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Abstract

The existing, semisupervised, spectral clustering approaches have two major drawbacks, i.e., 

either they cannot cope with multiple categories of supervision or they sometimes exhibit unstable 

effectiveness. To address these issues, two normalized affinity and penalty jointly constrained 

spectral clustering frameworks as well as their corresponding algorithms, referred to as type-I 

affinity and penalty jointly constrained spectral clustering (TI-APJCSC) and type-II affinity and 

penalty jointly constrained spectral clustering (TII-APJCSC), respectively, are proposed in this 

paper. TI refers to type-I and TII to type-II. The significance of this paper is fourfold. First, 

benefiting from the distinctive affinity and penalty jointly constrained strategies, both TI-APJCSC 

and TII-APJCSC are substantially more effective than the existing methods. Second, both TI-

APJCSC and TII-APJCSC are fully compatible with the three well-known categories of 

supervision, i.e., class labels, pairwise constraints, and grouping information. Third, owing to the 

delicate framework normalization, both TI-APJCSC and TII-APJCSC are quite flexible. With a 

simple tradeoff factor varying in the small fixed interval (0, 1], they can self-adapt to any 
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semisupervised scenario. Finally, both TI-APJCSC and TII-APJCSC demonstrate strong 

robustness, not only to the number of pairwise constraints but also to the parameter for affinity 

measurement. As such, the novel TI-APJCSC and TII-APJCSC algorithms are very practical for 

medium- and small-scale semisupervised data sets. The experimental studies thoroughly evaluated 

and demonstrated these advantages on both synthetic and real-life semisupervised data sets.

Keywords

All-compatibility; flexible constrained spectral clustering (FCSC); robustness; semisupervised 
clustering; spectral clustering

I. Introduction

Spectral clustering is one of the significant techniques of clustering learning in pattern 

recognition. Despite its history not being as long as those of other classic clustering 

methods, such as the partition-based [1]–[3] and hierarchy-based [4], [5] methods, spectral 

clustering has caused an increasing amount of interest over the past two decades owing to its 

distinctive merits of owning (nearly) global optima [6], [7] as well as fitting both convex and 

nonconvex data sets. The advantages of spectral clustering have been validated by many 

actual applications, such as information retrieval [8], load balancing [9], and image 

segmentation [7], [10]. The literature regarding spectral clustering is so abundant that it 

cannot be thoroughly summarized. The representative review is as follows. Several graph-

partition criteria, e.g., minimum cut [11], normalized cut (NC) [7], ratio cut [12], average cut 

[13], and min–max cut [14], had been put forward over the last 20 years. Most of these 

criteria, especially NC, have become the important theoretical bases in spectral clustering, 

and there have been numerous follow-up studies [15]–[17]. The surveys on spectral 

clustering presented in [18]–[21] provide the overall understanding of the spectral clustering 

origin, mechanism, and relationship to other theories. Two strategies for speeding up 

conventional spectral clustering approaches were separately studied in [16] and [22], so that 

they can deal with large-scale data sets or online data streams. Moreover, the combinations 

of spectral clustering and the other state-of-the-art techniques, e.g., semisupervised learning 

[23], multitask [24], multiview [25], coclustering [26], and transfer learning [27], still belong 

to very hot research topics, and several correlative approaches have been developed [23], 

[28]–[40].

As is well known, similar to other conventional clustering methods, the effectiveness of 

spectral clustering is sensitive to the purity of the data set, which signifies that spectral 

clustering could be inefficient and even invalid if the data were distorted by noise or 

interference information. We believe that transfer learning and semisupervised learning are 

two of the most feasible pathways to address this issue as both attempt to enhance the 

learning performance on the target data set by means of adopting partially given information 

as the reference. The distinction between them lies in the source of the prior information. 

That is, transfer learning extracts the desired information from other correlated scenarios 

(source domains) and applies this information to the current scenario (target domain) [27], 

whereas semisupervised learning works solely on one scenario (data set), which indicates 
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that the known information not only comes from this data set but is also utilized on itself 

[10], [31]. In this paper, we focus on the latter, i.e., on studying constrained 

(semisupervised) spectral clustering and separately proposing our own frameworks and 

approaches.

To date, there has been quite a bit of effective work associated with constrained spectral 

clustering. We now review the related work from two perspectives 1) the possible types of 

supervision (partially known information) in semisupervised learning and 2) the ways of 

using the supervision. The data instance label is the most ordinary but straightforward 

category of prior knowledge [19], [23], [28], [35], whereas the pairwise constraint [29]–[31], 

[33], [34], also referred to as the must-link or cannot-link constraint, belongs to another kind 

of user supervision with comparatively more flexibility and practicability, as it is 

independent on some insightful knowledge, such as the cluster number and the involved 

clusters in the prior information, which, however, are sensitive in the case of data labels. The 

grouping information [10] is the third possible type of supervision, which often appears in 

the application of image segmentation where several regions are definitely marked in an 

image and all of the pixels within each region should be assigned into the same cluster. The 

schemas regarding how to use the supervision also pose two strategies. One is to directly 

manipulate the affinity matrix (or equally, the Laplacian matrix) according to some 

conditions generated from the specified supervision, either data labels or pairwise 

constraints. For example, the affinity matrix-oriented constraints and the affinity propagation 

based on instance-level constraints were studied in [19] and [40], respectively. The other 

strategy is to construct a combined framework in terms of the objective function or the 

subjection condition so as to satisfy both the supervision and original optimization 

conditions as much as possible. For instance, the constraint conditions added to subjection 

conditions were investigated in [30] and [31]. One constrained, multiway, spectral clustering 

approach with the determination of the cluster number was presented in [29]. A partial 

grouping information-based approach for image segmentation was proposed in [10].

Nevertheless, in the progress of constrained spectral clustering, there is no relatively 

completely effective method, which can address all types of supervision with the perfect 

combination of simultaneous affinity constraints and framework optimization so far. 

Motivated by this challenge, we devise two novel types of constrained spectral clustering 

frameworks with full compatibility, high flexibility, and strong robustness in this paper. We 

separately designate them as type-I affinity and penalty jointly constrained formulation (TI-

APJCF) and type-II affinity and penalty jointly constrained formulation (TII-APJCF) and 

name their corresponding algorithms as type-I affinity and penalty jointly constrained 

spectral clustering (TI-APJCSC) and type-II affinity and penalty jointly constrained spectral 

clustering (TII-APJCSC), respectively. In general, the primary contributions of this paper 

can be summarized as follows.

1) Both TI-APJCSC and TII-APJCSC pose the affinity and penalty jointly 

constrained strategies for semisupervised spectral clustering. In particular, the 

constraints lie not only in the explicit pairwise constraints added to the affinity 

matrix and the objective expression separately, but also in the implicit efficacy 

that both TI-APJCF and TII-APJCF indirectly adjust the affinity measurement to 
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a certain extent, which consequently enhances the eventual effectiveness and 

robustness of both TI-APJCSC and TII-APJCSC.

2) Both TI-APJCSC and TII-APJCSC are compatible with the three existing 

categories of supervision, i.e., class labels, pairwise constraints, and grouping 

information, which makes them more practical than those only partial category-

oriented methods.

3) Both TI-APJCSC and TII-APJCSC feature high flexibility, which is achieved 

from two aspects. First, it helps us avoid specifying the threshold for the 

constraint term [30], [31] to introduce the constraint term (penalty term) into the 

objective function rather than into the subjection condition. Second, after 

normalizing the ranges of both the original spectral clustering term and the 

semisupervised penalty term, a simple tradeoff factor taking values within the 

interval (0, 1] is able to balance their individual roles to the overall framework in 

any data scenario.

4) Benefiting from the affinity and penalty jointly constrained strategies, both TI-

APJCSC and TII-APJCSC are robust with respect to the parameter in the affinity 

measurement as well as the number of pairwise constraints. The only slight 

performance difference between them lies in their separate insensitivity to the 

tradeoff factor. That is, TII-APJCSC seems generally steadier against the 

tradeoff factor than TI-APJCSC.

The remainder of this paper is organized as follows. In Section II, the work related to our 

research is briefly reviewed. In Section III, two types of affinity and penalty jointly 

constrained formulation: TI-APJCF and TII-APJCF, several associated definitions and 

theorems, the corresponding algorithms TI-APJCSC and TII-APJCSC, and the parameter 

setting are sequentially introduced. In Section IV, the experimental validation of the 

correlated algorithms is presented and discussed. In Section V, the conclusions are 

presented.

II. Background and Preliminaries

A. Graph and Common Notations

Given a data set X = {xi|xi ∈ Rd, i = 1,2, . . . , N}, where d is the data dimensionality and N 
is the data size. Let G = (V, E, W) denote an undirected, weighted graph on X, where each 

data instance in X corresponds to a vertex (node) in V; all the edges between any two 

vertices in V compose the edge set E, and each edge in E is weighted by a similarity that is 

an entry of the affinity (similarity) matrix W. Suppose there exist K (2 ≤ K < N) potential 

groups (clusters) in X. Now, in terms of the graph G, the purpose of clustering can be 

reformulated as a partition of the graph, in which the edges among different groups have 

very low weights while the edges within a group have high ones. To determine this ideal 

partition, several partition criteria were developed, such as minimum cut [11], NC [7], and 

ratio cut [12]. Among them, as mentioned in Section I, NC is currently studied more 

extensively.
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Some important notations need to be explicitly introduced before continuing our work, and 

these notations will be recruited throughout this paper.

Suppose the N × N affinity (similarity) matrix W of the graph G = (V, E, W) is calculated 

according to a certain affinity function, e.g., the well-known radial basis function

(1)

Let D = diag(d11, . . . , dN N) denote the degree matrix with  and L = D – W 

denote the Laplacian matrix. Moreover, make  and measure the total 

weights of graph G. Putting them together, the common notations regarding our work are 

listed in Table I.

