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Abstract

OBJECTIVE—Individual MRI characteristics (e.g., volume) are routinely used to identify 

survival-associated phenotypes for glioblastoma (GBM). This study investigated whether 

combinations of MRI features can also stratify survival. Furthermore, the molecular differences 

between phenotype-induced groups were investigated.

METHODS—Ninety-two patients with imaging, molecular, and survival data from the TCGA 

(The Cancer Genome Atlas)-GBM collection were included in this study. For combinatorial 
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phenotype analysis, hierarchical clustering was used. Groups were defined based on a cutpoint 

obtained via tree-based partitioning. Furthermore, differential expression analysis of microRNA 

(miRNA) and mRNA expression data was performed using GenePattern Suite. Functional analysis 

of the resulting genes and miRNAs was performed using Ingenuity Pathway Analysis. Pathway 

analysis was performed using Gene Set Enrichment Analysis.

RESULTS—Clustering analysis reveals that image-based grouping of the patients is driven by 3 

features: volume-class, hemorrhage, and T1/FLAIR-envelope ratio. A combination of these 

features stratifies survival in a statistically significant manner. A cutpoint analysis yields a 

significant survival difference in the training set (median survival difference: 12 months, p = 

0.004) as well as a validation set (p = 0.0001). Specifically, a low value for any of these 3 features 

indicates favorable survival characteristics. Differential expression analysis between cutpoint-

induced groups suggests that several immune-associated (natural killer cell activity, T-cell 

lymphocyte differentiation) and metabolism-associated (mitochondrial activity, oxidative 

phosphorylation) pathways underlie the transition of this phenotype. Integrating data for mRNA 

and miRNA suggests the roles of several genes regulating proliferation and invasion.

CONCLUSIONS—A 3-way combination of MRI phenotypes may be capable of stratifying 

survival in GBM. Examination of molecular processes associated with groups created by this 

combinatorial phenotype suggests the role of biological processes associated with growth and 

invasion characteristics.
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Despite aggressive treatment, the prognosis for patients diagnosed with glioblastoma (GBM) 

remains poor, with a median survival time of 12–15 months.32 Surgery never completely 

removes the tumor due to widespread infiltration of tumor cells, leading to recurrence. 

Tumor samples are used to establish diagnosis, but the rest of the tumor is unavailable for 

pathologic or genomic interrogation. The nonuniformity of GBM may explain why it is so 

difficult to control with conventional therapies.

Imaging provides the only nondestructive means to evaluate the morphology of the entire 

tumor. Imaging features potentially represent a phenotypic characterization of the genetics 

and biology of the tumor.4 This study seeks combinations of imaging features that are 

predictive of tumor behavior and therapeutic response.

Identifying noninvasive surrogates of clinical outcome and associated molecular differences 

might suggest the etiology of the underlying disease state.4,29 Several studies13,24,38 indicate 

that MRI phenotypes might potentially serve as noninvasive proxies of cancer-associated 

molecular processes. Although the standard of care for treating GBM is relatively 

nonspecific (i.e., resection, radiotherapy, and temozolomide33), personalized treatment may 

have different efficacies among GBM subtypes.25 Better patient stratification using clinical 

imaging methodology may offer a more patient-specific treatment. Molecular information 

concerning the GBM is only available from surgical specimens. Thus, a noninvasive 

radiographic method to determine molecular and clinical characteristics may provide 
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prognostic data to help guide the frequency of surveillance imaging for tumor progression or 

recurrence, possibly leading to earlier and more effective therapy.

The Cancer Genome Atlas (TCGA) contains comprehensive genomic data (e.g., expression, 

copy number, methylation, and microRNA [miRNA]). The Cancer Imaging Archive (TCIA) 

is a publicly available repository of patient-derived images across multiple modalities 

(SPECT, CT, and MRI) and tumor types. The TCIA images are from patients who have 

corresponding molecular data in TCGA. Using genomic and imaging data from the TCGA-

GBM archive, we performed a computational analysis to identify radiological feature 

combinations that might stratify survival. Two phenotype groups were defined based on 

these feature combinations. Differential analysis of mRNA and miRNA expression was 

performed to identify molecular differences between these groups.

