, which resulting an increase in separating water [33]. Compared to the native GRS
from cycle 1 to cycle 4, syneresis of the modified GRS decreased significantly (p < 0.05). From
cycle 1 to cycle 4, the syneresis in the modified GRS2 h was increased gradually from 3.25% to
7.48%, 11.96% and 28.54%, and then the modified GRS4 h was continuously increased to
1.84%, 5.12%, 10.02%, and 23.18%, respectively. These results indicated that longer dry heating
had an improved freeze-thaw stability of GRS.

Compared to the native GRF from cycle 1 to cycle 4, syneresis of modified GRF (Fig 1) was
also decreased significantly (p < 0.05), suggesting that dry-heat treatment could also enhance
the freeze-thaw stability of GRF. Modified GRF2 h showed the syneresis was decreased to
29.26%, 55.23%, 62.42%, and 69.12%, respectively, and then the modified GRF4 h was continu-
ously decreased to 22.17%, 48.69%, 53.47%, and 56.79%, respectively. In contrast to cycle 1,
dry-heat treatment had a slight effect on the syneresis of GRF from cycle 2 to cycle 4. In addi-
tion, syneresis of native GRF sample was much higher than that of native GRS, indicating that
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Fig 1. The freeze-thaw stability images of the GRS (A) and GRF (B) before and after dry heating. GRS2 h, 4 h: the glutinous rice starch (GRS)
pastes after dry-heat treatment at 130°C for 2, 4 h; GRF2 h, 4 h: the glutinous rice flour (GRF) pastes after dry-heat treatment at 130°C for 2, 4 h. Data
represents results from at least three independent experiments and are expressed as mean values * standard deviations. Different lowercase and capital
letters in the same images are significantly different (o < 0.05).

doi:10.1371/journal.pone.0160371.g001

the network structures of native GRF were weaker than those of native GRS. It has been found
that interaction of starches with gums resulted in remarkable improvement of syneresis and
increases in freeze-thaw stability and an increment of texture quality [34]. Similarly, rice starch
gel containing ingredients such as hydrocolloids or protein, which can bind to water molecules,
syneresis is reduced [33, 35].

3.4 Apparent viscosity versus shear rate

The steady shear flow curves of 12% (w/v) freshly prepared GRF and GRS pastes before and
after dry-heat treatment are presented in Fig 2(A) and 2(B). As the shear rate increased, the
apparent viscosity of all the GRS pastes decreased gradually, which indicated the system
behaved as a pseudoplastic fluid with a shear-thinning property. The reason may be that the
gelatinized rice starch pastes formed a stable network structure via the hydrogen bonds, due to
the entanglement between starch molecules and the wrapped water molecules. However,
increasing of the shear rate would facilitate damage to the network and result in a decrease in
apparent viscosity. Compared to the native GRS, the overall apparent viscosity values of modi-
fied GRS increased markedly. With the increment of dry heating time from 2 h to 4 h, the
apparent viscosity values of GRS continuously increased, indicating that longer dry heating
had a much greater impact on the apparent viscosity of GRS. This could be attributed to a
stronger interaction between starch molecules through dry-heat treatment, which caused the
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Fig 2. Relationship between apparent viscosity and shearing rate of the GRS (A) and GRF (B) before
and after dry heating. GRS2 h, 4 h: the glutinous rice starch (GRS) pastes after dry-heat treatment at 130°C
for 2, 4 h; GRF2 h, 4 h: the glutinous rice flour (GRF) pastes after dry-heat treatment at 130°C for 2, 4 h. The
data points represent the mean values of three samples and error bars show the standard deviation.