B. Normalized Cut and Normalized Spectral Clustering

The primitive theories of NC and the spectral clustering algorithm were presented in [7]. For 

related research, see [10], [15], [16], and [18]–[23]. We now briefly review NC and the 

normalized spectral clustering algorithm as follows.

The objective function of NC can be represented as [18]

(2)

where y is the relaxed clustering indicator vector and 1 is a constant vector whose entries are 

all 1.

Suppose y = D−1/2v and L̃ = D−1/2LD−1/2, then (2) becomes

(3)

where L̃ is called the normalized Laplacian matrix and v is the new clustering indicator 

vector.

It is easy to prove that (3) is equivalent to the standard eigensystem using the Lagrange 

optimization

(4)
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where λ is the eigenvalue and v is the matching eigenvector. As revealed in [7], the 

eigenvector corresponding to the second smallest eigenvalue of (4) can be adopted as the 

optimal solution of (3) for the two-class partition issue. As for the multiclass problem, 

namely, there being multiple clusters (K > 2) in the target data set, the well-known 

normalized spectral clustering algorithm (Algorithm 1) is available [7], [10], [18].

C. Supervision Types

In general, there are three categories of prior information for semisupervised learning: 1) 

class labels; 2) pairwise constraints; and 3) grouping information.

Class labels are widely enlisted as the reference in various supervised or semisupervised 

learning approaches [28]. In the sense of the class number existing in the given information, 

here there may be two cases: 1) only partial class labels are involved and 2) all class labels 

are covered, i.e., the case of full class labels.

Pairwise constraints, also referred to as must-link or cannot-link constraints, belong to the 

second type of supervision [31]. Depending on the specific information offered by users, 

pairwise constraints can be in the forms of a must-link set (MLS) in which the pairs of 

samples must be assigned to the same cluster, a cannot-link set (CLS) in which the pairs of 

data instances cannot be assigned to the same cluster, or both.

As for grouping information, it usually appears in the application of image segmentation 

[10] where several regions are explicitly drawn as the groups in an image and all of the 

pixels within each region should be assigned to the same cluster.

These three types of supervision are actually not isolated from each other, and there are 

some conversions among them. The supervision types as well as their feasible conversions 

are shown in Fig. 1. More specifically, the practicable conversions among them can be stated 

as follows.

1) Class Labels → Must-Link & Cannot-Link Sets—Both cases of partial class 

labels and full class labels can be easily converted into the must-link or cannot-link 

constraints, depending on the specific cases of sample labels existing in the supervision data. 

According to the different sample labels, the given supervision data can be divided into 

several groups. Only one group exists, as a special case, if and only if all the given sample 

labels are consistent. Suppose the data capacity of each group is greater than 1, then any two 

samples within one group can certainly be used to constitute the MLS, and any sample pair 

whose members are from two separate groups should be an entry in the CLS. In the special 

case of only one group, the MLS is available but not the CLS.

2) Class Labels → Grouping Information—Likewise, both cases of partial class 

labels and full class labels can be conveniently converted into the grouping information, and 

the number of groups equals the number of different sample labels existing in the 

supervision data. Each group is composed of all data instances owning the same label.
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3) Grouping Information → Must-Link Set—It is definite that any two members of 

each group in the grouping information should belong to the MLS. However, the cannot-link 

constraints are not obtainable due to the uncertain relations between any two groups in this 

case.

The purpose of semisupervised learning is to strengthen as much as possible the practical 

performance of intelligent algorithms in terms of any category of supervision.

III. Affinity and Penalty Jointly Constrained Spectral Clustering

As shown in Fig. 1, in light of the fact that all three supervision categories can eventually be 

represented as the MLS or the CLS or both, we only need to focus on pairwise constraints in 

this paper. How to sufficiently make use of the prior knowledge in the form of pairwise 

constraints for semisupervised spectral clustering is the first challenge which we have to 

face. To resolve this issue, we propose two affinity and penalty jointly constrained strategies 

as follows.

A. Affinity and Penalty Jointly Constrained Strategies

It should be pointed out that our affinity and penalty jointly constrained strategies exist not 

only in the constraints added to both the affinity matrix and the framework, but also in the 

essential connections between them. Next, we introduce our work in detail.

1) Pairwise Constraints on the Affinity Matrix—Without loss of generality, we 

assume that both MLS and CLS are available throughout this paper. It is worth noting that 

some rules for propagating must-link and cannot-link constraints can be applied before our 

work in order to further enlarge the pairwise sizes in MLS and CLS [34], [40].

Based on the final MLS and CLS, we manipulate the affinity matrix W according to the 

following rules:

(5)

where 〈i, j〉 signifies any pairwise of constraint in MLS or CLS and i and j are the separate 

indices of the matching data instances in the entire data set X.

The strategy of directly updating the affinity matrix according to the pairwise constraints is 

definitely the least sophisticated modality in semisupervised spectral clustering. Actually, it 

is a double-edged sword. On the one hand, it can offer the most straightforward constraints, 

as the affinity measurement is the foundation of all spectral clustering methods. On the other 

hand, it simultaneously disrupts the overall consistency regarding similarity measurement, 

so that some unexpected cases usually occur in those approaches relying solely on affinity 

constraints [19]. This phenomenon will be disclosed in the Section IV-B. For this reason, 

most state-of-the-art techniques in semisupervised spectral clustering do not currently value 

the pure affinity constraint mechanism. Therefore, this type of constraints added to the 
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affinity matrix W is only the basis of our research, and other more reliable constraint 

strategies are required as the significant supplements. To this end, we present the following 

two core formulations for constrained spectral clustering based on NC.

2) Type-I Affinity and Penalty Jointly Constrained Formulation—As we know 

well, each entry vi (i = 1, . . . , N) in the clustering indicator vector v in (3) is relaxed to take 

the continuous value. In particular, vi > 0 indicates xi belongs to cluster + and vi < 0 to 

cluster – in the case of bipartition. As in the case of bipartition. for the multiclass partition 

problem, the K-way partition strategy [7], [10], [18] is always enlisted as the standard means 

in spectral clustering, in which each way is also treated as a bipartition issue. In this regard, 

we present the first formulation for constrained spectral clustering as follows.

Definition 1—Let nM and nC denote the numbers of pairwise constraints in MLS and CLS, 

respectively. Suppose y = (y1, . . . , yN)T is the clustering indicator vector in normalized 

spectral clustering, then the TI-APJCF can be defined as

(6)

where 〈i, j〉 signifies any pairwise constraint in MLS, and i and j are the indices of the 

corresponding data instances in the entire data set X; 〈k, l〉 signifies the one in CLS, and k 
and l are also the indices of the matching samples.

Equation (6) is constructed based on the premise that, for any must-link constraint 〈i, j〉 ∈ 
MLS, the signs of the entries yi and yj in the clustering indicator vector y should keep the 

same and the values of yi and yj should be as close as possible. Therefore, the first term 

 in  should consequently be as small as possible. In contrast, 

for any cannot-link constraint 〈k, l〉 ∈ CLS, the signs of yk and yl should be opposite, i.e., 

one is negative and the other is positive, which causes the term 

in  to favor a smaller value. Combining them, the optimal solution that best meets the 

constraints in both MLS and CLS should minimize . Considering the potential pairwise 

size diversity between MLS and CLS, we prefer the form of averages in .

Definition 2—For any must-link constraint indicator 〈i, j〉 ∈ MLS, the must-link indicator 

matrix ML〈i,j〉 is defined as
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(7)

that is, aside from the two entries, (i, j) and (j, i), which are set to 1, the others in ML〈i,j〉 are 

all 0.

Definition 3—For any cannot-link constraint 〈k, l〉 ∈ CLS, the type-I cannot-link indicator 

matrix  is defined as

(8)

that is, the two entries (k, l) and (l, k) are set to −1, whereas the others in  are all 0.

We now yield the matrix form of  in (6) in terms of Definitions 2 and 3.

Theorem 1—With the notations being the same as those declared in Definitions 1–3, let 

, , and S1 = ML + CLT1, then 

TI-APJCF in the form of (6) can be represented by the following formula:

(9-1)

where

(9-2)

diag(·) denotes the generating function of diagonal matrix in terms of the vector argument, 

and 1N×1 is a constant vector with all N entries being 1.

Proof—It is easy to prove that the objective expression of NC [see min (2)]. min yTLy, can 

be rewritten as min , in which wij is the affinity between any two 

samples xi and xj in X [18]. Therefore, making the transformation from W to L as the 

reference, we can prove this theorem.

As ML and CLT1 are both symmetric, S1 is consequently symmetric. Moreover, it is explicit 

that here the roles of H1 and S1 to (6) are similar to those of D and W in 

, respectively. Thus, we arrive at 

.
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As in evident,  belongs to a kind of penalty-based framework constraint for 

semisupervised spectral clustering; however, it is also of another efficacy in this paper, i.e., it 

delicately establishes a full connection to the affinity measurement W, which will be 

explained in detail hereinafter. Therefore, we call it one of the affinity and penalty jointly 

constrained formulations.

3) Type-II Affinity and Penalty Jointly Constrained For mulation—The distinctive 

merit of  is that it can build the complete connection between the affinity- and penalty-

based constraint manners in this paper. Nevertheless, the second term 

 and  is not the only modality preferred in this paper for 

measuring the consistency between the clustering indicator y and CLS, as it is merely a 

necessary condition for successful clustering partitions. This indicates that, in some extreme 

cases, a clustering indicator y, whose many pairs of entries belonging to CLS are assigned to 

the same signs, can also cause the term  to take smaller values 

as long as the gap of any pair of |yk| and |yl| is large enough. However, such cases a little 

violate the original intention of NC, i.e., the signs of samples from different clusters should 

keep opposite. In this regard, we put forward the other more concise model for measuring 

CLS in Definition 4.

