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Abstract

Aim

The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunc-
tion contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing
to beta-cell function are not clear. The aims of this study were (i) to identify factors related to
pancreatic beta-cell function and (ii) to perform mechanistic studies in vitro.

Methods

Three specific measures of beta-cell function were assessed for 110 participants who com-
pleted an oral glucose tolerance test as part of the Metabolic Challenge Study. Anthropo-
metric and biochemical parameters were assessed as potential modulators of beta-cell
function. Subsequent in vitro experiments were performed using the BRIN-BD11 pancreatic
beta-cell line. Validation of findings were performed in a second human cohort.

Results

Waist-to-hip ratio was the strongest anthropometric modulator of beta-cell function, with
beta-coefficients of -0.33 (p = 0.001) and -0.30 (p = 0.002) for beta-cell function/homeostatic
model assessment of insulin resistance (HOMA-IR), and disposition index respectively.
Additionally, the resistin-to-adiponectin ratio (RA index) emerged as being strongly associ-
ated with beta-cell function, with beta-coefficients of -0.24 (p = 0.038) and -0.25 (p = 0.028)
for beta-cell function/HOMA-IR, and disposition index respectively. Similar results were
obtained using a third measure for beta-cell function. In vitro experiments revealed that the
RA index was a potent regulator of acute insulin secretion where a high RA index (20ng ml™
resistin, 5nmol I"! g-adiponectin) significantly decreased insulin secretion whereas a low RA
index (10ng ml™ resistin, 10nmol I"" g-adiponectin) significantly increased insulin secretion.
The RA index was successfully validated in a second human cohort with beta-coefficients
of -0.40 (p = 0.006) and -0.38 (p = 0.008) for beta-cell function/ HOMA-IR, and disposition
index respectively.
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Conclusions

Waist-to-hip ratio and RA index were identified as significant modulators of beta-cell func-
tion. The ability of the RA index to modulate insulin secretion was confirmed in mechanistic
studies. Future work should identify strategies to alter the RA index.

Introduction

The prevalence of type 2 diabetes (T2D) has increased rapidly on an international scale, with
pancreatic beta-cell dysfunction and failure at the core of its development [1]. Where hypergly-
caemia exists, pancreatic beta-cells must function to a greater capacity in order to produce
more insulin to maintain glucose homeostasis [2]. Beta-cells have an ability to functionally
adapt to allow for this compensatory response of further insulin production. Beta-cell dysfunc-
tion is commonly seen in T2D, where ‘compensation’ of the beta-cells to produce insulin, often
due to insulin resistance, leads to the gradual failure of beta-cells [3]. With this in mind, there
is a need to investigate factors related to pancreatic beta-cell function in humans.

Glucose stimulates insulin secretion, triggering and amplifying signals in pancreatic beta-
cells [4-6]. Challenge tests such as the oral glucose tolerance test (OGTT) have been used to
investigate how effective individuals are at maintaining glucose homeostasis, thus assessing
beta-cell function [7]. Progression into T2D status can be categorised by examining alterations
in metabolic parameters and beta-cell function. Weir & Bonner-Weir proposed five stages of
evolving beta-cell dysfunction during the progression into T2D [8]. Stage 1 is described as
‘compensation’, where overweight or obese individuals with a degree of insulin resistance have
to increase insulin secretion from beta-cells in order to maintain homeostasis. Stage 2 occurs
where fasting blood glucose levels range between 5-7.3mmol/L, which represents ‘beta-cell
adaptation’. Stage 3 represents ‘early decompensation’ in which glucose levels rise above
7.3mmol/L, and from this progress rapidly towards a glucose level representative of stage 4,
known as ‘stable decompensation’, where levels typically range between 16-20mmol/L. Individ-
uals progressing towards T2D can remain in stage 2 for many years, but when beta-cell mass
becomes insufficient at an important point, glucose levels rise rapidly to stage 4. Lastly, stage 5
represents ‘severe decompensation’ and extreme beta-cell failure with advancement to ketosis,
with blood glucose levels above 22mmol/L. Movement between stages 1-4 can be in either
direction, with diet and exercise interventions having strong potential to return individuals
back to stage 2 [8].