We showed that a combinatorial phenotype comprising 3 radiological characteristics 

(volume-class, T1/FLAIR ratio, and hemorrhage) can stratify survival. The median survival 

difference between the less aggressive phenotype and the more aggressive phenotype was 8 

months. Molecular examination of these 2 groups suggests that genes and miRNAs related 

to growth, invasion, and proliferation underlie this phenotypic difference.

Methods

Patients

Patients were included in the study based on the availability of MRI data from TCIA and 

were selected to ensure consistency in glioma history and treatment profile. Specifically, 

patients with no prior glioma and those who received standard of care (concurrent 

chemotherapy and radiotherapy after resection) were selected, for a total of 92 cases. The 

clinical data for these untreated, primary GBM cases were obtained from the cBioPortal for 

Cancer Genomics (Memorial Sloan Kettering Cancer Center; http://www.cbioportal.org/

public-portal/). To assess stratification of survival by the combinatorial phenotype, we 

divided data into a training set (44 patients; 14 females, 30 males) and a validation set (48 

patients; 18 females, 30 males), based on median survival and vital (alive vs dead) status. 

We also verified that patients in these 2 sets had similar demographic and functional (i.e., 

Karnofsky Performance Scale score) characteristics.

Imaging Features

Radiology annotations for the 92 patients with GBM and their preoperative images (from 

TCIA) were obtained from the TCGA Glioma Phenotype Research Group (https://

wiki.cancerimagingarchive.net/display/Public/TCGA+Glioma+Phenotype+Research

+Group) based on the VASARI (Visually AcceSAble Rembrandt Images) standardized 

feature set.9 This contains annotations produced via consensus reads by a team of 

radiologists affiliated with the TCGA Glioma Phenotype Research Group. See details at 

https://wiki.nci.nih.gov/display/CIP/VASARI and https://wiki.cancerimagingarchive.net/

display/Public/VASARI+Research+Project. Gutman et al.9 discuss details of specific 

imaging protocols and the semantic scoring system used by the radiologists.
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VASARI characteristics studied were volume-class, enhancement quality, proportion 

contrast-enhancing tumor, proportion noncontrast-enhancing tumor, proportion necrosis, 

proportion edema, T1/FLAIR-envelope ratio, enhancing margin thickness, distribution, and 

hemorrhage. This subset corresponded to the imaging-specific rather than anatomical 

(location) subset of the VASARI features. Several of these imaging characteristics were 

described as independently prognostic in previous studies10,18,26 and most are qualitative 

(categorical data), whereas some (i.e., major and minor axis lengths) are quantitative 

(continuous-valued). For consistency, all variables were made categorical.

Instead of using the length variables separately, we computed an “approximate” 3D volume 

using the formula (4π*a2*b/3)/8, with “a” being the major axis length and “b” being the 

minor axis length. These measurements were derived from the region of T2 signal 

abnormality. For consistency (i.e., to make all variables categorical), we converted the 

volume into an ordinal scale based on its magnitude with respect to the median volume 

across all cases (1 = ≤ median, 2 = > median). This dichotomized version of the volume is 

referred to as “volume-class.”

The T1/FLAIR ratio attribute compares the relative size of the abnormality in the T1-

weighted images to the size in the T2-FLAIR images. It can have 3 categories: expansive 

(size of precontrast T1 abnormality region approximately equal to FLAIR envelope), mixed 

(T1 abnormality less than FLAIR abnormality), and infiltrative (T1 region significantly 

smaller than FLAIR region). Hemorrhage represents intrinsic hemorrhage in the tumor 

matrix (observed in T1-weighted images or T2-weighted images).

Genomic Features

Level 3 expression data for both mRNA (Affymetrix U133Av2 BI Platform: Affymetrix HT 

HG U133A) and miRNA (UNC Agilent Human miRNA 8 × 15 K) were downloaded from 

the TCGA data portal. These data are normalized and were used for differential expression 

analysis.