Definition 4—If the notations are the same as those in Definition 1, the TII-APJCF can be 

defined as

(10)

The first term  in  is the same as that in ; however, the 

second one is different. For any cannot-link constraint 〈k, l〉 in CLS, the ideal signs of vk 

and vl can only be inconsistent, such that the second term  in 

 remains as small as possible. Therefore, the new measurement can eliminate the flaw of 

 in  in theory.

Definition 5—For any cannot-link constraint cannot-link 〈k, l〉 ∈ CLS, the type-II indicator 

matrix  is defined similar to (8) except that the entries (k, l) and (l, k) are 1.

Theorem 2—With the notations being the same as those defined in Theorem 1 and 

Definitions 4 and 5, let , then TII-APJCF in the form of (10) 

can also be represented by the following formula:
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(11-1)

where

(11-2)

Proof—First, in terms of  and CLT2, it is clear that  can 

directly be represented as yT CLT2y. Then, for , likewise, taking 

the transformation from W to L in NC as the reference, we generate the new matrices H2 = 

diag(ML · 1N×1) and Q2 = H2 – ML whose roles are separately similar to those of D and L 

in . Combining them, this theorem is 

proved.

B. Flexible, Normalized Frameworks for Affinity and Penalty Jointly Constrained Spectral 
Clustering

Based separately on (9) and (11), we can immediately propound our own two different 

frameworks for constrained spectral clustering

(12)

where γ > 0 is the regularization coefficient.

In (12), we place yTPiy in the objective function as a penalty term with the regularization 

coefficient γ rather than adding it as another subjection condition, which helps us avoid 

specifying a definite value for yTPiy as in [30] and [31]; meanwhile, the parameter γ is able 

to balance the impact of yTPiy to the whole expression.

In Theorem 1, in the sight of ML and CLT1, we can easily find that each pair of must-link 

constraints in MLS equals setting the entries S1_ij and S1_ji in S1 to 1/nM and each one in 

CLS equals setting the entries S1_kl and S1_lk in S1 to −1/nC. Now, let us come back to (12), 

where yTLy + γ yTP1y = yT (L + γ P1)y. Let T = L + γ P1, then T equals being generated 

from the generalized affinity matrix W′ = W + γ S1, which means that we set 

 for each constraint in MLS as well as  for each 

constraint in CLS.

As for P2 corresponding to  in Theorem 2, as only the first term in (10) is the same as 

that in (6), P2 is only partially associated with L (or equally, W), whereas its second term 
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 can offer us a more reliable measurement for the consistency 

between the clustering indicator y and CLS, which facilitates the total effectiveness of 

from another different perspective.

Based on the above analyses, our proposed frameworks in the form of (12) for constrained 

spectral clustering, in terms of either TI-APJCF or TII-APJCF, exhibit not only the explicit 

penalty term-based framework constraints but also two different degrees of implicit 

influence to the affinity measurement. We collectively call them affinity and penalty jointly 

constrained frameworks.

Theorem 3—The affinity and penalty jointly constrained spectral clustering frameworks in 

the form of (12) are equivalent to the following flexible optimization problems with the 

delicate normalized frameworks:

(13-1)

where

(13-2)

(13-3)

(13-4)

v is the new clustering indicator vector, η ∈ (0, 1] is a tradeoff factor, I is the N × N identify 

matrix, λmin_P̃i and λmax_P̃i denote the minimal and maximal eigenvalues of P̃
i separately, 

λmin_L̃ and λmax_L̃ denote the minimal and maximal ones of L̃, and v0 represents the trivial 

eigenvector corresponding to the smallest eigenvalue 0 with respect to Si.

Proof—Let y = D−1/2v, L̃ = D−1/2LD−1/2, and P̃
i = D−1/2PiD−1/2, then (12) can be 

represented as

(14)

Qian et al. Page 12

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given a real, symmetric matrix A, we can obtain the following inequality according to 

Rayleigh quotient [7], [41] and the min–max theorem [42]:

(15)

where λmin_A and λmax_A denote the minimal and maximal eigenvalues of A, respectively.

Due to vTv = vol(G) in (14), (15) equals

(16)

As P̃
i and L̃ are both symmetric, based on (16), we attain

(17)

(18)

Moreover, via (16), it is evident that

(19)

As we previously discussed, the role of the regularization coefficient γ in this paper is to 

balance the impact of the penalty term vTP̂
iv to the whole expression. Whereas the current 

ranges of both vTL̂v and vTP̂
iv are normalized into the same interval from 0 to 1, we can 

substitute a tradeoff factor η ∈ (0, 1] for the regularization coefficient γ as

(20)
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As for the reason of v ≠ v0 see Theorem 4.

It should be noted that converting (12) into (13) is not trivial from the viewpoint of 

practicability, as the estimation of the proper range of the regularization coefficient γ in (12) 

is more intractable than that of the tradeoff factor η in (13). More specifically, based on our 

extensively empirical studies, the solution of (12) is more sensitive to γ than that of (13) to 

η, as the orders of magnitude of yTLy and yTPiy in (12) differ and their gap dependent on the 

pairwise sizes of both MLS and CLS could be huge sometimes. This is the reason why we 

normalize the ranges of both vTL̂v and vTP̂
iv in (13) into the same interval from 0 to 1. In 

this way, with the tradeoff factor η varying in the fixed interval (0, 1], our schemes can cope 

with any data scenario. Consequently, we think such delicate normalized frameworks in the 

form of (13) are more flexible and practical than the original one in (12).

Theorem 4—The novel normalized frameworks of constrained spectral clustering in the 

form of (13) further equals the standard eigensystems of

(21)

where λ and v signify the eigenvalue as well as the matching eigenvector, respectively. 

Moreover, for two-class, constrained spectral clustering, the second smallest eigenvector of 

the eigensystem is the eventual solution to (13), and for the multiclass case, the K -way 

partition strategy is needed.

Proof—The solution of (13) can be derived by the Lagrange optimization. Let

(22)

where λ is the Lagrange multiplier. As both L̂ and P̂
i are symmetric, we obtain

(23)

We immediately arrive at (21) by rearranging (23). Moreover, as vTv = vol(G) > 0, we can 

deduce

(24)

(25)
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Combining (24) and (25), we arrive at

(26)

As Si = ηL̂+(1 – η)P̂
i is symmetric, according to Rayleigh quotient and the min–max 

theorem, (26) indicates that all of the eigenvalues of Si are larger than or equal to 0, i.e., Si is 

a positive, semidefinite matrix. Comparing (21) with (4), we immediately know that (21) can 

also be regarded as a standard eigensystem with λ and v being the eigenvalue and the 

corresponding eigenvector separately. Thus, similar to (4), the second smallest eigenvector is 

the solution to (13) for the two-cluster case, and the K-way trick can be recruited for the 

multicluster situation. Furthermore, as the minimal eigenvalue of Si is 0, the corresponding 

eigenvector v0 is a trivial solution, which should be eliminated, because all the entries are 

almost the same.

C. Algorithms

Based on TI-APJCF/TII-APJCF and Theorems 1–4, we now depict our core algorithms, i.e., 

TI-APJCSC or TII-APJCSC, in Algorithm 2.

D. Parameter Setting

Our proposed algorithms, either TI-APJCSC or TII-APJCSC, only involve two core 

parameters: 1) the affinity parameter σ in (1) and 2) the tradeoff factor η in (13). Similar to 

other conventional clustering issues, it belongs to the open problems today to adjust these 

involved parameters self-adaptively and optimally. Currently, the grid-search strategy is 

widely used for approximating the parameter setting in pattern recognition. It is also well 

known that this strategy is dependent on validity indices, and current validity indices can be 

roughly divided into two categories, i.e., external criteria (label-based) and internal criteria 

(label-free). The external criterion, e.g., normalized mutual information (NMI) [43], Rand 

index (RI) [43], and cluster purity [28], evaluates the degree of agreement between the 

achieved and known data structures and is usually adopted on synthetic or benchmark data 

sets where the data labels are given, even in testing sets. In contrast, the internal criterion, 

such as Davies–Bouldin index (DBI) [44] and Dunn index [44], evaluates the result of an 

algorithm using only quantities and features inherent to the data set and, thus, better suits 

real data situations where the testing data are certainly unlabeled.

In addition, this paper belongs to the semisupervised learning problem in which the 

supervision can also be employed as the reference for parameter approximation. In this 

regard, besides the above, existing external criteria or internal criteria, we design the 

dedicated metric CONS for our constrained spectral clustering problems, as shown in (27), 

which measures the consistency between the achieved clustering outcomes and the pairwise 

constraints in MLS and CLS
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(27-1)

where

(27-2)

lbi denotes the achieved label corresponding to the data instance xi, and nM and nC represent 

the pairwise number of MLS and CLS separately.