It is important to identify parameters which influence the function of beta-cells, in order to
optimise beta-cell functionality and potentially identify markers of disease progression or tar-
gets for intervention. Body mass index (BMI) and an increased energy intake are recognised as
major risk factors for conditions associated with beta-cell dysfunction, and although the evi-
dence of a direct effect of BMI on pancreatic beta-cell function is still largely undefined, the
association between BMI and T2D has been well established [9-12]. Strong evidence also exists
that an excess of visceral fat is closely related to insulin resistance and T2D risk [13]. The above
studies did not have beta-cell dysfunction as their primary aim; therefore further research is
needed to determine the exact phenotypic and biochemical parameters that influence specific
measures of beta-cell function. A number of recent studies have highlighted a link between
beta-cell function and high density lipoprotein (HDL) cholesterol [14-16]. Several studies have
found links between certain anthropometric and biochemical parameters associated with T2D,
with fewer studies examining the determinants of specific measures of beta-cell function in
human cohorts. Beta-cell dysfunction is at the core of T2D, therefore it is paramount to
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understand factors which influence beta-cell function. In contrast to insulin resistance, beta-
cell dysfunction continues to be difficult to measure and monitor, due to factors such as inac-
cessibility to the endocrine pancreas and incretin effects [17]. There is a clear need for the iden-
tification of markers that could be assessed in a fasting biological sample, to allow for the
assessment of beta-cell function.

Therefore, the aim of this study was to investigate and identify potential factors related to
beta-cell function measures in a human cohort and to further investigate these in vitro where
possible.

Materials and Methods

Study population

This research focuses on data obtained from the Metabolic Challenge (MECHE) study which is
part of a national research program by the Joint Irish Nutrigenomics Organisation, as previ-
ously described [18]. The MECHE study recruited 214 healthy participants aged between 18-
60 years. Individuals were informed about the purpose of the study and the experimental pro-
cedures, prior to giving written consent. Good health was defined as the absence of any known
chronic or infectious disease and this was verified by a number of fasting blood tests. Details of
the study have been published elsewhere [18-21]. Ethical approval was obtained from the
Research Ethics Committee at University College Dublin (LS-08-43-Gibney-Ryan) and the
study was performed according to the Declaration of Helsinki.

Baseline blood samples were collected on the morning of the study visits following an over-
night fast. Participants underwent an OGTT according to the guidelines set by the World
Health Organisation/International Diabetes Federation. Venous blood samples were taken
before (0 min) and during the OGTT at set time-points (10, 20, 30, 60, 90 and 120 min), and
serum and plasma samples were collected as previously described [18-21].

Details of the analytes and methods used are previously reported, along with the measure-
ment of cytokines and hormones [19]. Lipidomic analysis was performed on serum samples
(BIOCRATES Life Sciences AG, Innsbruck, Austria), and ceramides were measured using an
in-house lipid assay as previously described [18].

For the present study, participants from the MECHE study who underwent an OGTT and
who had valid glucose and insulin data at time-points 0 and 30 min were included (n = 110).
Their baseline demographic and biochemical parameters were used for analysis. The validation
cohort, (Food for Health (FHI) cohort) comprised of 47 healthy overweight and obese partici-
pants, with a mean age of 53 years and a mean BMI of 32.1kg m™.

Measurement of beta-cell function and RA index

Beta-cell function was calculated as the ratio of the incremental insulin to glucose response
over the first 30 min of the OGTT (Alnsulinso/AGlucoses,) and three different measures were
employed. Firstly, beta-cell function was adjusted for homeostatic model assessment of insulin
resistance (HOMA-IR) ((Alnsulinso/AGlucoses;p)/HOMAIR). Secondly, the oral disposition
index (DI), which takes into account insulin sensitivity, was calculated for all participants

(Alnsulin,, /AGlucose,,) X < ) [22]. Thirdly, beta-cell function was calculated and

1
fastingInsulin
adjusted for the Matsuda Index 10000/+/(Glucosey x Insuling x Glcuose, o x Insulin ) (,
where glucose is in mg dl'and insulin in iU ml™[23]. Additionally, C-peptide data was substi-
tuted for insulin data for the DI, for the beta-cell function (ACpeptideso/AGlucoses,), and beta-
cell function adjusted for the Matsuda Index (ACpeptides;o/AGlucose;q) x Matsuda Index,.
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A ratio of resistin (Ry) to adiponectin (A,) (RA index) was formulated as follows:

RA index = R /A,

Where: R, = fasting plasma resistin levels (ng ml™) and Ay = fasting serum total adiponectin
levels (ug ml™)

Cell culture and treatment

All chemicals were purchased from Sigma-Aldrich Ireland unless otherwise stated. Culture
media and its related components were purchased from Gibco (Glasgow, UK). The
BRIN-BD11 cell line was used in this study [24] and was maintained as previously described
[25].