Survival Data

Patient-specific survival data came from the cBioPortal for Cancer Genomics. Clinical data 

are available at http://www.cbioportal.org/public-portal/study.do?

cancer_study_id=gbm_tcga. We extracted “Overall Survival (months)” and “Overall 

Survival Status” for each patient. Further demographic information (sex, age, prior glioma 

status, and treatment history) was also obtained from the cBioPortal (or from the TCGA 

portal [http://cancergenome.nih.gov/]).

Clustering Analysis

To examine whether these image features stratify the cases in any clinically relevant manner, 

we hierarchically clustered them (using R package “cluster”) using Gower’s similarity 

metric with complete linkage. Gower’s distance is applicable for mixed (combination of 

discrete, interval-scaled, and categorical) data7 and is defined as
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where dijk is the distance between individuals i and j based on variable k. wijk is a weight 

given to the ijk comparison, taking values of “0” for an invalid comparison and “1” for a 

valid comparison.

Viewing the cluster plot allowed identification of imaging variables with a range consistent 

within a cluster that also changed across the cluster boundary. This led to “cluster blocks,” 

within which the variable is approximately constant and between which there is a change. 

This allowed creation of a combinatorial phenotype via element-wise multiplication of the 

individual imaging variables. For example, a case with “high” volume (Category 2), “low” 

T1/FLAIR ratio (Category 1), and “no” hemorrhage (Category 1) will take the value 2 

(2*1*1) for its combinatorial phenotype.

Tree-Based Partitioning Analysis to Find Cutpoint on the Combinatorial Phenotype

Using survival data from the 92 patients, we used a k-adaptive partitioning scheme (R 

package “kaps”) to estimate a cutpoint on the combinatorial phenotype that induces a 

statistically significant difference in survival between the 2 groups. This cutpoint is initially 

estimated on the training set (44 cases) and validated on a validation set (remaining 48 cases 

absent from the training set). The survival difference between the 2 cutpoint-induced groups 

was estimated using a log-rank test. The split value obtained in the training set was also used 

to compare differences in progression-free survival (PFS) via the log-rank test. The 

performance of the combinatorial phenotype relative to individual variables in the 

combination is assessed via area under the survival receiver operating characteristic (ROC) 

curve. Area under the curve (AUC) can take a value between 0 (poor) and 1 (perfect 

discrimination). An AUC > 0.5 suggests predictive ability better than random chance.

Differential Expression Analysis Between Cutpoint-Induced Phenotype Classes

Cutpoint analysis (described above) identified a split value on the combinatorial 

radiophenotype that partitioned the data into 2 distinct survival groups. Next, we looked for 

molecular differences (differential expression of mRNA and miRNA) between these 2 

groups, using the Comparative Marker Selection module within the GenePattern Suite 

(Broad Institute).

Normalized Level 3 expression data for both mRNA and miRNA were downloaded from the 

TCGA data portal. These data were used for differential expression analysis via the 

Comparative Marker Selection module within the publicly available GenePattern platform 

(http://genepattern.broadinstitute.org/). The algorithm uses a 2-sided t-test to identify genes/

miRNAs differentially expressed between the 2 phenotype classes. These classes are induced 

by the split value (“2”) obtained from the partitioning algorithm used above. Cases with 

“volume-class:T1/FLAIR:hemorrhage” combination values greater than “2” are designated 

Group 1. The rest are designated Group 0.
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Functional Analysis and Integrative Analysis

Functional analysis (i.e., pathway analysis) of the differentially expressed genes and 

miRNAs was done using Gene Set Enrichment Analysis (GSEA; Broad Institute). We used 

the GSEA desktop version (http://www.broadinstitute.org/gsea/) with the settings “t-test” 

metric and “equalized and balanced” randomization during 1000 permutations. The t-test is 

used for consistency with the metric used for differential expression analysis (from 

GenePattern). Multiple testing correction for significance was done using false discovery 

rate (FDR) computation.1

For relating differentially expressed miRNAs with differentially expressed mRNAs, the 

miRNA target filter feature was used within Ingenuity Pathway Analysis (IPA) software 

(Ingenuity Systems) to find miRNAs targeting the differentially expressed genes. This 

integrative miRNA:mRNA analysis looks for target relationships between miRNAs and the 

genes derived from differential expression analysis. Also, the miRNA target filter in IPA 

looks for concordant changes in expression (i.e., anticorrelated expression changes in 

miRNA:mRNA abundance).