doi:10.1371/journal.pone.0160371.g002

pastes of GRS to be more shear-resistant and shear-stabilized. Chung et al. [32] also found that
the waxy rice starch heated with the mixture of phosphate salts and xanthan exhibited a contin-
uous increase in pasting viscosity. Similar results were reported by Li et al. [13] for waxy rice

starches with xanthan, in which the apparent viscosity of the pastes increased after dry heating.
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As the shearing rate increased, the apparent viscosity index of GRF samples was also
decreased, with the maximum apparent viscosity at 3x10* Pa-s (Fig 2B), which was much
higher than that of GRS (1x10* Pa-s) (Fig 2A). At the same dry heating time, the apparent vis-
cosity of GRF was increased to a value more pronounced than that of GRS. At the same shear
rate, the apparent viscosity of the dry heated GRF was increased, obviously. However, the
apparent viscosity of GRF2 h and GRF4 h changed little. This could be due to the protein in
GREF, which plays an important role in their apparent viscosity properties. Lee et al. [36]
reported that dry-heat treatment prompted the interaction between cornstarch and soy protein
(3%-9%, w/v), as well as increased the pasting viscosity of the starch-soy protein mixture. Qiu
et al. [37] reported that the apparent viscosities of waxy cornstarch with soy protein isolate
(3%, w/v) increased due to the stronger interactions between starch and protein induced by
dry-heat treatment. Furthermore, the interaction of waxy cornstarch with soy protein isolate
was more pronounced than that of normal cornstarch with soy protein isolate, mainly due to
the higher amylopectin content of the waxy cornstarch. Similar interactions have been reported
for starch and gum cross-linking during dry-heat treatments [14, 38]. Our results suggested
that dry heated flours could be used instead of starch in rice products, which require a higher
viscosity. Furthermore, it contains rich nutrients, such as protein and lipid, as well as avoids
the troublesome isolation of starch.

3.5 Shear stress versus shear rate

The shear stress versus shear rate rheogram of GRF and GRS before and after dry-heat treat-
ment is presented in Fig 3. The curves of all the samples were non-linear, indicating the systems
behaved as non-Newtonian fluids, as well as were considered pseudoplastic fluids [39]. At the
same shearing rate, the shearing stress of modified GRS and GRF were apparently larger than
that of the control. When the shear rate was 300 s™', the shear stress value of GRS was 50 Pa;
However, GRS2 h and GRS4 h increased to 75 Pa and 140 Pa, respectively. Compared to dry
heated GRS, GRF showed higher shear stress values after dry-heat treatment, and the shear
stress values of GRF, GRF2 h, and GRF4 h were 55 Pa, 120 Pa, and 150 Pa, respectively. The
results suggested the structure of modified GRS and GRF were more stable when the dry heat-
ing time prolonged. This could be due to the interactions between starches and starches/pro-
teins that would contribute to stabilizing their structures after dry-heat treatment. Our results
were in accordance with Sun et al. [40], who studied the effect of microwave-assisted dry heat-
ing on cornstarch and waxy cornstarch with xanthan, as well as found the properties of waxy
cornstarch to be more affected by heating with xanthan than those of cornstarch.

The parameters of the power law model of Herschel-Bulkley as calculated from graph (Fig
3) are presented in Table 3. A good fit of the experimental data to the rheological equations
describing them was indicated by the high values of the R* coefficient (0.97-0.98). The flow
behavior index (n) values of all the samples were smaller than 1.0, indicating all the systems
exhibited non-Newtonian shear-thinning fluid (pseudoplastic fluid) behaviors under the inves-
tigation conditions. The n values of GRF samples were all greater than those of modified GRS.
There was no change in the n values of GRS, however, the n values of GRF continuously
decreased as the dry heating time increased, indicating the GRF pastes showed stronger
pseudoplastic behavior than those of the GRS pastes. Similarly, the n values deceased with
increasing of hydroxypropyl starch (HPS) content, meaning the solution showed stronger
pseudoplastic behavior with increasing HPS content [41]. Values of the consistency coefficient
(K) are a measure of apparent viscosity at the initial stage of shearing [42]. The K values of all
modified samples increased, suggesting the starch structure interactions enhanced during dry
heating. After dry-heat treatment, the K values of GRS and GRF increased gradually, up to the
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Fig 3. Relationship between shearing stress and shearing rate of GRS (A) and GRF (B) before and
after dry heating. GRS2 h, 4 h: the glutinous rice starch (GRS) pastes after dry-heat treatment at 130°C for
2,4 h; GRF2 h, 4 h: the glutinous rice flour (GRF) pastes after dry-heat treatment at 130°C for 2, 4 h. The data
points represent the mean values of three samples and error bars show the standard deviation.