For experimental treatments, cells were seeded at a density of 1.5 x 10” cells per well in a 24
well plate for insulin secretion assays. Cells were allowed to attach for 24 h before being treated
with recombinant rat resistin (Cambridge Biosciences, Cambridge, UK) or rat GACRP30/Adi-
ponectin (Sigma-Aldrich) or ratios of both, for 24 h. Concentrations of 10-20ng ml™! of resistin
and 5-20nmol "' of globular (g) adiponectin were used. Concentrations were chosen in accor-
dance with previous studies [26, 27]. Cells between passage 23-33 were used and all experi-
ments were n = 4 unless otherwise stated.

Acute insulin secretion

Following the 24 h treatment period, the culture medium was removed and the cells were
washed with phosphate buffered saline (PBS). The cells were then incubated with Krebs-Ringer
bicarbonate (KRB) buffer (115mM NaCL, 1.28mM CaCl,, 4.7mM KCl, 1.2mM KH,PO,,
1.2mM MgSO, 7H,0, 10mM NaHC0;, 5 g1 BSA, all at pH 7.4) supplemented with 1.1mM
glucose for 40 min. The media was then replaced with KRB buffer containing 16.7mM glucose
+ 10mM alanine, for 20 min. Following this, the samples were transferred to Eppendorfs and
centrifuged, before removing the supernatant and assaying for insulin content using a Merco-
dia Ultrasensitive Rat Insulin ELISA kit (Mercodia AB, Uppsala, Sweden).

Measurement of mitochondrial membrane potential, intracellular calcium
and plasma membrane potential

In order to measure mitochondrial membrane potential, a protocol based on Rhodamine fluo-
rescence as described by Wallace et al was followed [25]. Cells were treated for 24 h with high
and low RA index. Fluorescence was measured over a period of 150 seconds collecting data
every 3 seconds, with injection of glucose to a final concentration of 16.7mM + 10mM alanine
at 50 seconds.

Intracellular calcium was analysed using the FLIPR Calcium 4 assay kit (R8141 Bulk Kit
Molecular Devices), as described by Wallace et al [25]. Cells were treated for 24 h with high
and low RA index. Fluorescence was then measured in a Flexstation, with readings every 2.5
seconds for 10 min. Cells were stimulated at 100 seconds with 16.7mM glucose + 10mM
alanine).

Plasma membrane potential was also determined. Following 24 hour treatment with a high
and low RA index, media was removed and the cells were incubated with 100ul of 2.2mM glu-
cose KRB buffer and 100l of loading dye (FLIPR blue membrane potential buffer (Molecular
Devices)) for 20 min. Fluorimetric data was acquired on the Flexstation with an excitation
wavelength of 530nm and an emission wavelength of 565nm. The Flexstation was set to run for
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350 seconds, collecting data at 2.5 second intervals, with stimulation of the cells (16.7mM glu-
cose + 10mM alanine) occurring at 100 seconds.

Gene expression analysis

Cells were seeded in 6 well plates and allowed to reach 80% confluence before treatment with
high RA index and low RA index for 24 h. Total RNA was extracted using TRIzol reagent (Invi-
trogen). Reverse transcription of 2 pg of total RNA was carried out using random primers and
SuperScript II (Invitrogen by Life Technologies). Samples were incubated in a PCR incubator
for 25°C for 10 min, 42°C for 50 min and 70°C for 15 min. The expression of Pancreatic and
duodenal homeobox 1 (PDX1), Insulin receptor (INSR), Adiponectin receptor 1 (ADIPOR1) and
Adiponectin receptor 2 (ADIPOR2) were investigated by real time PCR on an Applied Biosys-
tems 7900HT fast real-time PCR system using TaqgMan gene-specific assays (PDX1 (assay
Rn00755591_m1), INSR (assay Rn00690703_m1), ADIPORI (assay Rn01483784_m1) and
ADIPOR2 (assay Rn01463173_m1)). The results were normalised to beta-actin and cyclophilin
A expression.

