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Is amyloid-b harmful to the brain? Insights from
human imaging studies

William Jagust

Although the amyloid-b protein associated with the Alzheimer’s disease plaque has been detectable in living people for over a decade,

its importance in the pathogenesis of Alzheimer’s disease is still debated. The frequent presence of amyloid-b in the brains of

cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-b is crucial to the development

of Alzheimer’s disease, it should be associated with other Alzheimer’s disease-like neurological changes. This review examines whether

amyloid-b is associated with other biomarkers indicative of early Alzheimer’s disease in normal older people. The preponderance of

evidence links amyloid-b to functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline

seem to be those with evidence of both amyloid-b and findings suggestive of neurodegeneration. The crucial question is thus how

amyloid-b is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.
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Introduction
The amyloid hypothesis of Alzheimer’s disease has been the

dominant theory of disease causation for decades (Selkoe,

1991; Hardy and Selkoe, 2002). This theory essentially

holds that accumulation of the amyloid-b protein, the key

constituent of the Alzheimer’s disease plaque, is sufficient to

cause a series of downstream events resulting in synaptic

dysfunction, inflammation, neuronal death and eventually

dementia. More recently, increasing attention has been

drawn to the possibility that amyloid-b exerts deleterious

effects on the brain through its interactions with the tau

protein (Roberson et al., 2007; Stancu et al., 2014), the

constituent of the neurofibrillary tangle that is more closely

related to cognitive outcomes than is the amyloid-b plaque

(Nelson et al., 2012). Considerable evidence for the

amyloid hypothesis arises from Mendelian inherited gene

mutations that have enabled both animal models and stu-

dies of presymptomatic humans. Clinical research has ben-

efitted considerably from the availability of biomarkers for

amyloid-b in humans. These data show strong evidence of

brain amyloid-b deposition long before neurological

changes and cognitive decline occur in people who carry

autosomal dominant Alzheimer’s disease-causing mutations

(Bateman et al., 2012; Fleisher et al., 2012).

A number of technical factors are important in interpret-

ing biomarker data. Amyloid PET biomarkers have been

shown to correlate well with amyloid load at autopsy

(Clark et al., 2012a; Curtis et al., 2015; Murray et al.,

2015; Sabri et al., 2015) and correlate inversely with CSF

measures of amyloid-b1–42 (Landau et al., 2013) although

the information provided with both techniques may not be
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identical (Mattsson et al., 2015b). For example, PET ima-

ging detects aggregated, fibrillar forms of the amyloid-b
protein, while abundant evidence from animal models sug-

gests that soluble forms are most likely to be deleterious

(Walsh et al., 2002). While PET and CSF measures of

amyloid-b occur on a continuum, it is often useful to clas-

sify individuals as ‘amyloid positive’ or ‘amyloid negative’

based on a threshold. Selection of a threshold represents a

choice between sensitivity (use of a lower value to define

positivity) and specificity (use of a higher value to define

positivity) and thus has important effects upon how indi-

viduals are classified or misclassified (Villeneuve et al.,

2015). Biomarkers are also available to define downstream

effects of neurodegeneration such as brain atrophy (mea-

sured with MRI), altered neural function (measured with

PET and glucose metabolism or functional MRI) and im-

paired cognition. These neurodegeneration biomarkers are

not specific for underlying pathological processes; neverthe-

less human data using such biomarkers have been inte-

grated into a model in which amyloid-b is an initiating

event, followed by neurodegeneration, and lastly cognitive

decline (Jack et al., 2010, 2013).

Biomarker studies have also generated major critiques of

the amyloid hypothesis. For example, therapeutic trials of

amyloid-b-directed immunotherapies have used PET scan-

ning to demonstrate reductions in brain amyloid-b without

clinical improvement in Alzheimer’s disease patients

(Salloway et al., 2014). Another salient critique is that

both neuropathological and PET data show evidence of

extensive amyloid-b pathology in cognitively normal older

people (Bennett et al., 2006; Morris et al., 2010). This

evidence of amyloid-b deposition without cognitive dys-

function, and amyloid-b reduction without cognitive im-

provement raises substantial questions about the validity

of amyloid-b as a causative agent (Herrup, 2015). In part

to accommodate this evidence, a framework for the staging

of preclinical Alzheimer’s disease has been developed in

which the deposition of amyloid-b alone is prima facie evi-

dence of preclinical Alzheimer’s disease in its earliest, or

first stage (Sperling et al., 2011) (Fig. 1A). Subsequent neu-

rodegeneration (changes in brain structure and function)

marks the second stage in preclinical Alzheimer’s disease,

leading to subtle, asymptomatic cognitive decline, which

reflects a third stage. Therapy directed at amyloid-b, it is

argued, must therefore be initiated at the earliest possible

stage in order to be effective. Amyloid-b immunotherapeu-

tic clinical trials in older people with brain evidence of

amyloid-b but no cognitive symptoms are underway

based on this reasoning (Sperling et al., 2014).

