Skip to main content
. Author manuscript; available in PMC: 2018 May 1.
Published in final edited form as: IEEE Trans Neural Netw Learn Syst. 2016 Feb 18;28(5):1123–1138. doi: 10.1109/TNNLS.2015.2511179

TABLE IV.

Clustering Performance in Terms of NMI, RI, DBI, CONS, and Running Time of Seven Semisupervised Spectral Clustering Algorithms on Synthetic Data Sets

Datasets Metrics Algorithms
SLAM FCSC CRM ASTC PGCSC TI TII
X 1 5% NMI-m 0.8908 0.8522 0.8727 0.8876 0.8898 0.8986 0.9016
NMI-s 0.0016 0.0245 0.0158 0.0016 0.0034 0.0088 0.0024
RI-m 0.9695 0.9526 0.9533 0.9590 0.9676 0.9714 0.9711
RI-s 0.0012 0.0121 0.0055 0.0015 0.0007 0.0025 0.0007
DBI-m 0.6755 0.6917 0.6988 0.6882 0.6783 0.6667 0.5333
DBI-s 0.0036 0.0110 0.0102 0.0021 0.0030 0.3055 0.3512
CONS-m 1 0.9870 0.9880 0.9877 1 0.9425 0.9928
CONS-s 0 0.0225 0.0020 0.0025 0 0.0653 0.0124
Time-m 1.2133 9.007 0.4925 0.4473 1.3499 0.5223 0.5591
Time-s 0.0618 0.9381 0.0189 0.1601 0.0523 0.0126 0.0018
10% NMI-m 0.8824 0.8845 0.8779 0.8766 0.8829 0.8909 0.8884
NMI-s 0.0035 0.0054 0.0051 0.0012 0.0051 0.0048 0.0011
RI-m 0.9660 0.9630 0.9568 0.9560 0.9660 0.9675 0.9675
RI-s 0.0001 0.0015 0.0007 0.0011 0.0001 0.0025 0.0024
DBI-m 0.6754 0.6778 0.6841 0.6864 0.6750 0.4215 0.4333
DBI-s 0.0033 0.0019 0.0010 0.0055 0.0052 0.2646 0.2082
CONS-m 1 1 0.9823 0.9877 1 0.9747 1
CONS-s 0 0 0.0083 0.0025 0 0.0438 0
Time-m 1.1235 9.4850 0.4727 0.3674 1.2161 0.5242 0.5588
Time-s 0.0446 0.4850 0.0012 0.1587 0.0467 0.0145 0.0104
X 2 5% NMI-m 0.9190 0.8544 0.9097 0.9082 0.9156 0.9207 0.9325
NMI-s 0.0099 0.0836 0.0066 0.0077 0.0066 0.0109 0.0231
RI-m 0.9758 0.9536 0.9660 0.9654 0.9746 0.9758 0.9794
RI-s 0.0032 0.0299 0.0036 0.0029 0.0012 0.0032 0.0082
DBI-m 1.1512 1.6108 1.1583 1.1620 1.1399 1.0206 1.0997
DBI-s 0.0078 0.8279 0.0082 0.0146 0.0037 0.1732 0.2309
CONS-m 0.8764 1 0.9890 1 0.8764 1 1
CONS-s 0.2141 0 0.0010 0 0.2141 0 0
Time-m 2.7255 17.0034 1.2992 0.5175 2.1397 1.0153 1.0697
Time-s 0.0878 1.3347 0.6661 0.1098 0.1051 0.0333 0.0268
10% NMI-m 0.3648 0.9102 0.9248 0.9253 0.9165 0.9330 0.9366
NMI-s 0.0673 0.0267 0.0216 0.0128 0.0239 0.0247 0.0266
RI-m 0.6690 0.9745 0.9705 0.9716 0.9734 0.9785 0.9805
RI-s 0.0271 0.0080 0.0073 0.0040 0.0084 0.0085 0.0098
DBI-m 1.0987 1.3430 1.1680 1.1659 1.1362 1.0341 1.0239
DBI-s 0.1536 0.3446 0.0241 0.0229 0.0302 0.2777 0.1939
CONS-m 1 1 0.9893 0.9883 1 1 1
CONS-s 0 0 0.0006 0.0015 0 0 0
Time-m 2.7928 17.6024 1.1485 0.4837 2.1009 1.0122 1.0683
Time-s 0.0967 1.4077 0.4569 0.0962 0.0891 0.0293 0.0175
X 3 5% NMI-m 0.8956 0.7237 0.8853 0.8868 0.8914 0.9033 0.9035
NMI-s 0.0111 0.0658 0.0243 0.0166 0.0074 0.0089 0.0091
RI-m 0.9731 0.9034 0.9621 0.9631 0.9715 0.9753 0.9753
RI-s 0.0034 0.0340 0.0081 0.0052 0.0025 0.0028 0.0028
DBI-m 6.4415 8.0839 6.1906 6.4519 6.4266 5.7511 5.7058
DBI-s 0.1177 3.4620 0.5492 0.3011 0.0402 0.1025 0.1349
CONS-m 1 1 0.9798 0.9917 1 1 1
CONS-s 0 0 0.0211 0.0047 0 0 0
Time-m 3.2666 13.7548 0.7066 0.4121 4.6916 1.6856 1.8101
Time-s 0.3502 2.2228 0.0481 0.0700 0.0520 0.0886 0.0329
10% NMI-m 0.8972 0.7942 0.9011 0.8882 0.9004 0.9015 0.9014
NMI-s 0.0048 0.1323 0.0052 0.0048 0.0065 0.0027 0.0029
RI-m 0.9737 0.9255 0.9675 0.9637 0.9742 0.9748 0.9748
RI-s 0.0016 0.0666 0.0019 0.0016 0.0019 0.0009 0.0009
DBI-m 6.3587 5.4516 6.0547 6.3895 6.3620 6.2377 6.3255
DBI-s 0.0868 1.1024 0.2106 0.0746 0.0744 0.2129 0.1745
CONS-m 1 1 0.9943 1 0.8333 1 1
CONS-s 0 0 0.0045 0 0.2887 0 0
Time-m 3.2024 12.3624 0.7028 0.3740 4.2121 1.6924 1.8049
Time-s 0.0657 1.2427 0.0212 0.2277 0.1241 0.0222 0.0155

Note: *-m and *-s denote the values of the mean and standard deviation, respectively; TI and TII are the separate abbreviations of our proposed TI-APJCSC and TH-APJCSC algorithms.