Integrative Network Analysis of miRNA and mRNA Entities via Ingenuity Pathway Network 
Analysis

Core analysis and functional analysis were performed on the gene and miRNA lists. We 

explored “Direct Interactions” using “Experimentally Observed or High Confidence 

Predictions” in the IPA Knowledge Base (“Genes only”).

Results

Clustering Analysis Suggests Unsupervised Clustering Structure Is Driven by a 
Combination of 3 Imaging Variables

Study of the hierarchical clustering plot (based on Gower’s distance and complete linkage; 

Fig. 1) suggested 3 categorical variables were influencing clustering structure: volume-class, 

T1/FLAIR ratio, and hemorrhage. Next, the combinatorial phenotype was derived as an 

element-wise product of the categorical values taken by each of the 3 variables (volume-

class, T1/FLAIR ratio, and hemorrhage). For example, if volume-class is Category 1, T1/

FLAIR ratio is Category 2, and hemorrhage is Category 2, then the combined phenotype 

takes a value equal to 1*2*2 (i.e., 4).

The Combinatorial Radiophenotype Comprising Volume-Class, T1/FLAIR Ratio, and 
Hemorrhage Significantly Stratifies Survival

The association of this combinatorial phenotype with survival was examined via cutpoint 

analysis on the 92 cases that included complete survival data. Using a k-adaptive partitioning 

scheme (R package “kaps”), we found that a split value of 2 induced a statistically 

significant survival difference on the training cohort (44 cases, chosen randomly) (see 

Kaplan-Meier plot, Fig. 2 upper). The low survival group had a median survival of 

approximately 7 months and the high survival group had a median survival of approximately 

19 months. This survival difference was confirmed in a validation set (the remaining 48 of 

92 cases) (Fig. 2 lower). This split value partitioned the data into 2 groups (cases with 
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volume-class:T1/FLAIR:hemorrhage combination ≤ 2, and those with volume-class:T1/

FLAIR:hemorrhage combination > 2).

The group defined by a split value of “2” was also examined for differences in PFS. The p 

value of the log-rank test was 0.0577, suggesting a trend toward PFS stratification by this 

combinatorial phenotype.

The predictive performance (measured using area under the ROC curve, AUC) of the 

combinatorial phenotype is superior relative to the individual variables (volume-class, T1/

FLAIR ratio, and hemorrhage). The AUCs for the combinatorial phenotypes and the 

individual variables, for 4 different survival times (12, 15, 24, and 36 months), are 

represented graphically in Fig. 3.

Differential Expression Between Phenotypic Classes Suggests a Role for Metabolism and 
Immune-Associated Pathways

Application of the Comparative Marker Selection procedure to the mRNA and miRNA data 

yielded 384 genes and 23 miRNAs showing differential expression between the 2 

phenotypic classes. Tables 1–3 show the ontological analysis of these 384 genes (using the 

IPA tool). The key pathways activated in this set are related to cell-to-cell signaling and 

interaction, cellular assembly and organization, mitochondrial dysfunction, oxidative 

phosphorylation (OXPHOS), and so on.

To find pathways that were overrepresented between these 2 radiophenotype classes, we 

used GSEA. Several pathways (gene sets) associated with metabolism and immune function 

were found to be significant at an FDR cutoff of 0.1 (Table 4).

Integrated miRNA:mRNA Analysis Suggests Multiple Biological Processes Underlying 
Transition of This Combinatorial Phenotype

Using the IPA tool, we combined the miRNA expression results with the mRNA expression 

results and found that at least 8 differentially expressed miRNAs (miR-214–3p, miR-499–

5p, miR-129–5p, miR-433–3p, miR-485–5p, miR-614, miR-617, and miR-637) target 

several differentially expressed genes while exhibiting concordant expression correlation 

(lowering of mRNA expression and elevation of miRNA expression; Table 5).