IV. Experimental Results

A. Setup

In this section, we focus on evaluating the realistic performance of the developed TI-

APJCSC and TII-APJCSC algorithms. For this purpose, in addition to TI-APJCSC and TII-

APJCSC, six other state-of-the-art algorithms were enlisted for comparisons, i.e., multiclass 

spectral clustering (MSC) [6], spectral learning with affinity modification (SLAM) [19], 

flexible constrained spectral clustering (FCSC) [31], clustering through ranking on 

manifolds (CRMs) [35], actively self-training clustering (ASTC) [28], and partial grouping 

constrained spectral clustering (PGCSC) [10]. Except for MSC, the other seven algorithms 

belong to semisupervised spectral clustering. The supervision categories and the constraint 

mechanisms regarding correlative algorithms are listed in Table II. As shown in Table II, 

SLAM relies solely on affinity constraints; both FCSC and PGCSC work based on the 

supplemental subjection conditions of supervision; CRM and ASTC are dependent on the 

penalty optimizations added to their objective functions; our proposed TI-APJCSC and TII-

APJCSC work with the delicate affinity and penalty jointly constrained strategies. As for the 

compatible categories of supervision, SLAM, FCSC, TI-APJCSC, and TII-APJCSC can 

cope with all of the existing three types of supervision, and the others only partially support 

them.

Our experiments were implemented on both synthetic and real-life data sets. Four validity 

indices, i.e., NMI, RI, DBI, and the dedicated CONS metric defined in (27), as well as the 

running time were employed to verify the clustering performance of these adopted 

algorithms. Before introducing our detailed experimental content, the definitions of NMI, 

RI, and DBI are first, briefly reviewed as follows.

1) Normalized Mutual Information—
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(28)

where Ni,j denotes the number of agreements between cluster i and class j, Ni is the number 

of data points in cluster i, Nj is the number of data points in class j, and N is the size of the 

whole data set.

2) Rand Index—

(29)

where f00 denotes the number of any two sample points belonging to two different clusters, 

f11 denotes the number of any two sample points belonging to the same cluster, and N is the 

total number of sample points.

3) Davies–Bouldin Index—

(30-1)

where

(30-2)

C denotes the cluster number in the data set,  denotes the data instance belonging to 

cluster Ck, and nk and vk separately denote the data size and the centroid of cluster Ck.

Both NMI and RI take values from 0 to 1, and larger values of them indicate better 

clustering performance. In contrast, smaller values of DBI are preferred as they indicate that 

the levels of both intercluster separation and intracluster compactness are concurrently high. 

Nevertheless, similar to other internal criteria, DBI has the potential drawback that the 

minimum does not necessarily imply the best information retrieval.

The grid-search strategy was adopted in our experiments for parameter optimization. The 

affinity parameter σ in (1) is the common one in all involved algorithms, and its specific 

setting in each algorithm on the related data sets will be stated separately in Tables VI and 

X. The values or the trial intervals of the other primary parameters in the associated 

algorithms are listed in Table III. For the parameters in the competitive algorithms, such as 
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CRM, ASTC, and FCSC, we respected the authors’ recommendations in their literature as 

well as adjusting them according to our practice. For example, FCSC is especially sensitive 

to the threshold β for the constraint condition. The number of positive eigenvalues in FCSC 

increases as β decreases, whereas the semisupervised information could not be sufficiently 

utilized if β is too small. In this regard, we set β = (λmax_K–1 + λmax _K)vol(G)/2 throughout 

this paper, where λmax _K–1 and λmax _K denote the (K–1)th and Kth largest eigenvalues of 

the constraint matrix Q ̄, so as to obtain enough, feasible real-value eigenvectors as well as 

utilize the supervision as much as possible.

All experiments were carried out on a computer with Intel Core i3-3240 3.4-GHz CPU and 

4-GB RAM, Microsoft Windows 7, and MATLAB 2010a.

B. On Synthetic Data Sets

1) Experimental Setup—We generated three, artificial, 2-D data sets, X1, X2, and X3, as 

the synthetic data sets, as shown in Fig. 2. The cluster numbers of X1, X2, and X3 are 4, 3, 

and 2, respectively, and their data sizes are separately 800, 1010, and 1200. In addition, X1, 

X2, and X3 were all normalized before our experiments. As is evident, because there are a 

few overlaps in almost all of the clusters and their neighbors in these data sets, the clustering 

work on these data sets is a challenge for most of the conventional clustering approaches, 

and they are good validation data sets for evaluating the actual performance of the recruited 

algorithms in our experiments.

Among these employed approaches, aside from MSC, the others work relying on the 

supervision. For fair comparisons, we consistently used the sample labels, which were 

randomly and separately chosen at different ratios from X1, X2, and X3 as the supervision 

for all of the semisupervised clustering approaches. In particular, we first generated each of 

the ten subsets from each data set at 1%, 3%, 5%, 7%, 10%, 13%, 16%, and 20% sampling 

ratios of the whole data size, respectively. We then ran SLAM, FCSC, CRM, ASTC, 

PGCSC, TI-APJCSC, and TII-APJCSC on X1, X2, and X3 with the labels in each of their 

sampled subsets acting as the prior information separately and evaluated their clustering 

performance in terms of the NMI, RI, DBI, and CONS indices as well as the running time 

(in seconds). As for MSC, whereas it is the original, normalized spectral clustering method 

and does not need any supervision, it was directly and separately performed on X1, X2, and 

X3.

2) Results of the Experiments—In this section, we would like to report the clustering 

effectiveness and robustness of the involved approaches with brief and varied forms. As 

such, the clustering outcomes of seven, semisupervised algorithms on each artificial data set 

with 5% and 10% sampling ratios are listed in Table IV in the forms of means and standard 

deviations of NMI, RI, DBI, CONS, and running time, respectively. The results of the 

original MSC algorithm are shown in Table V with ten times repeated running on each data 

set. By the way, as MSC is irrelevant to any supervision, the CONS index is definitely 

unsuitable to MSC.

In addition to the clustering effectiveness, as is well known, the robustness (i.e., stability) is 

another primary factor affecting the practicability of intelligent algorithms. To this end, in 
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order to appraise the clustering robustness of each algorithm on these artificial data sets, our 

work proceeded from two aspects in terms of the most authoritative, well-accepted NMI 

index. On the one hand, we studied the robustness of all recruited semisupervised methods, 

i.e., SLAM, FCSC, CRM, ASTC, PGCSC, TI-APJCSC, and TII-APJCSC, regarding 

different sampling ratios. That is, by means of the NMI scores of each algorithm running on 

X1, X2, and X3 individually with the sampled subsets of different sampling ratios, i.e., 1%, 

3%, 5%, 7%, 10%, 13%, 16%, and 20%, acting as the supervision, respectively, we drew the 

clustering effectiveness curves of these algorithms with respect to the different sampling 

ratios, as shown in Fig. 3. On the other hand, we also investigated the performance 

robustness of our proposed TI-APJCSC and TII-APJCSC approaches regarding their core 

parameters, i.e., the affinity parameter σ in (1) and the tradeoff factor η in (13). In light of 

the fact that the affinity parameter σ is involved in all eight algorithms (including MSC), we 

compare their NMI score curves together with the parameter σ varying within the same 

range from 0.005 to 0.087. Due to the limitation of paper space, we only report the outcomes 

of these algorithms on X1, X2, and X3 with a 5% sampling ratio, respectively, as shown in 

Fig. 4. As for the robustness regarding the tradeoff factor η enlisted in both TI-APJCSC and 

TII-APJCSC, with the affinity parameter σ being fixed as the individual optima, we 

separately recorded the best NMI scores of TI-APJCSC and TII-APJCSC, while parameter η 
took values from 0.1 to 1. In addition, also due to the limitation of paper space, we just 

indicate the individual sensitivity of TI-APJCSC and TII-APJCSC to the tradeoff factor η on 

three synthetic data sets with 5% and 10% sampling ratios, respectively, as shown in Fig. 5.

A few intuitive clustering results of the partial algorithms on three artificial data sets are 

shown in Fig. 6. For saving the paper space, here we only exhibit one of the partition 

scenarios of MSC, SLAM, FCSC, TI-APJCSC, and TII-APJCSC with a 10% sampling ratio 

on each data set.

All of the experiments of eight algorithms were finished with the affinity parameter σ 
ranging within the same interval [0.005:0.002:0.087], and the recommended, optimal 

parameter settings of TI-APJCSC and TII-APJCSC on these artificial data sets with 5% and 

10% sampling ratios are shown in Table VI.

Based on these experimental results, we can make some analyses as follows.

1) In general, the seven, semisupervised spectral algorithms overcome the original, 

unsupervised MSC algorithm. Furthermore, benefiting from the distinctive 

affinity and penalty jointly constrained mechanism, both TI-APJCSC and TII-

APJCSC outperform the others. As shown in Table IV, the top two ranks of NMI 

and RI, two well-accepted validity indices, are achieved by either TI-APJCSC or 

TII-APJCSC, even though the advantage in some comparisons is not 

overwhelming, particularly comparing their scores with those of ASTC, CRM, 

and PGCSC.

2) The robustness of our proposed TI-APJCSC and TII-APJCSC algorithms to both 

the sampling ratio and the affinity parameter σ are demonstrated in our 

experiments. As shown in Fig. 3, the NMI curves of TI-APJCSC and TII-

APJCSC regarding different sampling ratios seem relatively stable and almost 
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always rank at top 1 or top 2 on all of the artificial data sets. In particular, when 

the sampling ratios are <10%, the stability and the effectiveness of TI-APJCSC 

or TII-APJCSC, which also indicate the practicability, are definitely valuable. 

Moreover, Fig. 4 further shows the insensitivity of TI-APJCSC and TII-APJCSC 

to the parameter σ in the affinity function. In particular, taking Fig. 4(a) as an 

example, each node of each curve in this subfigure was the average score of the 

NMI index achieved by the matching algorithm running ten times with the same 

setting of affinity parameter σ but different subsets of X1 as the supervision. 

Therefore, the stability of both TI-APJCSC and TII-APJCSC to the affinity 

parameter σ is especially valuable, which means that they can work well as long 

as σ takes values approximately within the appropriate range. This guarantees 

their practicability in another way.