Statistical Analysis

Analysis was carried out using IBM SPSS Statistics V.20. Data are expressed as

means * standard deviation. Linear regression analysis was carried out to examine relation-
ships between beta-cell function and various anthropometric and biochemical parameters. Sta-
tistical significance was evaluated using ANOVA with LSD and Bonferroni post-hoc tests.
Significant differences were observed if P < 0.05. For gene expression analysis, primary analysis
was carried out using Sequence Detection Software (SDS) 2.4, and secondary analysis used the
software package Data Assist 3.01.

Results
Study population

Analysis was performed on a total of 110 participants who underwent an OGTT. Baseline char-
acteristics are presented in Table 1. An equal gender balance existed with 55 males and 55
females. The mean body mass index was 25.3kg m 2, which lies at the lower end of the over-
weight BMI category (25.0-29.9kg m ™).

Identification of factors related to beta-cell function

Gender had no significant relationship with beta-cell function measures. Investigation into the
effect of BMI revealed that as BMI increased, beta-cell function decreased (Table 2). As
described in Table 3 waist-to-hip ratio was the strongest predictor of beta-cell function, with
beta-coefficients of -0.33, -0.30, and -0.26 for beta-cell function/HOMA-IR, DI and beta-cell
function adjusted for Matsuda index respectively. Further examination of the biochemical
parameters revealed that the RA index had a strong relationship with beta-cell function with
beta-coefficients of -0.24-0.25, and -0.25 for beta-cell function/HOMA-IR, DI and beta-cell
function adjusted for Matsuda index respectively. C12:1(2H) was the strongest predictor of
beta-cell function when ceramide data was examined. The list of ceramides analysed are pres-
ent in S1 Table. Additionally, when C-peptide was used to calculate the DI and beta-cell func-
tion adjusted for the Matsuda index similar results emerged (S2 Table).

To validate the relationship between the RA index and beta-cell function, adiponectin and
resistin concentrations were measured in a second cohort. This cohort, the Food for Health
(FHI) cohort comprised of 47 healthy overweight and obese, slightly older participants and
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Table 1. Baseline characteristics of MECHE cohort (n = 110).

Variable Mean *S.D.
Sex (m/f) 55/55
Age (y) 32+ 11
Weight (kg) 76.65 + 16.85
BMI (kg m?) 25.3+5.3
WHR 0.85+0.1
BP SYS (mm Hg™) 123.1+12.9
BP DIA (mm Hg™) 74.7+10.9
Glucose (mmol I') 5.21+0.56
HDL cholesterol (mmol I'") 1.34+0.36
TAG (mmol I'") 1.05 +0.60
Insulin (uIU mI™) 8.48+6.69
HOMA-IR 2.00+1.70
Adiponectin (ug mI™) 4.993.07
Resistin (ng mI™") 4561.77

All values are means + standard deviation. BMI, Body Mass Index; WHR, Waist to Hip Ratio; BP SYS,
Systolic Blood Pressure; BP DIA, Diastolic Blood Pressure; HDL, High Density Lipoprotein cholesterol; TAG,
triglycerides; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance

doi:10.1371/journal.pone.0161350.t001

had a mean age of 53 years and a mean BMI of 32.1kg m ™. The RA index was successfully vali-
dated in this second human cohort with beta coefficients of -0.395 (p = 0.006), -0.384

(p = 0.008) and -0.540 (p<<0.0001) for beta-cell function/ HOMA-IR, DI and beta-cell function
adjusted for Matsuda index respectively (S3 Table).

RA index modulates insulin secretion in pancreatic beta-cell line

To assess the effects of exposure to resistin, g-adiponectin or a ratio of both, on pancreatic
beta-cells, BRIN-BD11 cells were incubated with the adipokines for 24 h. There was no loss of
cell viability during the incubation period. Following exposure to resistin no significant effect
on insulin secretion was observed (Fig 1A). Conversely exposure to g-adiponectin resulted in a
significant increase in insulin secretion at the higher concentration of 20nmol I'* g-adiponectin
(Fig 1B). A dose response study of various RA indexes was carried out (S1 Fig). From this dose

Table 2. Beta-cell function, resistin and adiponectin according to BMI categories.