Similarly, another test of the amyloid hypothesis is

whether there is convincing evidence that amyloid-b affects

brain structure, function, and cognition in normal older

people well before the onset of clinically significant cogni-

tive impairment or dementia. While there are extensive data

concerning relationships between amyloid-b and such

downstream effects in patients with Alzheimer’s disease

and mild cognitive impairment (MCI) and in those with

autosomal dominantly inherited forms of Alzheimer’s dis-

ease, this review is limited to studies of cognitively normal

older people, with the expectation that this might represent

the earliest stage of Alzheimer’s disease and the appropriate

window in which to detect the earliest harmful effects of

amyloid-b. It seems reasonable to expect that if amyloid-b
is the initiating event in the Alzheimer pathological cascade,

and if normal older people with brain amyloid-b have pre-

clinical Alzheimer’s disease, then harmful effects should be

detectable as Alzheimer’s disease-like changes in these

individuals.

Is amyloid-b associated with
brain atrophy in normal
older people?
Cross-sectional studies have defined a regional predilection

of brain atrophy in Alzheimer’s disease that, while not en-

tirely specific, tends to follow a typical pattern. This in-

cludes volume loss of the hippocampus (Seab et al., 1988;

Jack et al., 1992) and a pattern of atrophy involving medial

and lateral parietal cortex and temporal neocortex that has

been characterized as an ‘Alzheimer’s disease signature’

(Dickerson et al., 2009). Brain atrophy suggestive of

Alzheimer’s disease has been reported in a number of

cross-sectional studies of normal older people with brain

amyloid-b (Storandt et al., 2009; Bourgeat et al., 2010;

Becker et al., 2011; Dore et al., 2013). CSF measures of

amyloid-b1–42 have also been associated with whole brain

atrophy (Fagan et al., 2009). However, not all studies have

found such relationships in cross-sectional data. In the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), no

relationship was detected between brain amyloid-b and re-

gional brain atrophy in 280 normal older people, 30% of

whom had evidence of brain amyloid deposition (Mattsson

et al., 2015a) although evidence for such associations were

seen in those with MCI. Other studies have also failed to

confirm cross-sectional relationships (Wirth et al., 2013a),

including some studies that reported greater atrophy pro-

gression in people with brain amyloid-b (Schott et al.,

2010; Andrews et al., 2013). Thus, reports of associations

between amyloid-b and cross-sectional measures of brain

atrophy are not consistent and may also not necessarily

reflect a typical Alzheimer’s disease pattern (Whitwell

et al., 2013).

Longitudinal data have considerable advantages over

cross-sectional data in progressive disorders. Many studies

have shown accelerated brain atrophy rates in normal

older people with evidence of brain amyloid-b by PET

or CSF measurement (Schott et al., 2010; Chetelat et al.,
2012; Ewers et al., 2012; Andrews et al., 2013). In one

study, investigators found a relationship between the rate

of accumulation of brain amyloid-b over time and the rate

of hippocampal and cortical atrophy (Villemagne et al.,

2013). However, longitudinal results are also neither
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straightforward nor consistent and different methods for

data analysis may produce disparate results even in sub-

jects from the same cohort (Driscoll et al., 2011; Clark

et al., 2012b). More recent studies have begun to probe

subtle differences in older subjects with brain amyloid-b
by classifying them according to the suggested preclinical

stages of Alzheimer’s disease (Sperling et al., 2011) (Fig.

1A). When normal older people are categorized using this

approach, an unforeseen but substantial proportion

(�25%) of normal individuals show evidence of neurode-

generation without amyloid-b. These cases are often

referred to as SNAP as they reflect suspected non-

Alzheimer pathology (Jack et al., 2012). SNAP is a

complex and controversial entity as it is entirely bio-

marker-driven and without a clear pathological substrate;

nevertheless its existence implies that amyloid-b and neu-

rodegeneration can be independent processes (Fig. 1B).