3) ASTC and CRM exhibit more excellent effectiveness and robustness on all three 

artificial data sets, which are only worse than those of our novel TI-APJCSC and 

TII-APJCSC approaches. However, they can only work based on the supervision 

in the form of class labels, and this restricts their realistic applications.

4) In the view of the clustering effectiveness, PGCSC also performs well on three 

artificial data sets. Nevertheless, its robustness, particularly to the affinity 

parameter σ, is distinctly worse than that of TI-APJCSC or TII-APJCSC, as it is 

just essentially compatible with the must-link constraints.

5) Both the effectiveness and the robustness of FCSC are unsatisfactory in practice 

despite its all-compatibility with all categories of supervision. Figs. 3 and 4 

intuitively show that the overall effectiveness of FCSC is distinctly worse than 

that of TI-APJCSC/TII-APJCSC and its instability is sensitive not only to the 

capacity of supervision (i.e., the sampling ratio) but also to the parameter of 

affinity measurement.

6) SLAM is one of the straightforward, semisupervised, spectral clustering 

methods that work based merely on the affinity constraints, among all of these 

employed algorithms. Nevertheless, Table IV and Figs. 3(b) and 6(g) clearly 

show its instability. More precisely, in terms of the NMI index, it achieved 

approximately the 0.919 score with the 5% sampling ratio on X2; however, it 

abnormally obtained the 0.3648 score with the 10% sampling ratio on the same 

data set. Actually, such phenomena commonly occur in other similar, 

semisupervised, spectral clustering approaches relying only on affinity 

constraints.

7) In addition to the effectiveness and robustness verified in our experiments, both 

TI-APJCSC and TII-APJCSC have two other distinguished merits: 1) the all-

compatibility and 2) the flexibility. The all-compatibility is that they can deal 

with all existing categories of supervision, including class labels, pairwise 

constraints, and group information. As for the flexibility, it is dependent on the 

transformation from (12) to (13). Our previous empirical studies suggest that the 

regularization coefficient γ in (12) is always associated with the specific 

constrained matrix Pi, which causes the uncertainty of its range. In contrast, 
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benefiting from the normalized frameworks in (13), both TI-APJCSC and TII-

APJCSC can handle any semisupervised scenario by only assigning the 

consistent interval (0, 1] to the tradeoff factor η. In addition, putting the penalty 

term yTPiy in the objective function rather than in the subjection condition helps 

us avoid specifying a threshold for this constraint term, such as in FCSC [31] 

and CSC-L1R [30], which further enhances the practicability as well as the 

flexibility of TI-APJCSC and TII-APJCSC. By means of the grid-search strategy 

and the feasible validity metrics, e.g., NMI or DBI, the tradeoff factor η in both 

TI-APJCSC and TII-APJCSC will eventually arrive at an appropriate value 

within the interval (0, 1]. Whereas this procedure is finished self-adaptively, both 

TI-APJCSC and TII-APJCSC are able to automatically determine the impact of 

the constraint term yTPiy to the overall objective expression in (13).

8) The constraint formulation of TII-APJCSC, i.e., TII-APJCF in the form of (10), 

differs from that of TI-APJCSC. It keeps the same first term as that in TI-

APJCSC for must-link constraints in order to establish the implicit but 

incomplete connection between the penalty and affinity constraints. However, 

via the inconsistent second term for cannot-link constraints, TII-APJCSC is able 

to further optimize the clustering indicator vector. As such, the clustering 

performance of TI-APJCSC and TII-APJCSC is generally close to each other, 

and the slight performance distinction between them exists in their sensitivity to 

the tradeoff parameter η. In particular, TII-APJCSC generally appears more 

insensitive to the tradeoff factor η than TI-APJCSC, as shown in Fig. 5, although 

both of them demonstrate the basically similar robustness against the affinity 

parameter σ (see Fig. 4).

9) In the sight of running time of all candidate algorithms, as shown in Table IV, 

TI-APJCSC and TII-APJCSC are averagely at the moderate levels. We would 

like to discuss the running time of FCSC as it exhibits distinctly high computing 

cost against the others. The formulation of FCSC is equivalent to one 

generalized eigensystem [31], and the MATLAB built-in function, eig(), was 

employed to compute the eigenvalue decomposition issues throughout this 

paper, and we noticed that the computing time of this function noticeably 

increased when it coped with the generalized eigenvalue decomposition cases. 

Such phenomenon is particularly recognizable when the data capacity is near or 

larger than 1000.

C. On Real-Life Data Sets

1) Experimental Setup—In this section, we evaluated the performance of all eight 

algorithms on nine real-life data sets, including: 1) three KEEL data sets: Banana, 

Wisconsin, and Led7digit1; 2) two UCI data sets: Wine and Waveform-212; 3) the USPS 

handwritten digit data set: USPS-35683; 4) the human facial data set: Japanese female facial 

expression (JAFFE)4; 5) the text data set: 20news5; and 6) the Berkeley segmentation data 

1http://www.keel.es/
2http://archive.ics.uci.edu/ml/
3http://www.cs.nyu.edu/~roweis/data.html
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set: Berke-296059.6 Some data sets were resized in this paper due to the well-known 

computing burden occurred in most of the spectral clustering approaches.

The constructions and the arrangements regarding these data sets in our experiments are 

briefly introduced as follows.

1) As in the dedicated, KEEL semisupervised data sets, the supervision is given 

with the fixed sampling ratio of 10%, and we just straightforwardly performed 

all algorithms on Banana, Wisconsin, and Led7digit with ten repetitions.

2) As for USPS-3568, JAFFE, and 20news, likewise, we first randomly sampled 

each data set ten times using an invariant ratio of 10% to obtain ten subsets of 

each of them, after that, the seven, semisupervised algorithms were carried out 

on each data set with its each subset being adopted as the supervision.

3) The USPS-3568 data set was generated by randomly extracting 1564 samples 

from four handwritten digits, 3, 5, 6, and 8, in the USPS database.

4) The JAFFE data set was obtained from the JAFFE database. We selected 10 × 20 

female facial images from the original database, i.e., 10 different persons and 20 

facial images per person. One frontal face image of each person is shown in Fig. 

7. To enlarge the size of the data set, we also rotated anticlockwise each image at 

angles of 5° and 10°, respectively. We then performed the principal component 

analysis processing on the raw pixel-gray features of each image, and obtained 

the final JAFFE data set with the data size and dimension being 600 and 599, 

respectively.

5) The 20news data set was composed of 2000 data instances chosen randomly 

from four subcategories in the 20 newsgroups database: 1) 

comp.sys.mac.hardware; 2) rec.autos; 3) sci.med; and 4) talk.politics.guns. The 

BOW toolkit [45] was used to reduce the data dimension, which was originally 

as high as 43 586. The eventual 20news data set contains 350 effective features 

in our experiment.

6) As for Berke-296059, we attempted to evaluate the effectiveness of those 

algorithms compatible with must-link or cannot-link constraints, such as FSCS, 

PGCSC, TI-APJCSC, and TII-APJCSC. For this purpose, one, hand-labeled, 

animal image numbered 296 059 in the Berkeley segmentation data sets was 

enlisted in this paper, and we resized it into 70 × 46 resolution and relabeled it 

by hand, as shown in Fig. 8(a). The Berke-296059 data set was composed of the 

features of hue, saturation, and value (HSV) of each pixel in this images. 

Furthermore, we drew six regions with different colors on this image as the 

pairwise constraints or grouping information, as shown in Fig. 8(b). The regions 

belong to the same class only if they are marked in the same color. Table VII 

4http://kasrl.org/jaffe.html
5http://www.cs.nyu.edu/roweis/data.html
6http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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summarizes the details of these real-life data sets involved in our experiments. 

All data sets were also normalized before our experiments.

2) Results of the Experiments—We first performed the classic MSC approach on all 

these real-life data sets, and the values of involved validity indices are listed in Table VIII. 

Only SLAM, FCSC, PGCSC, TI-APJCSC, and TII-APJCSC were performed on 

Berke-296059 due to the compatibility with pairwise constraints or grouping information. 

On the other data sets, all seven, semisupervised approaches were carried out, and their 

results are listed in Table IX.

Likewise, we have also concurrently conducted the robustness studies of these algorithms on 

these real-life data sets. Due to the limitation of space, we cannot report more detailed 

results, and only the NMI-based parameter robustness regarding related algorithms on the 

three, dedicated, KEEL data sets are shown in Figs. 9 and 10. In particular, the robustness of 

all eight algorithms with respect to the affinity parameter σ is shown in Fig. 9, and the 

sensitivity investigations regarding the tradeoff factor η of TI-APJCSC and TII-APJCSC are 

shown in Fig. 10.

As seen in these results, our proposed TI-APJCSC and TII-APJCSC algorithms generally 

overcome the others once again from the perspectives of their effectiveness and stability. 

Considering the paper space constraint, we do not present the detailed analyses regarding 

each algorithm on these data sets, as the analyses and conclusions which we performed on 

the artificial data sets also generally hold here. Owing to the affinity and penalty jointly 

constrained strategies as well as the flexible normalized frameworks, both TI-APJCSC and 

TII-APJCSC demonstrate comparatively high effectiveness and strong robustness even on 

these real-world data sets, which are full of uncertainties, such as noise, outliers, or 

mislabeling. Moreover, TII-APJCSC overall features better stability to the tradeoff factor η 
than TI-APJCSC due to their different semisupervised formulations in the forms of (6) and 

(10), respectively.

