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miR-625-3p regulates oxaliplatin resistance by
targeting MAP2K6-p38 signalling in human
colorectal adenocarcinoma cells
Mads Heilskov Rasmussen1,*, Iben Lyskjær1,*, Rosa Rakownikow Jersie-Christensen2, Line Schmidt Tarpgaard3,

Bjarke Primdal-Bengtson1, Morten Muhlig Nielsen1, Jakob Skou Pedersen1, Tine Plato Hansen4,w,

Flemming Hansen5, Jesper Velgaard Olsen2, Per Pfeiffer3,6, Torben Falck Ørntoft1 & Claus Lindbjerg Andersen1

Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive

markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive

marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC

cells, and identify the signalling networks affected by miR-625-3p. We show that the p38

MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated

in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed

by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6

variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors

or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin.

Transcriptome, proteome and phosphoproteome profiles confirm inactivation of

MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows

that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated

apoptosis and cell cycle control networks, and corroborates the predictive power of

miR-625-3p.
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C
olorectal cancer (CRC) is the third most commonly
diagnosed malignant disease in the western world1.
Approximately 25% of the patients present with a

disseminated, stage IV disease and in further 10–15% of
patients with initially localized disease, metastases will develop
within 5 years. However, no predictive biomarker for standard
chemotherapeutic treatment is available and as many as 50% of
the patients do not obtain an objective response to first-line
treatment2. Thus, the identification of predictive biomarkers for
response is of great importance.

MicroRNAs (miRNAs) are endogenous, small non-coding
RNAs that play essential roles in the regulation of gene
expression3, and which have been linked to chemotherapy
resistance4. Recently, miR-625-3p was reported to be positively
associated with lack of response to first-line oxaliplatin
(oxPt)-based treatment in two independent cohorts of patients
with metastatic CRC (mCRC)5. While that study suggested high
expression of miR-625-3p to be a novel predictive marker for
oxPt-resistance in a subset of mCRC patients, a possible
functional relationship between miR-625-3p and cellular drug
sensitivity was not examined.

Here, we have constructed a transposon-based doxycycline
(DOX) inducible vector to investigate the role of miR-625-3p in
modulating oxPt sensitivity in CRC cells in vitro. Our results
show that on exposure to oxPt ectopic expression of miR-625-3p
increases cell viability by decreasing apoptosis. Furthermore, we
have identified direct and indirect targets of miR-625-3p
dysregulation in these cells and in mCRC patients treated with
first-line oxPt. We show that miR-625-3p directly targets and
inhibits the mitogen activated protein kinase (MAPK) kinase
MAP2K6 (also known as MKK6). As a consequence, we find that
miR-625-3p-induced resistance is associated with reduced MAP
kinase signal transduction after genotoxic stress leading to a
reduction of p38-mediated apoptosis and an increase in cell cycle
progression signals.

Results
Ectopic expression of miR-625-3p promotes oxPt resistance.
We constructed a Sleeping Beauty (SB) transposon vector
(pSBInducer), which allows for stable expression of small inter-
fering RNAs (siRNAs) and miRNAs in a DOX-inducible manner
(Supplementary Fig. 1), and consequently, robust downregulation
of targeted genes in mammalian cells (Supplementary Fig. 2).

We used pSBInducer to introduce miR-625-3p expression
(or control shRNA designed not to target any human transcripts)
in the microsatellite stable and microsatellite instable CRC cell
lines SW620 and HCT116, respectively (Supplementary Fig. 1).
Forty-eight hours of DOX induction raised the level of
miR-625-3p approximately three-fold in HCT116.625 cells, which
is comparable to the previously reported difference in miR-625-3p
expression between responder and non-responder patients
(Supplementary Fig. 3)5. In SW620.625 cells, DOX treatment
induced miR-625-3p by more than 400 fold (Supplementary
Fig. 3). Ectopic expression of miR-625-3p had no significant effect
on cell growth in SW620 cells, whereas in HCT116 cells, a slight
(28%) increased viability was observed (Fig. 1a).