While the data are limited, some reports indicate that in-

dividuals with amyloid-b alone do not show progressive

atrophy, while those with amyloid-b and evidence of neu-

rodegeneration do (Desikan et al., 2011; Knopman et al.,
2013). These same studies indicate that neurodegeneration

without amyloid-b (SNAP) may not be progressive. These

data in the aggregate suggest a relationship between brain

amyloid-b and atrophy that is subtle and complex.

Detection of this relationship is somewhat dependent on

methods, but appears to be most robust in longitudinal

data. In addition, the evidence that amyloid-b is associated

with progressive atrophy may be strongest when amyloid-

b is associated with other biomarkers of brain injury. This

means, of course, that the best predictor of brain injury

progression is not necessarily amyloid-b alone, but

amyloid-b and brain injury.

Is amyloid-b associated with
altered neural function in
normal older people?

Glucose metabolism

Patients with Alzheimer’s disease have long been known to

demonstrate a characteristic pattern of hypometabolism

seen on FDG-PET imaging that involves areas in temporal

and parietal cortex including the posterior cingulate cortex

and precuneus (Minoshima et al., 1997). While this hypo-

metabolic pattern is not entirely specific for Alzheimer’s

disease, it is strongly associated and has been used in

much the same way as the Alzheimer’s disease signature

pattern of atrophy on MRI with which it shares consider-

able topography. Appearance of this typical pattern in

older people with brain amyloid-b deposition would

Figure 1 Two different conceptualizations of how amyloid-b affects neurological outcomes. A summarizes a preclinical staging

scheme for Alzheimer’s disease in which amyloid-b deposition is the initiating event. In this scheme, brain amyloid-b deposition alone constitutes

Stage 1 of preclinical Alzheimer’s disease, followed by Stage 2 in which amyloid-b leads to neurodegeneration. In Stage 3, subtle cognitive

dysfunction insufficient to establish dementia or mild cognitive impairment, occurs. This scheme posits neurodegeneration as the invariable

mediator between amyloid-b and cognition. B suggests an alternative view in which neurodegeneration and amyloid-b are independent processes.

Neurodegeneration without amyloid-b has been referred to as suspected non-Alzheimer pathology (SNAP). In this scheme, either neurode-

generation or amyloid-b alone may lead to cognitive dysfunction, although the two together may produce synergistic harmful effects.
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therefore constitute reasonable evidence of a harmful,

Alzheimer’s disease-like effect on brain function.

The data indicating such an effect are limited. Some stu-

dies have suggested, in fact, that increases in brain glucose

metabolism occur in older amyloid-positive cognitively

normal people (Johnson et al., 2014; Oh et al., 2014),

which has been taken as possible evidence of brain com-

pensation. The problem of detecting effects of amyloid-b on

glucose metabolism is compounded by the fact that the

apolipoprotein E4 allele, the major risk genetic risk for

Alzheimer’s disease, is associated with both glucose hypo-

metabolism and amyloid-b accumulation (Reiman et al.,

2004; Morris et al., 2010). While it is unclear whether

glucose hypometabolism occurs as a consequence of

APOE4 or amyloid-b (Jagust et al., 2012; Knopman

et al., 2014), one large study showed that amyloid depos-

ition in normal ageing was associated with hypometabolism

even after accounting for APOE genotype (Lowe et al.,

2014). This study enrolled over 600 normal people, and

found a correlation of �0.2 between glucose metabolism

in Alzheimer’s disease-typical regions and retention of the

PET amyloid-b tracer. These results do suggest that

amyloid-b has a small deleterious effect on glucose metab-

olism in ageing.

Resting state functional connectivity

Another method of studying brain function uses blood

oxygen-dependent imaging with functional MRI in a task-

free or resting state. These studies make use of the fact that

spontaneous synchrony in the functional MRI signal occurs

between topographically dispersed brain regions, indicating

that these regions co-activate and function together in large

scale networks (Biswal et al., 1995). One such network is

the default mode network (DMN), so named because it is

deactivated during most externally-directed cognitive tasks

(Raichle et al., 2001) appearing to reflect an internally dir-

ected default mode of brain function. This network is of

considerable interest because it becomes disconnected in

patients with Alzheimer’s disease (Greicius et al., 2004)

and shares considerable topographic overlap with the dis-

tribution of brain amyloid-b (Buckner et al., 2005). As

Alzheimer’s disease progresses, other brain networks also

show functional disruption (Brier et al., 2012).