Several potentially interesting networks were indicated. The top-scoring canonical pathways 

pertained to immunological signaling (iCOS-iCOSL signaling in T helper cells, RXR 

activation, and PI3K signaling in B lymphocytes), mitochondrial dysfunction, and 

OXPHOS. The primary biological processes (based on Fisher exact tests for 

overrepresentation analysis) were “cell-to-cell signaling and interaction” and “cellular 

assembly and organization” (Table 1).

Discussion

In the present study, we show that the combinatorial radiographic phenotype (element-wise 

product), comprising volume-class, T1/FLAIR-envelope ratio, and hemorrhage, stratifies 
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survival in GBM in a statistically significant manner. It also shows a trend toward stratifying 

PFS in a statistically significant manner.

To summarize, the volume is derived based on T2 abnormality. The T1/FLAIR ratio attribute 

compares the relative size of the abnormality in the T1-weighted images to the size in the 

T2/FLAIR images. Hemorrhage represents intrinsic hemorrhage in the tumor matrix 

(observed high signal in T1-weighted images or low signal in T2-weighted images). Prior 

work in this domain has focused on the identification of single image variables (i.e., 

contrast-enhancing tumor,9 nonenhancing tumor17) as prognostic factors and identified 

molecular processes that might underlie such disease-associated phenotypes (spanning 

processes such as invasion38 and hypoxia4). Independently, each of these imaging 

characteristics may be relevant to patient outcome, but together they become a much more 

powerful prognostic indicator. Patients with a particular imaging profile may be at risk for 

earlier recurrence of disease and poorer survival. Because of their clinical relevance, these 

imaging characteristics should be more objectively defined. For example, volumetric 

quantification is rarely, if ever, reported beyond a general description of size. Although the 

role of volume in stratifying survival is expected, we observed that combining this with T1/

FLAIR ratio and hemorrhage has predictive value. The T1/FLAIR ratio is related to extent 

of tumor infiltration. Hemorrhage is potentially a histological manifestation (presumably 

related to extent of necrosis or microvascular proliferation). Examination of this 

combinatorial phenotype’s association with survival leads to observations that might have 

clinical consequences, e.g., low-volume, infiltrating disease portends better outcome than 

high-volume, moderately infiltrating disease; or low-volume, moderately infiltrating disease 

is worse than low-volume disease with hemorrhage. Based on the molecular and phenotypic 

correlates of this combined radiophenotype, we hypothesize that it might correlate with the 

aggressiveness of the tumor.

We sought to obtain a molecular characterization of the groups induced by the combinatorial 

phenotype, rather than based on survival characteristics alone. Examination of the miRNAs 

and mRNAs in Table 5 suggests the functional role of several of these molecules in glioma 

biology (spanning proliferation, invasion, and growth characteristics). Among the miRNAs, 

miR-499 has been shown to promote tumor metastasis and cellular invasion.20 miR-199a is 

known to regulate cellular proliferation and survival.31 miR-429 inhibits cellular growth, 

invasion, and epithelial-to-mesenchymal transition (EMT)34 and is seen to be upregulated in 

the less aggressive phenotype.

Furthermore, hsa-miR-146b and hsa-miR-193a are associated with survival in GBM.32 hsa-

miR-146b was shown to be involved in glioma cell migration and invasion.36 Also, miR-499 

regulates apoptosis, mitochondrial dynamics, and represses CNTNAP2, PPP3CB, and SYT1 
(invasion-associated genes upregulated in the more aggressive phenotype). Upregulation of 

miR-146b is observed in the less aggressive phenotype (Group 0), concordant with the 

observation that it reduces migration and invasiveness in glioma.15,36 miR-125 and miR-129 

were associated with tumor progression and glioma proliferation.19 Although other genes/

miRNAs in Table 5 indicate phenotypic modulators of interest, their specific roles in GBM 

remain to be elucidated. Low expression of miR-200 family members has been linked to the 

epithelial-to-mesenchymal phenotype and subsequent metastatic disease.11,16,35
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Several of the pathways obtained via GSEA point to interesting aspects of GBM biology 

(Table 4). An examination of pathways enriched at the top of the differentially expressed 

gene lists indicates the potential involvement of several immune-modulatory pathways 

underlying this phenotypic transition: natural killer cell activity, interferon gamma response, 

and T-cell lymphocyte differentiation. Additionally, EMT is associated with the more 

aggressive phenotype, an association further strengthened by the enrichment of the 

mesenchymal subtype signature in the same group.37 Molecules such as PAR1 and HOXC6 

are implicated in tumor invasiveness.12 Furthermore, 20q13 region amplification is known to 

be relevant to glioma risk and GBM.2,17,23,27 However, an in-depth validation in a reliable in 

vivo model is crucial before drawing any conclusions pertinent to this specific combinatorial 

phenotype.