The segmentation results of partial approaches, i.e., PGCSC, SLAM, TI-APJCSC, and TII-

APJCSC, on the Berke-296059 data set are shown in Fig. 11. Comparing the index scores of 

the related algorithms listed in Table IX with the realistic segmentation diagrams shown in 

Fig. 11, the flaw of the DBI index is intuitively confirmed that the minimal value does not 

necessarily represent the most reasonable result. For example, in terms of the DBI metric, 

PGCSC should be the best one; however, its corresponding NMI score is only 0.619, which 

is definitely worse than those of TI-APJCSC and TII-APJCSC. Fig. 11(a) shows that it 

cannot successfully partition the image into three desirable parts with DBI equaling 0.7051.

Last but not least, the trial ranges of the affinity parameter σ of all recruited algorithms on 

these real-life data sets as well as the recommended optimal parameter settings of TI-

APJCSC and TII-APJCSC are listed in Table X.

V. Conclusion

In this paper, two affinity and penalty jointly constrained formulations, TI-APJCF and TII-

APJCF, respectively, were first devised to cope with the semisupervised, spectral clustering 
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problem. Based on these formulations, by means of the min–max theorem, two flexible, 

normalized, constrained, spectral clustering frameworks as well as their corresponding 

algorithms, referred to as TI-APJCSC and TII-APJCSC, were eventually proposed. The 

comparisons among TI-APJCSC/TII-APJCSC and the other six state-ofthe-art approaches 

on both the artificial and real-life semisupervised data sets demonstrated that our proposed 

schemas for constrained spectral clustering concurrently have three, distinctive merits: 1) 

full compatibility; 2) high flexibility; and 3) strong robustness. This further suggests that 

both TI-APJCF and TII-APJCF have desirable practicability in those medium-and small-

scale, semisupervised data scenarios.

There are two aspects of work need to be continued in depth in the future. One is the 

computational burden of our propounded TI-APJCSC and TII-APJCSC approaches in large-

scale data scenarios, and the other is how to adjust the core parameters involved in TI-

APJCSC and TII-APJCSC self-adaptively. Such two issues indeed restrict the practicability 

of our developed schemas for semisupervised spectral clustering to a great extent.
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Fig. 1. 
Composition of three types of supervision and feasible conversions among them.
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Fig. 2. 
Synthetic data sets. (a) X1 data set. (b) X2 data set. (c) X3 data set.
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Fig. 3. 
Robustness to sampling ratios. (a) NMI curves of seven algorithms to sampling ratios on X1. 

(b) NMI curves of seven algorithms to sampling ratios on X2. (c) NMI curves of seven 

algorithms to sampling ratios on X3.
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Fig. 4. 
Robustness to affinity parameter σ. (a) NMI curves of eight algorithms to σ on X1. (b) NMI 

curves of eight algorithms to σ on X2. (c) NMI curves of eight algorithms to σ on X3.
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Fig. 5. 
Robustness to tradeoff factor η. (a) NMI curves of TI-APJCSC and TII-APJCSC to η on X1 

with a 5% sampling ratio. (b) NMI curves of TI-APJCSC and TII-APJCSC to η on X1 with 

a 10% sampling ratio. (c) NMI curves of TI-APJCSC and TII-APJCSC to η on X2 with a 

5% sampling ratio. (d) NMI curves of TI-APJCSC and TII-APJCSC to η on X2 with a 10% 

sampling ratio. (e) NMI curves of TI-APJCSC and TII-APJCSC to η on X3 with a 5% 

sampling ratio. (f) NMI curves of TI-APJCSC and TII-APJCSC to η on X3 with a 10% 

sampling ratio.
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Fig. 6. 
Partition results of partial algorithms on synthetic data sets. (a) MSC on X1. (b) SLAM on 

X1. (c) FCSC on X1. (d) TI-APJCSC on X1. (e) TII-APJCSC on X1. (f) MSC on X2. (g) 

SLAM on X2. (h) FCSC on X2. (i) TI-APJCSC on X2. (j) TII-APJCSC on X2. (k) MSC on 

X3. (l) SLAM on X3. (m) FCSC on X3. (n) TI-APJCSC on X3. (o) TII-APJCSC on X3.
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Fig. 7. 
Human facial data set JAFFE.
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Fig. 8. 
Image segmentation data set Berke-296059. (a) Three clusters labeled by hand. (b) Pairwise 

constraints.
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Fig. 9. 
Robustness to affinity parameter σ on semisupervised KEEL benchmark data sets. (a) NMI 

curves of eight algorithms to σ on Banana. (b) NMI curves of eight algorithms to σ on 

Wisconsin. (c) NMI curves of eight algorithms to σ on Led7digit.
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Fig. 10. 
Robustness to tradeoff factor η on semisupervised KEEL benchmark data sets. (a) NMI 

curves of TI-APJCSC and TII-APJCSC to η on Banana. (b) NMI curves of TI-APJCSC and 

TII-APJCSC to η on Wisconsin. (c) NMI curves of TI-APJCSC and TII-APJCSC to η on 

Led7digit.

Qian et al. Page 39

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Segmentation illustrations of partial algorithms. (a) Result of PGCSC. (b) Result of SLAM. 

(c) Result of TI-APJCSC. (d) Result of TII-APJCSC.
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Qian et al. Page 41

TABLE I

Common Notations Regarding Graph

Symbol Meaning

G The graph G = (V, E, W) on the given data set X

W The affinity (similarity) matrix

D The degree matrix

L The Laplacian matrix

vol(G) The total weights of the graph G
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Qian et al. Page 42

TABLE II

Categories of Supervision and Constraints of Involved, Semisupervised Algorithms

Categories
Algorithms

SLAM FCSC CRM ASTC PGCSC TI-APJCSC TII-APJCSC

Supervision CL, PC, GI CL, PC, GI CL CL CL,GI CL, PC, GI CL, PC, GI

Constraints A S P P S A + P A + P

Note: A - Affinity constraints; S - Subjection condition; P - Penalty optimization; CL - Class labels; PC - Pairwise constraints; GI - Grouping 
information.
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TABLE III

Values or Intervals of Primary Parameters in Employed Algorithms

Algorithms Parameter settings

MSC K equals the number of clusters.

SLAM K equals the number of clusters.

FCSC K equals the number of clusters; Threshold β=(λmax_K–i + λmax_K)vol(G)/2 where λmax_K–1 and λmax_K denote the (K-1)th and 

Kth largest eigenvalues of the normalized constraint matrix Q̄.

CRM K equals the number of clusters; Parameter α ∈ {0.5,0.7,0.9,0.99,0.999,0.9999}.

ASTC K equals the number of clusters; Parameter αu ∈ {0.5,0.7,0.9,0.99,0.999,0.9999}.

PGCSC K equals the number of clusters.

TI-APJCSC K equals the number of clusters; Trade-off factor η ∈ [0.1:0.1:1].

TII-APJCSC K equals the number of clusters; Trade-off factor η ∈ [0.1:0.1:1].
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TABLE IV

Clustering Performance in Terms of NMI, RI, DBI, CONS, and Running Time of Seven Semisupervised 

Spectral Clustering Algorithms on Synthetic Data Sets

Datasets Metrics
Algorithms

SLAM FCSC CRM ASTC PGCSC TI TII

X 1

5%

NMI-m 0.8908 0.8522 0.8727 0.8876 0.8898 0.8986 0.9016

NMI-s 0.0016 0.0245 0.0158 0.0016 0.0034 0.0088 0.0024

RI-m 0.9695 0.9526 0.9533 0.9590 0.9676 0.9714 0.9711

RI-s 0.0012 0.0121 0.0055 0.0015 0.0007 0.0025 0.0007

DBI-m 0.6755 0.6917 0.6988 0.6882 0.6783 0.6667 0.5333

DBI-s 0.0036 0.0110 0.0102 0.0021 0.0030 0.3055 0.3512

CONS-m 1 0.9870 0.9880 0.9877 1 0.9425 0.9928

CONS-s 0 0.0225 0.0020 0.0025 0 0.0653 0.0124

Time-m 1.2133 9.007 0.4925 0.4473 1.3499 0.5223 0.5591

Time-s 0.0618 0.9381 0.0189 0.1601 0.0523 0.0126 0.0018

10%

NMI-m 0.8824 0.8845 0.8779 0.8766 0.8829 0.8909 0.8884

NMI-s 0.0035 0.0054 0.0051 0.0012 0.0051 0.0048 0.0011

RI-m 0.9660 0.9630 0.9568 0.9560 0.9660 0.9675 0.9675

RI-s 0.0001 0.0015 0.0007 0.0011 0.0001 0.0025 0.0024

DBI-m 0.6754 0.6778 0.6841 0.6864 0.6750 0.4215 0.4333

DBI-s 0.0033 0.0019 0.0010 0.0055 0.0052 0.2646 0.2082

CONS-m 1 1 0.9823 0.9877 1 0.9747 1

CONS-s 0 0 0.0083 0.0025 0 0.0438 0

Time-m 1.1235 9.4850 0.4727 0.3674 1.2161 0.5242 0.5588

Time-s 0.0446 0.4850 0.0012 0.1587 0.0467 0.0145 0.0104

X 2

5%

NMI-m 0.9190 0.8544 0.9097 0.9082 0.9156 0.9207 0.9325

NMI-s 0.0099 0.0836 0.0066 0.0077 0.0066 0.0109 0.0231

RI-m 0.9758 0.9536 0.9660 0.9654 0.9746 0.9758 0.9794

RI-s 0.0032 0.0299 0.0036 0.0029 0.0012 0.0032 0.0082

DBI-m 1.1512 1.6108 1.1583 1.1620 1.1399 1.0206 1.0997

DBI-s 0.0078 0.8279 0.0082 0.0146 0.0037 0.1732 0.2309

CONS-m 0.8764 1 0.9890 1 0.8764 1 1

CONS-s 0.2141 0 0.0010 0 0.2141 0 0

Time-m 2.7255 17.0034 1.2992 0.5175 2.1397 1.0153 1.0697

Time-s 0.0878 1.3347 0.6661 0.1098 0.1051 0.0333 0.0268

10%

NMI-m 0.3648 0.9102 0.9248 0.9253 0.9165 0.9330 0.9366

NMI-s 0.0673 0.0267 0.0216 0.0128 0.0239 0.0247 0.0266

RI-m 0.6690 0.9745 0.9705 0.9716 0.9734 0.9785 0.9805

RI-s 0.0271 0.0080 0.0073 0.0040 0.0084 0.0085 0.0098

DBI-m 1.0987 1.3430 1.1680 1.1659 1.1362 1.0341 1.0239
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Datasets Metrics
Algorithms