DOX-induced SW620.625, HCT116.625 and control cells were
next treated with increasing concentrations of oxPt for 48 h and
cell viability assessed. In both cell lines miR-625-3p induction
increased oxPt resistance over a range of concentrations (Fig. 1b),
which translated into an increase in the half maximum inhibitory
concentration IC50 (causing 50% inhibition of viability) from
1.6 mM in HCT116.ctrl to 28.8 mM in HCT116.625, and from
1.3 mM in SW620.ctrl control cells to 6.1 mM in SW620.625 cells
(Fig. 1c). There was no difference in IC50 between vector control

cells and their parental wild-type counterparts (Fig. 1c).
This indicates that miR-625-3p functionally is associated with
increased resistance to oxPt in CRC cells.

Increased miR-625-3p expression reduces oxPt-induced cell death.
To determine whether inhibition of cell death was a contri-
buting factor to the observed oxPt resistance in HCT116.625
and SW620.625 cells, we performed a lactate dehydrogenase
activity (LDH) assay. Induction of miR-625-3p in HCT116.625
cells inhibited drug-induced cell death when exposed to
oxPt (Fig. 2a). A small decrease in cell death was also
observed for 2 and 8mM oxPt in miR-625-3p overexpressing
SW620.625 cells although this was only borderline significant
(Fig. 2a).

To confirm that the oxPt resistance phenotype was a general
consequence of miR-625-3p induction, we used a flow cytometry-
based Annexin-V/propidium iodide (PI) cell death assay on three
randomly selected, independent HCT116.625 single cell clones
(these are biological replicates since Sleeping Beauty mediated
transposition is near-random and individual low-passage cell
clones harbour unique pSBInducer integrations6). In agreement
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Figure 1 | Ectopic expression of miR-625-3p is associated with increased

viability in oxPt medium. (a) Cell proliferation upon DOX induction of

miR-625-3p in the CRC cell lines HCT116.625, SW620.625 and control cells

expressing a scrambled shRNA was determined by an MTT assay after 72 h

of growth. Displayed as mean±s.e.m. (n¼ 3). (b) Cell proliferation after

48 h of oxPt treatment was assessed by MTT in DOX-induced HCT116.625,

SW620.625. Displayed relative to untreated cells as mean±s.e.m. (n¼ 3).

(c) IC50 values were calculated on the basis of experiments from b as well

as from wild-type cells not subjected to pSBInducer transposition.

Displayed as mean IC50±s.e.m. (n¼ 3). *Pr0.05 (t-test); NS, not

significant.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12436

2 NATURE COMMUNICATIONS | 7:12436 | DOI: 10.1038/ncomms12436 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


with the LDH assay, the Annexin-V/PI assay demonstrated that
miR-625-3p indeed reduced oxPt-induced cell death (Fig. 2b). The
percentage of apoptotic cells in non-treated cells was similar in
control and miR-625-3p cell clones, while the death rate upon
exposure to oxPt was reduced from 81% in control cells to below
50% in the HCT116.625 cell clones. The same experiment was
also performed with a single cell-derived SW620 clone, which
revealed a similar effect (reduction in death rate from 51% in
SW620.ctrl to 33% in SW620.625 cells; Supplementary Table 1).

To investigate whether sensitivity towards oxPt could be
restored by reducing miR-625-3p levels, the most oxPt-resistant
HCT116.625 clone (clone #1) was transfected with an inhibitor of
miR-625-3p (an anti-miR). The anti-miR significantly increased
oxPt sensitivity towards 64 mM oxPt as assessed by LDH assay
compared with mock transfected HCT116.625#1 cells (Fig. 2c).
Anti-miR treatment also increased the sensitivity of control
cells toward oxPt, although the difference was only borderline
significant (P¼ 0.140, t-test), presumably reflecting an effect of
downregulating the endogenous miR-625-3p (Fig. 2c). Finally,
decreased apoptosis in the HCT116.625 single cell clones upon
exposure to oxPt was also supported by xCELLigence real-time
proliferation assays (Supplementary Fig. 4).