Similarly, several pathways, mostly related to cellular metabolism, are overrepresented in the 

differential enrichment list, e.g., PGC1alpha activity is associated with OXPHOS,5 which is 

involved in brain tumor progression.8 These sources all point to the potential association of 

metabolism-related activity with the transition of this combinatorial phenotype. Moreover, 

OXPHOS has been suggested to confer tumorigenic potential to GBM cancer stem cells.14 

This finding is also concordant with that of altered metabolic activity underlying tumor-

invasive characteristics in GBM.8

IPA indicated that the coordinated activity of several miRNAs and mRNAs might underlie 

this phenotype. Specifically, we observed the presence of several immune-modulatory genes 

and key signaling molecules. However, determining the roles of these molecules in 

modulating this phenotypic transition will require very careful study.

Molecular analysis of this combinatorial radiophenotype thus suggests the role of 

proliferation/invasion characteristics underlying its transition. Recent literature suggests that 

targeting invasion/proliferation mechanisms may hold therapeutic promise.3,6,21,22,28 Thus, 

this combinatorial radiophenotype might also be used as a screening tool for assessing 

response to drugs that target glioma cell proliferation and invasion characteristics. A 

potential avenue might also be the surveillance of this combinatorial phenotype to assess 

treatment response, thereby serving as a complement to existing response evaluation criteria 

(such as MacDonald, Response Evaluation Criteria In Solid Tumors [RECIST] criteria). In 

addition, because this phenotype has a survival correlate that is presumably related to the 

aggressiveness of the disease, modulating this phenotype might have consequences for 

treatment decision making. Indeed, there are several approaches targeting invasion,37 

proliferation, EMT, and metabolic31 characteristics for GBM. The role of immune-

modulatory processes underlying this combinatorial phenotype also suggests the possibility 

of targeting disease through immune modulation25 and for assessing response to immune-

targeted therapeutics using this phenotype.

Our work has several limitations, providing abundant scope for further investigation. An 

unbiased search for other feature combinations (within the VASARI set) that can stratify 

survival might reveal other interesting characteristics. Beyond indicating interesting 

combinations of features, an integrative molecular analysis comprising mRNA, miRNA, 

methylation, and copy number from these phenotype-induced groups might identify other 
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molecular processes relevant to glioma biology. This study focused exclusively on the 

association between combinatorial radiographic phenotypes and survival. In the future, 

assessment of the phenotype’s clinical value will require a multivariate model including 

clinical factors (e.g., age, Karnofsky Performance Scale score) and known molecular 

predictors such as MGMT methylation and molecular subtype.

Conclusions

Our results suggest that combining radiographic phenotypes provides additional variables 

that stratify survival. Specifically, we showed that combination of multiple MR image–

derived features has more predictive value for survival than some individual ones. Because 

volume-class is important in this combinatorial predictor, exploring precise 3D volume 

measurement based on a 3D segmentation markup of the lesion data may be useful. 

Currently, only major and minor axis lengths are available. Further, it would be interesting to 

explore quantitative assessments of the hemorrhage component’s volume and T1/FLAIR 

ratio as additional predictors for stratifying survival, rather than the current categorical 

measurements.
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AUC area under the curve

EMT epithelial-to-mesenchymal transition

FDR false discovery rate

GBM glioblastoma

GSEA Gene Set Enrichment Analysis

IPA Ingenuity Pathway Analysis

miRNA microRNA

OXPHOS oxidative phosphorylation

PFS progression-free survival
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ROC receiver operating characteristic

TCGA The Cancer Genome Atlas

TCIA The Cancer Imaging Archive

VASARI Visually AcceSAble Rembrandt Images
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FIG. 1. 
Cluster plot obtained using Gower’s distance metric and complete linkage method. The plot 

represents the 10 VASARI features along rows and the 92 cases along columns. 