SLAM FCSC CRM ASTC PGCSC TI TII

DBI-s 0.1536 0.3446 0.0241 0.0229 0.0302 0.2777 0.1939

CONS-m 1 1 0.9893 0.9883 1 1 1

CONS-s 0 0 0.0006 0.0015 0 0 0

Time-m 2.7928 17.6024 1.1485 0.4837 2.1009 1.0122 1.0683

Time-s 0.0967 1.4077 0.4569 0.0962 0.0891 0.0293 0.0175

X 3

5%

NMI-m 0.8956 0.7237 0.8853 0.8868 0.8914 0.9033 0.9035

NMI-s 0.0111 0.0658 0.0243 0.0166 0.0074 0.0089 0.0091

RI-m 0.9731 0.9034 0.9621 0.9631 0.9715 0.9753 0.9753

RI-s 0.0034 0.0340 0.0081 0.0052 0.0025 0.0028 0.0028

DBI-m 6.4415 8.0839 6.1906 6.4519 6.4266 5.7511 5.7058

DBI-s 0.1177 3.4620 0.5492 0.3011 0.0402 0.1025 0.1349

CONS-m 1 1 0.9798 0.9917 1 1 1

CONS-s 0 0 0.0211 0.0047 0 0 0

Time-m 3.2666 13.7548 0.7066 0.4121 4.6916 1.6856 1.8101

Time-s 0.3502 2.2228 0.0481 0.0700 0.0520 0.0886 0.0329

10%

NMI-m 0.8972 0.7942 0.9011 0.8882 0.9004 0.9015 0.9014

NMI-s 0.0048 0.1323 0.0052 0.0048 0.0065 0.0027 0.0029

RI-m 0.9737 0.9255 0.9675 0.9637 0.9742 0.9748 0.9748

RI-s 0.0016 0.0666 0.0019 0.0016 0.0019 0.0009 0.0009

DBI-m 6.3587 5.4516 6.0547 6.3895 6.3620 6.2377 6.3255

DBI-s 0.0868 1.1024 0.2106 0.0746 0.0744 0.2129 0.1745

CONS-m 1 1 0.9943 1 0.8333 1 1

CONS-s 0 0 0.0045 0 0.2887 0 0

Time-m 3.2024 12.3624 0.7028 0.3740 4.2121 1.6924 1.8049

Time-s 0.0657 1.2427 0.0212 0.2277 0.1241 0.0222 0.0155

Note: *-m and *-s denote the values of the mean and standard deviation, respectively; TI and TII are the separate abbreviations of our proposed TI-
APJCSC and TH-APJCSC algorithms.
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TABLE V

Clustering Results in Terms of NMI, RI, DBI, and Running Time of the Conventional MSC Algorithm on 

Synthetic Data Sets

Metrics
Datasets

X 1 X 2 X 3

NMI-m 0.8897 0.5728 0.2727

NMI-s 0 0 0

RI-m 0.9684 0.7970 0.5810

RI-s 0 0 0

DBI-m 0.6734 0.7683 1.7183

DBI-s 1.4E-16 0 2.7E-16

Time-m 1.2276 3.3082 3.9013

Time-s 0.0932 0.0244 0.0314
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TABLE VI

Recommended Optimal Settings of TI-/TII-APJCSC on Synthetic Databases

Algorithms

Datasets

X 1 X 2 X 3

5% 10% 5% 10% 5% 10%

TI-APJCSC

σ ∈ σ ∈ σ ∈ σ ∈ σ ∈ σ ∈

[0.033,0.045] [0.059,0.065] [0.011,0.021] [0.013,0.017] [0.023,0.037] [0.025,0.035]

σ ∈ [0.7,0.9] η = 0.8 η = 0.9 σ ∈ [0.1,0.4] η = 0.9 η = 0.9

TII-APJCSC

σ ∈ σ ∈ σ ∈ σ ∈ σ ∈ σ ∈

[0.021,0.045] [0.015,0.063], [0.015,0.023] [0.013,0.017] [0.025,0.037] [0.017,0.033]

σ ∈ [0.5,0.9] σ ∈ [0.5,0.7] σ ∈ [0.6,0.8] σ ∈ [0.3,0.8] σ ∈ [0.8,0.9] σ ∈ [0.8,0.9]

Note: Each interval or specific value of optimal settings is achieved by 10 times of implementations of TI-/TII-APJCSC on the same dataset but 
with different supervision. If the ten results are inconsistent, the interval form is attained; otherwise, the specific value is given.
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TABLE VII

Description of Real-Life Benchmark Data Sets for Experiments

Dataset Type Dataset Name Size Dimensions Classes Sampling Ratio

KEEL dedicated semi-supervised learning

Banana 2650 2 2 10%

Wisconsin 683 9 2 10%

Led7digit 500 7 10 10%

UCI
Wine 178 13 3 10%

Waveform-21 2500 21 3 10%

Handwritten digit USPS-3568 1564 256 4 10%

Human face JAFFE 600 599 10 10%

Text data 20news 2000 350 4 10%

Berkeley segmentation Berke-296059 3220 3 3 By hand
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TABLE VIII

Clustering Performance of MSC on Real-Life Data Sets

Metrics
Datasets

Banana Wisconsin Led7digit Wine Wave form-21 USPS-3568 JAFFE 20news Berke-296059

NMI-m 0.0147 0.8055 0.5939 0.8120 0.3723 0.6112 0.2208 0.1083 0.6155

NMI-s 0 0 0.0013 0 0.0026 7.4E-4 0.0050 1.8E-4 0

RI-m 0.5113 0.9392 0.8957 0.8699 0.6714 0.8205 0.2947 0.5917 0.7198

RI-s 0 0 0.0020 1.4E-16 1.5E-4 4.2E-4 0.0042 0.0011 0

DBI-m 1.0481 0.8030 1.3479 1.3766 1.5130 2.2246 3.7791 5.4758 0.7307

DBI-s 0 1.4E-16 0.0254 0 0.0356 4.7E-4 0.0280 0.0210 0

Time-m 21.8386 0.4401 0.1977 0.0471 30.1275 13.4835 3.9337 29.5338 11.8847

Time-s 0.3731 0.0115 0.0140 0.0090 0.9683 0.0417 0.2579 0.0050 0.4389

Note: *-m and *-s denote the values of mean and standard deviation, respectively.
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TABLE IX

Clustering Results in Terms of NMI, RI, DBI, CONS, and Running Time of Seven Semisupervised Algorithms 