BMI Categories (kg m?)

Group 1(18-24.9 kg m?) Group 2 (>25 kg m?) P

(n =60) (n=46)
Beta-cell function/ HOMA-IR (pmol mmol™) 14.26 + 10.61 9.55+6.98 0.04
Disposition index (pmol mmol™) 3.22+2.21 2.48+1.78 0.07
Beta-cell function* Matsuda index 14.50 +13.38 10.37£11.94 0.11
Disposition index (C-Peptide) (nmol mmol™) 3.07+1.97 2.31+£2.26 0.07
Beta-cell function (C-peptide)* Matsuda index 24.17 £20.06 16.71£16.77 0.05
Resistin (ng mI™) 4.31+1.54 4.70+1.98 0.25
Adiponectin (ug mI™) 5.73+3.12 3.55+2.28 <0.001

All values are means + standard deviation. P-value determined using independent samples t-test (Significance level (P = <0.05)).

* indicates multiplication

doi:10.1371/journal.pone.0161350.1002
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Table 3. Linear regression of anthropometric, biochemical and ceramide data against beta-cell function measures.

Predictor Beta-cell function/ HOMA-IR (pmol Disposition index (pmol mmol™) Beta-cell function* Matsuda index
mmol™)
Beta coefficient P Beta coefficient P Beta coefficient P
WHR -0.33 0.001 -0.30 0.002 -0.26 0.016
RA index -0.24 0.038 -0.25 0.028 -0.25 0.021
Cer 12:1(2H) -0.24 0.015 -0.24 0.021 -0.23 0.010

Summary of strongest predictors of beta-cell function using linear regression analysis. WHR, waist-to-hip ratio; HDL, high density lipoprotein cholesterol; RA
index, resistin-to-adiponectin ratio; cer, ceramide. Data are presented as beta coefficient and P-value according to beta-cell function/HOMA-IR; Homeostatic
Model Assessment of Insulin Resistance and DI; Disposition index; beta-cell function (glucose in mg di”*, insulin in plU mi™") adjusted for the Matsuda index;
P-value determined using backward linear regression analysis. Significance level = P < 0.05. Demographic and Anthropometric variables included were:
age, sex, BMI, WHR, BP SYS, BP DIA. Biochemical variables included were: HDL cholesterol, adiponectin, resistin, RA index, triacylglycerides, Apo E,
TNFa, IFNy, IL2, IL4, IL6, IL8, IL10. Ceramide data from lipidomic analysis was examined.

* indicates multiplication.

doi:10.1371/journal.pone.0161350.t003

response data we chose the RA indexes that elicited the lowest and highest insulin secretion
response. Following treatment with two different RA indexes, a high RA index (20ng ml™" resis-
tin, 5nmol 1" g-adiponectin) significantly decreased insulin secretion whereas a low RA index
(10ng ml™" resistin, 10nmol 1"' g-adiponectin) significantly increased insulin secretion (Fig 1C).
Interestingly at this concentration of adiponectin alone there was no significant increase in
insulin secretion indicating the importance of the ratio.

Functional assays revealed that plasma membrane potential of cells treated with the low RA
index was significantly greater in comparison to the control (no treatment). The high RA index
displayed significantly lower plasma membrane potential compared to the low RA index (Fig
2). No significant differences were seen between treatments in mitochondrial membrane assays
or intracellular calcium assays (S2 and S3 Figs).

Real time PCR analysis revealed significant increases in expression of ADIPORI and ADI-
POR2 when cells were treated with low RA index. Treatment with the different RA indexes did
not impact on gene expression levels of PDX1 and INSR (Fig 3).

Discussion

The RA index and waist-to-hip ratio were revealed to be strongly associated with pancreatic
beta-cell function. The in vitro studies support the relationship between the RA index and
beta-cell function in terms of insulin secretion. Although previous results have shown the ratio
to be a predictor of T2D development, to the best of our knowledge this is the first to report a
direct relationship with pancreatic beta-cell function.