EnhanceQual = enhancement quality; EnMarginThick = enhancing margin thickness; 

PropEdema = proportion edema; PropEnhance = proportion contrast-enhancing; PropnCET 

= proportion noncontrast-enhancing tumor; PropNecro = proportion necrosis; 

T1FLAIR.envelope = T1/FLAIR-envelope ratio; vol.class = volume-class. Figure is 

available in color online only.
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FIG. 2. 
Survival differences induced by the cutpoint (i.e., split value of 2) in the training set and 

validation set. The difference in median survival and the corresponding p value are listed in 

adjoining panels. The combinatorial phenotype stratifies survival in the training set (p = 

0.00441). Survival difference: 12 months (upper). Survival stratification in the validation set 

(p = 0.000181). Survival difference: 8 months (lower). Figure is available in color online 

only.
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FIG. 3. 
The time-dependent ROC curves for comparing the predictive value of each of the 4 features 

are shown. The black diagonal line in each of the 4 plots corresponds to random 

classification. The corresponding AUCs are listed under each plot. The AUC of the 

combination (in cyan) is superior to each of the individual variables. Hem = hemorrhage; 

KM = Kaplan-Meier; T1F = T1/FLAIR ratio; vol = volume; volT1FHem = combination of 

vol, T1F, and Hem. Figure is available in color online only.

Rao et al. Page 16

J Neurosurg. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rao et al. Page 17

TABLE 1

Gene ontology categories (top networks) for integrative miRNA:mRNA analysis in IPA

Top Networks: ID No. Associated Network Functions Score

1 Cancer, organismal injury & abnormalities, reproductive system disease 65

2 Cell-to-cell signaling & interaction, cellular assembly & organization, nervous system development & 
function

58

3 Endocrine system disorders, gastrointestinal disease, metabolic disease 53

4 Cell-to-cell signaling & interaction, nervous system development & function, molecular transport 50

5 Connective tissue disorders, developmental disorder, skeletal & muscular disorders 50
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TABLE 2

Gene ontology categories (molecular and cellular functions) for integrative miRNA:mRNA analysis in IPA

Type of Function p Value No. of Molecules

Cell-to-cell signaling & interaction 1.88E-10–2.01E-02 57

Molecular transport 2.44E-05–2.01E-02 67

Small-molecule biochemistry 2.44E-05–2.01E-02 64

Amino acid metabolism 8.11E-05–2.01E-02 19

Cell death & survival 2.68E-04–2.01E-02 110

Nervous system development & function 1.88E-10–2.01E-02 55

Tumor morphology 4.02E-04–5.72E-03 2

Behavior 5.43E-04–2.01E-02 51

Connective tissue development & function 1.19E-03–2.01E-02 22

Skeletal & muscular system development & function 1.19E-03–2.01E-02 15
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TABLE 3

Gene ontology categories (top canonical pathways) for integrative miRNA:mRNA analysis in IPA

Top Canonical Pathways p Value Ratio (%)*

Mitochondrial dysfunction 1.34E–06 15:215 (0.07)

OXPHOS 1.11E–05 11:120 (0.092)

Role of osteoblasts, osteoclasts, & chondrocytes in rheumatoid arthritis 4.04E–05 15:250 (0.06)

GABA receptor signaling 3.37E–04 6:56 (0.107)

Role of macrophages, fibroblasts, & endothelial cells in rheumatoid arthritis 1.35E–03 15:342 (0.044)

*
No. of molecules in list/no. of molecules in pathway.
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TABLE 4

Top 10 ranked pathways enriched between phenotype 0 and phenotype 1*

Pathways Enriched in Phenotype 0 vs Phenotype 1 Pathways Enriched in Phenotype 1 vs Phenotype 0