Amyloid-b deposition has consistently been linked to al-

terations in DMN function in cross-sectional data. These

studies have shown evidence of both decreases and in-

creases in brain network connectivity in different parts of

the DMN (Hedden et al., 2009; Sheline et al., 2010b;

Mormino et al., 2011) in relation to amyloid-b. It is also

increasingly obvious that connectivity in multiple resting

state networks, in addition to the DMN, is modified in

the presence of amyloid-b deposition in normal older

people (Brier et al., 2014; Lim et al., 2014a). In fact, the

pattern of connectivity changes transcends specific net-

works and appears to align with cortical hubs, or brain

regions that interconnect different neural regions and

systems (Buckner et al., 2009). Both the pattern of cortical

hubs and the pattern of regional network connectivity that

is affected by amyloid-b reflect brain regions that are hypo-

metabolic in patients with Alzheimer’s disease (Elman et al.,

2014a). This finding is congruent with other evidence that

brain metabolism is related to measures of connectivity

(Tomasi et al., 2013; Riedl et al., 2014).

While results appear to be generally consistent, a few

caveats must be kept in mind. First, the approach to resting

state functional MRI data analysis is far from standardized,

and repeated and longitudinal measurements remain prob-

lematic. Second, the APOE4 genotype appears to affect

functional brain connectivity (Machulda et al., 2011) even

in the absence of detectable amyloid-b (Sheline et al.,

2010a), so that these effects probably need to be examined

separately. Nevertheless, considerable existing data suggest

a relationship between brain amyloid and alterations in

network connectivity in normal older people.

Is amyloid-b associated with
cognitive dysfunction in
normal older people?
While measurement of biomarkers that reflect neurodegen-

eration provide important clues about the effects of

amyloid-b on the brain, cognitive function is the crucial

variable linking misfolded proteins to dementia. Initial

cross-sectional studies investigating associations between

cognition and amyloid-b in cognitively normal older

people were conflicting. Because such studies define the

sample a priori as cognitively normal, any evidence of cog-

nitive dysfunction must be subtle and difficult to detect.

Perhaps unsurprisingly while a number of studies have

found evidence of cognitive deficits in association with

amyloid-b (Chetelat et al., 2011; Rentz et al., 2011;

Rodrigue et al., 2012) some have failed to find this associ-

ation (Aizenstein et al., 2008). A meta-analysis examining

data from over 3000 subjects supports a relationship, par-

ticularly between amyloid-b and episodic memory, al-

though the strength of this relationship was very small,

an unsurprising finding that likely accounts for disagree-

ment in the literature (Hedden et al., 2013).

Longitudinal studies, however, have repeatedly shown

cognitive decline in people with brain amyloid-b. Initial

studies examining how the presence or absence of brain

amyloid-b predicted subsequent decline showed that older

people with amyloid-b experienced more decline than those

without, regardless of whether amyloid-b was indicated by

increased retention of PET tracers or reduced CSF meas-

urements (Fagan et al., 2007; Resnick et al., 2010; Landau

et al., 2012; Lim et al., 2014b). In one study, rates of

amyloid-b deposition correlated with rates of episodic

memory decline (Villemagne et al., 2013). With the publi-

cation of criteria for preclinical staging of Alzheimer’s dis-

ease, studies have increasingly examined how the presence
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of amyloid-b and neurodegeneration, together and separ-

ately, affect cognitive decline. Investigators studying several

large cohorts from ADNI (Toledo et al., 2014), Amsterdam

(van Harten et al., 2013), Harvard (Mormino et al., 2014),

the Mayo Clinic (Knopman et al., 2012), and Washington

University (Vos et al., 2013) have used this approach to

contrast progression by preclinical stage of Alzheimer’s dis-

ease. In general, advancing stage was associated with a

greater risk of progressive cognitive decline so that those

with evidence of amyloid-b with neurodegeneration (i.e.

preclinical stages 2/3) had the highest risk. The situation

for those in Stage 1, with only evidence of amyloid-b is not

as straightforward; two studies found that such individuals

with CSF evidence of low amyloid-b alone declined (van

Harten et al., 2013; Vos et al., 2013) while in the three

other cohorts using PET measures of amyloid-b, decline in

those with Stage 1 was less evident. These studies differ in

many ways besides the method of amyloid-b measurement;

they used different outcomes, sample selection and length

of follow-up. However as a group they indicate that the

risk from amyloid-b alone, while likely important, is lower

than the risk from amyloid-b in the presence of additional

abnormal biomarkers. This has, in fact, been seen as an

interaction between amyloid-b and neurodegenerative bio-

markers in other studies, suggesting that the joint effect of

abnormal amyloid-b and neurodegeneration is greater than

the additive contribution of either marker alone (Wirth

et al., 2013b; Mormino et al., 2014).