doi:10.1371/journal.pone.0160371.g003

highest value when the samples were heated for 4 h. The K value of GRS increased from 18.23
Pa-s" to 37.71 Pa-s", and that of GRF increased from 20.77 Pa-s" to 64.34 Pa-s" (Table 3), indi-
cating dry-heat treatment increased interactions between starch molecules in GRS, between
starch and protein, or between protein and protein in GRF. The magnitude of K value
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Table 3. The power law parameters of glutinous rice starch (GRS) and glutinous rice flour (GRF).

Sample K(Pa.s") n R?

GRS 18.23+0.85° 0.33+0.01%° 0.98
GRS2h 33.1141.35° 0.32+0.012 0.97
GRS4h 37.71+1.50° 0.32+0.012 0.97

GRF 20.77+0.96° 0.4440.01¢ 0.98
GRF2h 56.57+1.87° 0.36+0.01° 0.97
GRF4h 64.34+2 .24 0.3440.00° 0.97

Values expressed are means + standard deviations (n = 3). Values followed by the same letter in the same
column are not significantly different (p < 0.05).

GRS2 h, 4 h: the glutinous rice starch pastes after dry-heat treatment at 130°C for 2, 4 h; GRF2 h, 4 h: the
glutinous rice flour pastes after dry-heat treatment at 130°C for 2, 4 h.

K: consistency coefficient; n: flow behavior index; R?: the fitting coefficient.

doi:10.1371/journal.pone.0160371.t003

increased with increasing starch concentration, which was attributed to the strengthened inter-
action between the particles [38]. Additionally, intermolecular forces of flours were much
stronger than those of starches were after dry heating.

3.6 Dynamic modulus of GRF and GRS before and after dry-heat
treatment

Fig 4 presents the variations to the storage modulus (G') and loss modulus (G") as a function of
frequency (w) in the GRF and GRS, respectively, before and after dry-heat treatment. The mag-
nitudes of G' and G" increased with an increase in w, showing a frequency dependency. It was
found that the GRS exhibited a weak gel-like behavior [43], as their slopes were positive and
the G' values were higher than the G" values at all w values (0.1-70 rad/s). These results con-
firmed the viscoelastic nature of the GRS. The G' and G" of native GRS were in the range of 4
to 18 Paand 2 to 11 Pa, respectively. After dry heat treatment, the G'and G" of GRS4 h
increased in the range of 11 to 26 Pa and 2.5 to 13.5 Pa, respectively. This increase in the
dynamic moduli can be attributed to an increase in the viscoelastic properties of the dry-heat
treatment. The result indicated the dry-heat treatment apparently increased the dynamic mod-
ulus (G, G"), influenced the structure, and led to the better viscoelastic capacity of GRS, which
was desirable. A similar result was reported by Li et al. [13], who found that both G' and G"
increased for the dry heated mixtures of waxy rice starch and xanthan. Thus, the gel-forming
ability of the waxy rice starch was strengthened after dry-heat treatment with xanthan.

As depicted in the figure, the dynamic rheological curves of the GRF were consistent with
the GRS, but the G' and G" values of GRF were markedly higher than those of GRS were, which
suggests dry heating had a more pronounced effect on the elastic properties of the flour than
the starch. This increase might be ascribed to the fact that the proteins in GRF produced inter-
actions between them, indicating the increase was more remarkable after dry heating. The G'
and G" values of untreated GRF were in the range of 20 to 65 Pa and 6.5 to 25 Pa, respectively.
After dry-heat treatment, the G'and G" of GRF samples were in the range of 35 to 125 Pa and
7.5 to 35 Pa, respectively. Furthermore, the magnitudes of the G' and G" values of GRF pastes
after dry heating for 4 h were the highest, which indicated the dry heating modification time
impacted the G' and G" values of GRF. This trend may have resulted from the interactions of
starch and protein during dry-heat treatment [13]. Similarly, Qiu et al. [37] reported that dry-
heat treatment resulted in higher G' and G" values of the waxy cornstarch with soy protein
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Fig 4. Storage modulus (G') and loss modulus (G") as a function of angular frequency for the GRS (A and B) and GRF (C and D)
before and after dry heating. GRS2 h, 4 h: the glutinous rice starch (GRS) pastes after dry-heat treatment at 130°C for 2, 4 h; GRF2 h, 4 h:
the glutinous rice flour (GRF) pastes after dry-heat treatment at 130°C for 2, 4 h. The data points represent the mean values of three

samples and error bars show the standard deviation.