on Real-Life Data Sets

Datasets Metrics
Algorithms

SLAM FCSC CRM ASTC PGCSC TI TII

Banana

NMI-m 0.5164 0.5342 0.5356 0.5430 0.5237 0.5756 0.5662

NMI-s 0 0 0 0 0 0 0

RI-m 0.7990 0.8021 0.7986 0.8080 0.8116 0.8373 0.8352

RI-s 0 1.4E-16 0 0 1.4E-16 0 0

DBI-m 9.1997 8.9751 7.3475 7.7922 6.0164 7.0240 6.4169

DBI-s 0 0 0 0 0 0 0

CONS-m 1 1 0.9940 0.9973 0.8333 0.9019 0.8992

CONS-s 0 0 0.0048 0.0017 0.2887 0 0

Time-m 25.0206 205.9835 6.2195 3.4858 28.4171 5.6457 6.0950

Time-s 0.4568 2.1845 0.0124 0.0081 0.9151 0.1845 0.1169

Wisconsin

NMI-m 0.8431 0.8486 0.8440 0.8290 0.8144 0.8662 0.8654

NMI-s 1.4E-16 1.4E-16 0 0 0 1.4E-16 0

RI-m 0.9544 0.9454 0.9316 0.9523 0.9392 0.9585 0.9616

RI-s 0 0 0 1.4E-16 0 1.4E-16 0

DBI-m 0.7965 0.8150 0.8314 0.7940 0.8062 0.8010 0.7675

DBI-s 0 0 0 1.4E-16 0 0 0

CONS-m 1 1 1 1 1 1 1

CONS-s 0 0 0 0 0 0 0

Time-m 0.4246 2.7636 0.3073 0.3234 0.4977 0.3786 0.3425

Time-s 0.0265 0.0291 0.0363 0.0206 0.0141 0.0219 0.0106

Led7digit

NMI-m 0.6239 0.6026 0.6066 0.6283 0.6121 0.6503 0.6591

NMI-s 0.0025 0.0160 0 0 0.0039 0.0023 0.0030

RI-m 0.9082 0.8927 0.9008 0.9020 0.8995 0.9197 0.9252

RI-s 0.0010 0.0110 0 0 0.0051 0.0055 0.0004

DBI-m 1.2998 1.5942 1.8240 1.4937 1.4238 1.3538 1.2364

DBI-s 0.0110 0.2173 2.7E-16 0 0.0118 0.1639 0.0093

CONS-m 0.8060 0.9817 0.9962 0.9943 0.9911 0.8077 0.9191

CONS-s 0.0360 0.0213 0.0053 0.0038 0.0077 0.0418 0.0121

Time-m 0.2867 1.0037 0.1689 0.1107 0.2431 0.2232 0.1945

Time-s 0.0076 0.0707 0.0045 0.0051 0.0173 0.0209 0.0075

Wine

NMI-m 0.9253 0.8160 0.8680 0.8901 0.9263 0.9317 0.9317

NMI-s 0.0247 0.0832 0.0135 0.0335 0.0247 0.0216 0.0216

RI-m 0.9750 0.9246 0.9444 0.9543 0.9750 0.9774 0.9774

RI-s 0.0088 0.0373 0.0066 0.0124 0.0088 0.0076 0.0076

DBI-m 1.3780 1.4074 1.4065 1.4003 1.3780 1.1781 1.2766

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qian et al. Page 51

Datasets Metrics
Algorithms

SLAM FCSC CRM ASTC PGCSC TI TII

DBI-s 0.0025 0.0397 0.0063 0.0107 0.0025 0.0025 0.0115

CONS-m 1 1 0.9962 0.9940 1 1 1

CONS-s 0 0 0.0053 0.0038 0 0 0

Time-m 0.0328 0.2321 0.0671 0.0559 0.0402 0.0516 0.0619

Time-s 0.0023 0.0104 0.0020 0.0064 0.0040 0.0017 0.0086

Waveform-21

NMI-m 0.3816 0.4388 0.4678 0.4964 0.3873 0.4860 0.4837

NMI-s 1.9E-5 0.0326 0.0114 0.0106 0.0036 0.0132 0.0212

RI-m 0.7192 0.7235 0.7692 0.7681 0.6797 0.7570 0.7558

RI-s 8.7E-5 0.0211 0.0106 0.0105 0.0026 0.0110 0.0154

DBI-m 9.7754 2.2163 2.1605 2.1702 1.6890 2.0529 2.1418

DBI-s 2.1733 0.0710 0.0553 0.0500 0.0201 0.1328 0.0480

CONS-m 0.6564 1 0.9923 1 1 0.6316 0.6328

CONS-s 0.0358 0 0.0020 0 0 0.0099 0.0097

Time-m 31.7048 247.5292 6.0845 7.1319 33.9353 7.2836 7.7212

Time-s 0.3075 10.4529 0.2558 0.0381 1.2736 0.0252 0.0977

USPS-3568

NMI-m 0.7332 0.8064 0.8317 0.8405 0.6457 0.8397 0.8615

NMI-s 0.0138 0.0136 0.0053 0.0102 0.0060 0.0144 0.0081

RI-m 0.8864 0.9408 0.9250 0.9490 0.8287 0.9434 0.9622

RI-s 0.0367 0.0079 0.0018 0.0038 0.0009 0.0067 0.0023

DBI-m 2.6784 2.8119 2.7395 2.7570 2.2378 2.1318 2.3635

DBI-s 0.0318 0.0245 0.0006 0.0015 0.0277 0.0365 0.0269

CONS-m 0.9756 1 0.9865 0.9937 0.8600 1 1

CONS-s 0.0422 0 0.0065 0.0040 0.0799 0 0

Time-m 8.2979 70.5778 7.2742 5.7583 8.8198 5.8785 6.0986

Time-s 0.0339 1.2188 0.2229 0.0420 0.1161 0.0573 0.0117

JAFFE

NMI-m 0.2635 0.2310 0.3421 0.3134 0.2701 0.5070 0.3811

NMI-s 0.0182 0.0051 0.0274 0.0137 0.0189 0.0410 0.0282

RI-m 0.3239 0.3186 0.5525 0.7257 0.4337 0.8237 0.7008

RI-s 0.0285 0.0205 0.0387 0.0153 0.0172 0.0573 0.0819

DBI-m 5.3146 3.6118 7.5782 9.3607 4.2364 5.7232 5.8227

DBI-s 0.2453 0.3839 0.4257 0.1263 0.2470 0.8505 0.5714

CONS-m 0.9893 0.8881 0.9923 0.9903 0.6765 0.8613 0.8640

CONS-s 0.0140 0.0120 0.0020 0.0025 0.0933 0.0207 0.0921

Time-m 0.6178 4.0853 0.4075 0.5269 0.7839 0.6182 0.6476

Time-s 0.0531 0.5997 0.0533 0.0225 0.0121 0.1479 0.0965

20news

NMI-m 0.1564 0.1543 0.1914 0.1879 0.1250 0.2556 0.2238

NMI-S 0.0036 0.0014 0.0018 0.0033 0.0062 0.0143 0.0153

RI-m 0.3317 0.3274 0.4894 0.4443 0.6166 0.5433 0.4681
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Datasets Metrics
Algorithms

SLAM FCSC CRM ASTC PGCSC TI TII

RI-s 0.0014 0.0012 0.0407 0.0957 0.0164 0.0646 0.0801

DBI-m 9.3337 10.526 7.8736 7.8657 6.1765 6.5541 6.5224

DBI-s 0.3082 0.2342 0.8057 0.4107 0.2036 0.0222 0.0516

CONS-m 1 1 0.5000 0.9903 0.7823 0.8983 0.9300

CONS-s 0 0 0 0.0025 0.0473 0.1702 0

Time-m 28.9717 124.7176 22.1992 21.1076 29.5331 23.4338 24.7605

Time-s 0.1455 2.0669 0.0424 0.1506 0.5522 0.6306 0.0368

Berke-296059

NMI-m 0.6409 0.5131 — — 0.6190 0.7515 0.7600

NMI-s 0.0350 0.0202 — — 0 0 0

RI-m 0.8084 0.6710 — — 0.7193 0.9007 0.9029

RI-s 0.0612 0.0165 — — 0 0 0

DBI-m 0.9765 3.2890 — — 0.7051 1.1556 1.1209

DBI-s 0.1448 1.2200 — — 0 0 0

CONS-m 0.8063 0.7337 — — 0.7546 1 1

CONS-s 0.0553 0.0050 — — 0 0 0

Time-m 15.1517 124.1676 — — 18.4191 6.3568 5.9789

Time-s 0.6538 0.7005 — — 0.1123 0.2013 0.2822

Note: TI and TII are the separate abbreviations of TI-APJCSC and TII-APJCSC.
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TABLE X

Parameter Trial Ranges of All Algorithms and Recommended Optimal Settings of TI-/TII-APJCSC on Real-

Life Data Sets

Datasets Trial ranges (σ)
Recommended optimal settings

TI-APJCSC TII-APJCSC

Banana [0.015:0.002:0.085] σ = 0.043, η = 0.5 σ = 0.037, η = 0.3

Wisconsin [0.05:0.02:0.85] σ = 0.11, η = 0.3 σ = 0.11, η = 0.1

Led7digit [0.277:0.02:1.077] σ ∈ = [0.517,0.737], η ∈ [0.7,0.9] σ ∈ [0.697,0.957], η ∈ [0.3,0.4]

Wine [0.05:0.02:1.55] σ ∈ [0.25,0.29], η ∈ [0.8,0.9] σ ∈ [0.27,0.31], η ∈ [0.5,0.8]

Waveform-21 [0.3:0.02:1.3] σ ∈ [0.34,0.74], η ∈ [0.2,0.9] σ ∈ [0.92,1.1], η ∈ [0.8,0.9]

USPS-3568 [0.3:0.02:2.2] σ ∈ [1.12,1.3], η ∈ [0.6,0.7] σ ∈ [0.5,0.72], η = 0.9

JAFFE [0.5:0.035:5.1] σ ∈ [2.67,3.3], η ∈ [0.2,0.7] σ ∈ [2.32,3.23], η ∈ [0.2,0.9]

20news [0.3:0.05:2.3] σ ∈ [0.45,0.55], η ∈ [0.1,0.3] σ ∈ [0.35,0.45], η ∈ [0.1,0.3]

Berke-296059 [0.01:0.0012:0.08] σ = 0.0220, η = 0.8 σ = 0.0484, η = 0.3

Note: Each interval or specific value of optimal settings is achieved by 10 times of implementations of TI-/TII-APJCSC on the same dataset but 
with different supervision (Except for the three KEEL datasets, where the supervision is invariant). If the ten results are inconsistent, the referenced 
interval is listed; otherwise, the specific value is given.
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Algorithm 1

Normalized Spectral Clustering

Step 1: Construct the graph G on the given data set X and calculate the similarity matrix W;

Step 2: Generate the normalized Laplacian matrix L̃ = D–1/2LD–1/2;

Step 3: Obtain the K relaxed continuous solutions (the first K eigenvectors) of Eq. (4) based on the eigenvalue decomposition on L̃;

Step 4: Generate the final discrete solution via K-means [18] or spectral rotation [6], [10] based on these continuous solutions.
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Algorithm 2

Type-I/Type-II Affinity and Penalty Jointly Constrained Spectral Clustering

Step 1: Convert the known supervision into MLS and CLS;

Step 2: Calculate the affinity matrix W of the given data set X, manipulate W according to (5), generate the Laplacian matrix L, the degree 
Matrix D, and calculate vol(G);

Step 3: Construct the constraint matrix Pi (i = 1 or 2) based on Theorem 1 or Theorem 2, respectively;

Step 4: Generate L ̂ and P̂i (i = 1 or 2) according to Theorem 3, and attain Si = ηL̂ + (1 - η)P̂i, i = 1 or 2;

Step 5: Obtain the first K smallest eigenvectors of Si (i = 1 or 2) using eigenvalue decomposition and construct the continuous solution matrix 
UN×K;

Step 6: Based on UN×K, yield the normalized U′N×K with the norm of each row being 1, and generate the final discrete solution of (13) via K-
means [18] or spectral rotation [6], [10] on U′N×K.
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