Summary
Is amyloid-b harmful to the brain? The literature is replete

with evidence that individuals who harbour amyloid-b
show a number of neurological effects that are similar to

those seen in Alzheimer’s disease. While studies are some-

times contradictory, there is substantial evidence that amyl-

oid-b is associated with cross-sectional and progressive

brain atrophy, cross-sectional network dysfunction and lon-

gitudinal cognitive decline. A closer examination of the

data indicates that simply classifying individuals based on

the presence or absence of amyloid-b does not give the full

picture. Studies that have categorized normal older people

according to preclinical stages of Alzheimer’s disease

strongly indicate that those with evidence of both amyl-

oid-b and biomarkers suggesting neurodegeneration show

the greatest evidence of decline. Thus examining individuals

simply in terms of the presence or absence of amyloid-b is

not as informative as defining where they stand along a

putative pathway of preclinical Alzheimer’s disease

progression.

Many of these studies, especially those that are cross-sec-

tional, demonstrate associations but do not prove causality.

Scientific inquiry, especially in human research, benefits

from studies of association especially when results converge

across different methods and laboratories. However, trad-

itional views of the scientific method hold that disproving a

hypothesis is more valuable than accumulating positive evi-

dence. In this regard, the only true human experiments

manipulating amyloid-b levels—clinical trials of amyloid-

lowering therapies—refute the importance of amyloid-b in

Alzheimer’s disease. This has not, however, disproven the

amyloid hypothesis primarily because it is not a true hy-

pothesis but rather a complex model of disease causation.

Over time, this model has been refined and generated nu-

merous hypotheses, one of which is that Alzheimer’s dis-

ease has a prolonged incubation period during which

amyloid-b promotes neurological damage. Failure of clin-

ical trials in late stage disease is fully compatible with this

model and begs for studies to be done in early and pre-

symptomatic individuals. The limitations of cross-sectional

association studies are in part ameliorated through longitu-

dinal studies that permit observation of the evolution of

disease from asymptomatic stages. While incomplete, the

studies reviewed here show that amyloid-b deposition is a

very early event that appears to play a harmful role in

brain ageing especially when it is associated with

neurodegeneration.

In this setting, the appropriate question, therefore, may

not be whether amyloid-b is harmful to the brain, but how

amyloid-b is harmful to the brain. The mechanisms that

link amyloid-b to neurodegeneration are poorly understood

and perplexing. For example, in Alzheimer dementias with

focal features such as posterior cortical atrophy or progres-

sive aphasia, the pattern of amyloid-b deposition does not

reflect the pattern of brain degeneration (Rabinovici et al.,

2008; Rosenbloom et al., 2011). Individuals may respond

differently to amyloid-b deposition based on the ability to

compensate (Elman et al., 2014b) or the presence of genetic

factors that influence immunity and inflammation (Tanzi,

2015). Multiple biomarkers must be measured to charac-

terize neurodegeneration, which could be important for

‘staging’ individuals by defining how progressed they

are—an important factor for selection of individuals in clin-

ical trials. The addition of tau imaging offers the potential

of more specific biomarkers for degenerative brain pro-

cesses (Villemagne et al., 2015) that may shed light on

these issues.

Cross-sectional association studies also have the disad-

vantage that they reflect brain biomarkers of structure

and function that do not necessarily reflect neurodegenera-

tion but could indicate a variety of non-progressive pro-

cesses. The time between the appearance of brain

amyloid-b and the development of dementia is potentially

decades (Villemagne et al., 2013) during which a multitude

of pathological mechanisms may be operating. We need

longitudinal studies to define relationships between

amyloid-b, neurodegeneration, and cognition, and to

better infer causation from temporal associations. How

often is neurodegeneration preceded by amyloid-b, and

how often might it arise independently and interact with

amyloid-b to result in decline? Is Fig. 1A or Fig. 1B closer

to the evolution of Alzheimer’s disease? In Fig. 1A, demen-

tia occurs via amyloid-b-induced neurodegeneration, while
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in Fig. 1B dementia could evolve in relation to either amyl-

oid-b or neurodegeneration independently. This is one of

the key controversies in Alzheimer’s disease research today,

but it is not simply an academic exercise. Our ability to

target the right interventions to the correct processes at the

appropriate time point depends on a more precise under-

standing of the complex chain of events that occurs over

many years to produce dementia.
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