LI_INDUCED_T_TO_NATURAL_KILLER_DN LI_AMPLIFIED_IN_LUNG_CANCER

ZWANG_DOWN_BY_2ND_EGF_PULSE SANA_RESPONSE_TO_IFNG_DN

GAL_LEUKEMIC_STEM_CELL_UP GOTZMANN_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_DN

GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_DN LU_AGING_BRAIN_DN

LEE_DIFFERENTIATING_T_LYMPHOCYTE VERHAAK_GLIOBLASTOMA_MESENCHYMAL

BIOCARTA_PAR1_PATHWAY YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_13

HOEBEKE_LYMPHOID_STEM_CELL_UP DAZARD_RESPONSE_TO_UV_NHEK_UP

REACTOME_ASSOCIATION_OF_TRIC_CCT_WITH_TARGET_PROTEINS_DURING_BIOSYNTHESIS

MOOTHA_PGC

MCCABE_HOXC6_TARGETS_CANCER_DN

*
Based on normalized enrichment score. FDR < 0.1.
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TABLE 5

miRNA:mRNA relationships among the molecules differentially expressed between the 2 phenotypic classes*

miRNA Symbol
Upregulated in Phenotype 

Group (0 or 1) mRNA Symbol
Upregulated in Phenotype 

Group (0 or 1)

miR-214–3p (& other miRNAs w/seed CAGCAGG) 0 APH1A 1

miR-214–3p (& other miRNAs w/seed CAGCAGG) 0 ESRRG 1

miR-214–3p (& other miRNAs w/seed CAGCAGG) 0 LRRC59 1

miR-214–3p (& other miRNAs w/seed CAGCAGG) 0 RIMBP2 1

miR-214–3p (& other miRNAs w/seed CAGCAGG) 0 SV2B 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 CNTNAP2 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 EIF5 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 GABRA1 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 PPP3CB 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 SYT1 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 UTP11L 1

miR-499–5p (& other miRNAs w/seed UAAGACU) 0 YIPF6 1

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 C1RL 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 IQCE 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 KLF13 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 PHF21A 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 PLEKHA2 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 RERE 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 SUN2 0

miR-129–5p (& other miRNAs w/seed UUUUUGC) 1 ZNF395 0

miR-433–3p (& other miRNAs w/seed UCAUGAU) 1 KLF13 0

miR-433–3p (& other miRNAs w/seed UCAUGAU) 1 RAD52 0

miR-433–3p (& other miRNAs w/seed UCAUGAU) 1 SLC6A4 0

miR-433–3p (& other miRNAs w/seed UCAUGAU) 1 VASH2 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 AFF1 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 EFHC1 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 EPB41L4A 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 FGD2 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 KLF13 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 PARP11 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 PHF21A 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 SZT2 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 TCF7 0

miR-485–5p (& other miRNAs w/seed GAGGCUG) 1 TNKS 0

miR-614 (& other miRNAs w/seed AACGCCU) 1 EPB41L5 0

miR-617 (& other miRNAs w/seed GACUUCC) 1 PLEKHA2 0
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miRNA Symbol
Upregulated in Phenotype 

Group (0 or 1) mRNA Symbol
Upregulated in Phenotype 

Group (0 or 1)

miR-637 (& other miRNAs w/seed CUGGGGG) 1 GCK 0

miR-637 (& other miRNAs w/seed CUGGGGG) 1 GGA1 0

miR-637 (& other miRNAs w/seed CUGGGGG) 1 ICOSLG 0

miR-637 (& other miRNAs w/seed CUGGGGG) 1 MYO9B 0

miR-637 (& other miRNAs w/seed CUGGGGG) 1 PCDHGB6 0

miR-637 (& other miRNAs w/seed CUGGGGG) 1 RERE 0

*
The third column represents the mRNA targeted by the miRNA in column 1. The group in which the molecule (miRNA or mRNA) is upregulated 

is listed in columns 2 and 4, respectively. Group 1 is the more aggressive phenotype (with vol-class:T1/FLAIR ratio:hemorrhage > 2). Group 0 is 
the less aggressive phenotype (with vol-class:T1/FLAIR ratio:hemorrhage ≤ 2). Only those combinations where an mRNA is downregulated and 
the corresponding miRNA is upregulated are listed here.
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