In conclusion, our data demonstrate that ectopic expression of
miR-625-3p promotes resistance towards oxPt in CRC cells, and
that this resistance is caused, at least in part, by inhibition of
oxPt-induced cell death.

miR-625-3p transcripts are associated with oxPt response.
To identify genes associated with the oxPt-resistant phenotype,
transcriptional profiles of DOX-induced SW620.625 and
SW620.ctrl cells were generated (Fig. 3a). We reasoned that a
stronger impact on target mRNAs would be seen in SW620.625
cells as compared with HCT116.625 cells owing to the higher
miR-625-3p levels in the former (Supplementary Fig. 3).

In total, 216 and 163 genes were up- and downregulated,
respectively, in miR-625-3p expressing SW620.625 cells
(absolute fold change 41.5; Supplementary Data 1). We noted
upregulation of several genes encoding ATP-binding cassette
(ABC) transporter proteins (for example, ABCA6, FC¼ 17.4; and
ABCA9, FC¼ 2.8, see Supplementary Data 1), however, the
particular ABC proteins previously implicated in multi-drug
resistance (for example, MDR1/ABCB1 and MRP1/ABCC1) were
not dysregulated. Since no obvious pathways or single genes
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Figure 2 | miR-625-3p inhibits oxPt-induced cell death in CRC cell lines. (a) DOX-induced HCT116.625 and SW620.625 together with control cells were

treated for 48 h with oxPt. Cell death was determined with the LDH assay as 100%*(LDHmedium/(LDHmediumþ LDHlysate)). Displayed as mean±s.e.m.
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with strong connection to drug resistance were identified, we
addressed whether the dysregulated genes might be relevant in a
clinical setting. To this end, we profiled 26 microsatellite stable
primary tumours from mCRC patients receiving oxPt-based
therapy as first-line treatment. Objective best response to
treatment was then used as phenotype labels (Non-responder
and Responder) in a gene set enrichment analysis7. Interestingly,
we found enrichment for SW620.625 upregulated genes among
the non-responding patients (Fig. 3b). These data indicate a
clinical relevance for the oxPt-resistant phenotype induced by
ectopic miR-625-3p overexpression.

The MAPK kinase MAP2K6 is a direct target of miR-625-3p.
To identify miR-625-3p target genes, we searched the transcrip-
tional profile for mRNAs with miR-625-3p target sequences
that were downregulated in the SW620.625 cells. Overall, we
found enrichment for mRNAs containing the miR-625-3p 7-mer
target sequence (CTATAGT) in their 30UTR among down-
regulated genes (Fig. 4a). To select putative target genes for
experimental validation, we used the miRmap tool, which
applies multiple predictors to generate a combined score of
miRNA–mRNA repression strength (from 0 to 100; ref. 8).
We selected the eight most downregulated genes with a
miR-625-3p target sequence and a miRmap score above 75:
MAP2K6, RCN1, BCL11A, COMMD8, MXI1, NUP35, ST18 and
IRAK2 (Supplementary Table 2), and confirmed downregulation
of these genes by quantitative real-time PCR (Supple-
mentary Fig. 5). Next, we screened for downregulation of these
genes in a set of independently induced SW620.625 and
HCT116.625 cell populations (Fig. 4b). Although all genes could
be validated as being downregulated in SW620.625 cells
compared with control cells, only MAP2K6 was validated in
HCT116.625 cells.