Dysregulation of adipokine secretion is frequently observed in obesity and T2D [28]. Circu-
lating adiponectin in humans typically ranges between 2-30ug ml™, while the serum concen-
tration of resistin ranges from 7 to 22 ng ml™* [29, 30]. Adiponectin has been associated with
insulin sensitivity and metabolism of lipids in peripheral tissues [31, 32], along with stimulat-
ing insulin secretion [33]. Furthermore adiponectin has also been found to exert cytoprotective
effects in beta-cells in vivo, and aids in protecting cells from undergoing apoptosis [27]. Resis-
tin has been associated with insulin resistance and pro-inflammatory properties, along with
impaired insulin secretion, and is believed to be an important link between obesity, insulin
resistance and T2D [34, 35]. Resistin treatment impedes glucose tolerance and insulin response
in mouse models [36], and modulates cell viability in cell lines [26]. However the translation of
these findings to humans has been less conclusive, with mixed findings emerging [37, 38].
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Fig 1. The effect of 24 hour treatment with resistin, g-adiponectin, or both (representing different RA indices) on insulin secretion in
BRIN-BD11 cell line. Values are mean + standard deviation (n = 4). *p < 0.05 **p < 0.01 *** p < 0.001. ANOVA was applied across groups with
post-hoc LSD test for comparison of resistin, g-adiponectin, and high and low RA index with no treatment (control). (A) Cells were incubated for 24
h with 0, 10 and 20ng ml™" resistin and then stimulated with 16.7mM glucose + 10mM alanine to determine insulin secretion. (B) Cells were
incubated for 24 h with 0, 10 and 20nmol I"' g-adiponectin, and then stimulated with 16.7mM glucose + 10mM alanine to determine insulin
secretion. Overall p-value = 0.00003. (C) Cells were incubated for 24 h with no treatment (control), high RA index (20ng mi™* resistin, 5nmol I g-
adiponectin) and a low RA index (10ng ml™' resistin, 10nmol I"' g- adiponectin) and then stimulated with 16.7mM glucose + 10mM alanine to
determine insulin secretion. Overall p-value = 0.0003.

doi:10.1371/journal.pone.0161350.g001

In support of our results a previous study identified that a resistin to adiponectin ratio was asso-
ciated with T2D and Metabolic Syndrome (MS) risk [39]. Moreover, this study demonstrated that
the ratio of resistin to adiponectin was more strongly correlated with insulin resistance indexes and
key metabolic endpoints of T2D and MS than adiponectin and resistin levels alone. This together
with our data support the role of the RA index as a potential biomarker of beta-cell function status;
use of such a biomarker profile to identify persons at risk of development of T2D could be an
important step in the development of targeted lifestyle interventions. Accurate assessment of beta-
cell function from a fasting blood sample would allow for earlier identification of beta-cell dysfunc-
tion and make it easier to monitor an individual’s risk of progression into T2D.

Although the present cohort was generally healthy, 46 participants fell into an overweight
and obese BMI category (>25kg m ). Analysis between normal BMI and overweight and
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Fig 2. The effect of RA index on the plasma membrane potential. BRIN-BD11 cells were treated for 24 h with a
control (no treatment), high RA index (20ng mI™" resistin, 5nmol I'" g-adiponectin) and a low RA index (10ng mI™
resistin, 10nmol I g-adiponectin). Cells were stimulated with 16.7mM glucose + 10mM alanine at 100 seconds.
Data was analysed by determining the difference in relative fluorescence units (RFU) between the average
baseline and post stimulation values for each experiment (delta change %). The increase in fluorescence
(normalised to baseline) upon stimulation was 26.4% for control, 23.5% for high RA index and 33.9% for low RA
index. Statistically significant differences exist upon the increase in RFU between control treatment and low RA
index (p = 0.009) and high and low RA index (p = 0.003). Overall ANOVA p = 0.007. Values are represented as
mean values (n = 5).

doi:10.1371/journal.pone.0161350.g002

obese BMI categories revealed a significant decrease in both beta-cell function/HOMA-IR and
DI as BMI increased. Importantly, an intervention study in 11 obese T2D individuals revealed
that reducing BMI through energy restriction (600kcal/day) for 8 weeks resulted in significant
improvements in beta-cell function [40]. A significant decrease in waist circumference