doi:10.1371/journal.pone.0160371.9g004

isolate, indicating the interactions between starch and soy protein isolate took place after dry
heating the starch/soy protein isolate mixture, leading to forming a more viscoelastic gel.

3.7 The variation of the tand of GRF and GRS with frequency

The variations of loss tangent (tand = G"/ G') as a function of frequency at 25°C are presented
in Fig 5. As the frequency increased, the tand of GRS and GRF before and after dry-heat treat-
ment increased slightly. The tand values of the starches were lower than one, indicating the
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Fig 5. Loss tangent (tand = G"/G') as a function of angular frequency for the GRS (A) and GRF (B)
before and after dry heating. GRS2 h, 4 h: the glutinous rice starch (GRS) pastes after dry-heat treatment at
130°C for 2, 4 h; GRF2 h, 4 h: the glutinous rice flour (GRF) pastes after dry-heat treatment at 130°C for 2, 4
h. The data points represent the mean values of three samples and error bars show the standard deviation.

doi:10.1371/journal.pone.0160371.g005

samples are elastic in nature and have a typical gel network. There was a reduction in the mag-
nitude of the tand values of the dry heated samples. The tand of GRS was in the range of 0.40 to
0.60, while the tand values of GRS2 h and GRS4 h were in the range of 0.28 to 0.55. Similarly,
Lietal. [13] also found that the tand of the samples decreased when the waxy rice starches and
xanthan were dry heated in an electric oven at 130°C for 4 h. However, the tand of GRF after
dry-heat treatment changed more markedly to be greater than GRF. The tand value of GRF
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was in the range of 0.32 to 0.40, while those of GRF2 h and GRF4 h were in the range of about
0.25 to 0.38. The tand value of GRF pastes was obviously lower than that of GRS pastes, which
indicated the GRF paste’s structure was stronger and more gel-like than GRS pastes. Similarly,
Achayuthakan and Suphantharika [44] reported that the lower the tand values of the waxy
corn starch/guar gum pates were, the stronger gel behavior the pastes were exhibited. Further-
more, the tand of GRF pastes after dry heating for 4 h was more remarkably reduced than
GREF?2 h, indicating the increased stability of the network was caused by stronger strengthening
of the bonds of GRF due to dry heating for a longer period. This could be due to the fact protein
or other non-starch ingredients played an important role in the interaction of flours, except
starches. Noriko et al. [45] reported that the dry-heat treatment induced improvements in rhe-
ological properties in the increasing gel strength of a rather uniform three-dimensional net-
work of interconnected protein strand particles, which were closely packed, and the dry heated
egg white proteins resulted in the formation of harder gels.

Conclusions

Dry-heat treatment played an important role in the rheological, thermal properties and freeze-
thaw stability of GRF and GRS. The apparent viscosity of the modified GRF and GRS pastes
increased remarkably compared to the control. The G' and G" values of GRF and GRS after dry
heating observably increased and the tand decreased, indicating the samples after modification
exhibited a more gel-like structure. The viscoelastic properties of the GRF after dry heating
were enhanced more remarkably than that of GRS samples were, indicating the treatment
prompted the interaction between starch and protein, and the GRF paste’s structure was stron-
ger than GRS pastes. The dry heating modification of GRF and GRS can be useful for enhanc-
ing their rheological properties. Furthermore, dry heated flour would be used instead of dry
heated starch in food products, which require a higher viscoelasticity and gelling, such as
sauce, soup, frozen-batter, ice cream and dessert.
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