(107.4 £ 2.2cm at baseline to 94.2 + 2.5cm at week 8) was also observed in the intervention.
Based on the present analysis, waist-to-hip ratio was a strong modulator of beta-cell function,
when demographic and anthropometric variables were examined. Waist-to-hip ratio emerged
as a stronger modulator of beta-cell function than BMI, which is interesting as it therefore may
be a better indicator of T2D risk than a BMI score. Supporting evidence for this exists in the lit-
erature where waist-to-hip ratio was determined to be a stronger predictor than BMI of T2D
risk in a small Taiwanese cohort [41]. This finding also adds to the hypothesis that central obe-
sity and body shape may be important considerations when in assessing T2D risk, due to
strong evidence that an excess of visceral fat is closely related to insulin resistance and T2D risk
[13]. In a study by Bardini et al. (2011), a hypertriglyceridaemic waist phenotype (enlarged
waist circumference and increased triglyceride levels) was associated with increased insulin
resistance and an overexertion of beta-cell function in participants with normal glucose toler-
ance, while participants with impaired glucose tolerance and a hypertriglyceridaemic waist
phenotype displayed a decrease in beta-cell function. This highlights the importance of imple-
menting an early intervention to decrease T2D risk [42]. Ceramide 12:1(2H) was also predic-
tive of beta-cell function in our cohort. Ceramides are suggested to be responsible for beta-cell
apoptosis due to saturated fatty acid exposure, however the mechanism behind how ceramide
accumulation leads to this is still unclear [43].

In vitro verification of the improved beta-cell functionality is an important aspect of this
study: the low RA index significantly modulated acute insulin secretion. Functional assays
revealed that there was a significant increase in plasma membrane potential in cells treated
with the low RA index: this enhancement could underpin the increased insulin secretion under
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Fig 3. Gene expression analysis of BRIN-BD11 cells treated with RA index. Low RA index significantly increases (A) ADIPOR1 and (B)
ADIPOR2 mRNA expression in BRIN-BD11 cells. (C) No effect on INSR expression was observed when cells were treated with high and low
RA index. (D) PDX1 expression was not altered by high or low RA index treatment. Experiments n = 6, *p < 0.05 versus the respective control.

doi:10.1371/journal.pone.0161350.g003

these conditions. Previous studies have examined alteration of plasma membrane potential of
cells treated with adiponectin, with mixed findings. A study examining adiponectin treatment
in pancreatic islets found no effects on membrane potential, however another study by Wen
et al investigating adiponectin treatment in hypothalamic cells observed plasma membrane
hyperpolarisation [44, 45]. In addition to alterations in the plasma membrane potential signifi-
cant increases in ADIPOR1 and ADIPOR?2 expression were observed following treatment with
the low RA index. Adiponectin acts by binding and activating ADIPORI and ADIPOR2, and
the increased expression of both receptors with low RA index treatment suggests that it plays a
role in the regulation of beta-cell function [46, 47]. This increase in adiponectin receptor
expression in conjunction with the alterations in plasma membrane potential provides a poten-
tial mechanism for the promotion of insulin secretion under these conditions.

Strengths of the present study include directly assessing factors related to specific beta-cell
measures obtained during an OGTT and confirmation in an independent cohort. In vitro
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results mirrored the findings in the human studies and provided an opportunity to examine
potential mechanisms by which the RA index promoted insulin secretion. Validation of the RA
index in the FHI human cohort, a cohort slightly older and with a greater BMI than the
MECHE cohort, also strengthens the case of the RA index as a factor related to beta-cell func-
tion. The present study population is limited to Irish participants and it is acknowledged that
expansion of this research to non-Irish and non-European cohorts would be beneficial in order
to fully translate the research findings to the global population.

Conclusions

In conclusion, our findings indicate that waist-to-hip ratio and RA index are strong factors
related to pancreatic beta-cell function. Establishing whether alterations in the RA index is a
causative factor in development of T2D is a question which remains to be answered. Further-
more, investigation of the ability to modify the RA index through lifestyle interventions will be
key to the potential use of such an index. Future work will examine potential mechanisms for
modulating the RA index which in turn may lead to new routes/interventions for improving
beta-cell function.

Supporting Information

S1 Fig. The effect of 24 hour treatment with different RA indices on insulin secretion in
BRIN-BD11 cell line. Values are mean + standard deviation (n = 4). *p < 0.05 **p < 0.01
*** p < 0.001. ANOVA was applied across groups with post-hoc LSD test for comparison of
various RA indexes with no treatment (control). Cells were incubated for 24 hours with

no treatment (control), 0.1 ratio (5ng ml™! resistin and 50nmol 1"* g-adiponectin), 0.5 ratio
(10ng ml ™! resistin and 20nmol 1! g-adiponectin), 1.0 ratio (10ng ml! resistin, 10nmol 1!

g- adiponectin), 2.0 ratio (20ng ml™" resistin, 10nmol 1"* g- adiponectin) 4.0 ratio (20ng ml™
resistin, 5nmol I' g-adiponectin) and then stimulated with 16.7mM glucose + 10mM alanine
to determine insulin secretion. Overall p-value = 0.000053

(DOCX)

S2 Fig. The effect of RA index on changes in mitochondrial membrane potential.
BRIN-BD11 cells were treated for 24 h with a control (no treatment), high RA index (20ng ml!
resistin, 5nmol I'' g-adiponectin) and a low RA index (10ng ml™ resistin, 10nmol 1" g-adipo-
nectin). Cells were stimulated with 16.7mM glucose + 10mM alanine at 50 seconds and mito-
chondrial membrane potential was assessed. Data was analysed by determining the difference
in relative fluorescence units (RFU) between the average baseline and post stimulation values
for each experiment (delta change %). The decrease in fluorescence (normalised to baseline)
upon stimulation was 18.9% for control, 21.8% for high RA index and 20.7% for low RA index.
No statistically significant differences exist upon the decrease in RFU between control treat-
ment and high and low RA index (overall ANOVA p = 0.758). Values are represented as mean
values (n = 4).

(DOCX)

S3 Fig. The effect of RA index on changes on intracellular calcium. BRIN-BD11 cells were
treated for 24 h with a control (no treatment), high RA index (20ng ml™" resistin, 5nmol 1!
g-adiponectin) and a low RA index (10ng ml resistin, 10nmol "' g-adiponectin). Cells were
stimulated with 16.7mM glucose + 10mM alanine at 100 seconds and intracellular calcium was
assessed. Data was analysed by determining the difference in relative fluorescence units (RFU)
between the average baseline and post stimulation values for each experiment (delta change
%). The increase in fluorescence (normalised to baseline) upon stimulation was 44.3% for
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control, 40.2% for high RA index and 46.1% for low RA index. No statistically significant dif-
ferences exist upon the increase in RFU between control treatment and high and low RA index
(overall ANOVA p = 0.728). Values are represented as mean values (n = 4).

(DOCX)

S1 Table. List of ceramides from MECHE lipidomic dataset. CER: ceramide. List of cer-
amides measured in MECHE serum samples.
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S2 Table. Linear regression of anthropometric, biochemical and ceramide data against
additional beta-cell function measures. Summary of strongest predictors of beta-cell function
using linear regression analysis. WHR, waist-to-hip ratio; HDL, high density lipoprotein cho-
lesterol; RA index, resistin-to-adiponectin ratio; cer, ceramide. Data are presented as beta coef-
ficient and P-value according to disposition index, using C-peptide data (nmol mmol'); beta-
cell function using C-peptide (glucose in mmol 1™', c-peptide in nmol 1"') adjusted for the Mat-
suda index; P-value determined using backward linear regression analysis. Significance

level = P < 0.05. Demographic and Anthropometric variables included were: age, sex, BMI,
WHR, BP SYS, BP DIA. Biochemical variables included were: HDL cholesterol, adiponectin,
resistin, RA index, triacylglycerides, Apo E, TNFa, IFNY, IL2, IL4, IL6, IL8, IL10. Ceramide
data from lipidomic analysis was examined. *RA index in combination with IL-8 was signifi-
cant predictor of beta-cell function (C-peptide)* Matsuda index using linear regression

(p = 0.043).

(DOCX)

S3 Table. Baseline characteristics FHI cohort (n = 47). All values are means + standard devia-
tion. BMI, Body Mass Index; BP SYS, Systolic Blood Pressure; BP DIA, Diastolic Blood Pres-
sure; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; BCF/HOMA-IR, beta-
cell function adjusted by HOMA-IR; BCF*Matsuda index; beta-cell function adjusted by the
Matsuda index (where glucose mg dl"'and insulin uIU ml™") RA index, resistin to adiponectin
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