We used an anti-AGO2 antibody to immunoprecipitate RNA-
induced silencing complex (RISC)-associated RNA9, which
revealed increased AGO2 association for MAP2K6, MXI1 and
IRAK2 in SW620.625 cells (Fig. 4c). At the protein level, however,
only MAP2K6 were robustly downregulated after miR-625-3p
induction in SW620.625 cells (Fig. 4d and Supplementary Fig. 6).
In HCT116.625 cells, we also observed reduced MAP2K6
compared with ctrl cells although the effect appeared less
pronounced than in SW620.625 cells (Fig. 4d). Since MAP2K6
levels in HCT116 cells approached the detection limit of

western blotting (Supplementary Fig. 7), we estimated miR-625-
3p-associated MAP2K6 reduction by mass spectrometry
quantification, which showed a mean downregulation of
3.6- and 1.7-fold in SW620.625 and HCT116.625, respectively
(Fig. 4e).

The MAP2K6 30UTR contains a putative 8mer miR-625-3p
seed site with a miRmap score of 85.49 (Fig. 4f). To
experimentally confirm this, an B175 base fragment of the
MAP2K6 30UTR centred around this putative seed site was cloned
into the 30UTR of a Renilla Luciferase reporter gene construct
(30UTR WT Luc reporter). When transfected into HEK293T cells
together with pre-miR-625-3p, Luc expression was reduced with
75% as compared with mock transfected cells (that is, Luc
reporter with no MAP2K6 30UTR) (Fig. 4g). The reduction was
specifically related to miR-625-3p since co-transfection with a
control pre-miR (Scr) had no effect on Luc (Fig. 4g). Furthermore,
specific mutation of the miR-625-3p seed sequence (30UTR mut1
and mut2) completely abolished miR-625-3p-mediated reduction
of Luc (Fig. 4g).

Altogether, the data strongly support that MAP2K6 is a direct
and functional target of miR-625-3p.

MAP2K6–MAPK14 signalling mediates oxPt response.
MAP2K6 is a dual specificity protein kinase, which transduces
cellular and environmental stress signalling to its substrates,
the p38 MAP kinases (MAPK11–14; ref. 10). In support of
miR-625-3p regulating MAP2K6 signalling, we observed reduced
phosphorylation of MAPK14Tyr180/Y182 upon miR-625-3p-
induction (Fig. 5a). To appreciate the resulting change in
MAPK14 activity, we quantified the MAPK14 substrates
HSPB1Ser82 (ref. 11), 4EBP1Ser65 (ref. 12) and CDC25cSer216

(ref. 13) from multiple western blots; this showed 1.7–2.5- and
1.8–6.6-fold reduction of substrate phosphorylation in
HCT116.625 and SW620.625, respectively (Fig. 5a).

To mechanistically investigate the role of MAP2K6 in oxPt
response in CRC cells, we stably expressed MAP2K6 lacking the
miR-625-3p binding site in HCT116.625 cells. Western blotting
confirmed high ectopic MAP2K6 levels after DOX induction
compared with endogenous MAP2K6 (Fig. 5b), which is relatively
lowly expressed in HCT116 cells compared with other CRC cells
(Fig. 4d and Supplementary Fig. 7). First, we addressed the
immediate changes in MAPK14 activity upon 30 min oxPt
treatment. OxPt exposure in HCT116.ctrl.mock control cells led
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were generated and 20,693 genes ranked according to difference in median expression between non-responder (n¼ 9) and responder (n¼ 17) patients.

Genes upregulated in the SW620.625 cells (black vertical bars) were significantly associated with the non-responder phenotype (enrichment

score¼0.367, P¼0.036, Kolmogorov–Smirnov test).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12436

4 NATURE COMMUNICATIONS | 7:12436 | DOI: 10.1038/ncomms12436 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


to increased MAPK14Tyr180/Y182 phosphorylation and a
concurrent increase in MAPK14 activity (3.0-, 4.6- and
2.7-fold increased phosphorylation of HSPB1Ser82, 4EBP1Ser65

and CDC25cSer216, respectively; Fig. 5b). However, when cells with
increased miR-625-3p levels (HCT116.625.mock) were exposed to
oxPt, we observed lack of MAPK14 activation and even a small
reduction in MAPK14 substrate phosphorylation levels (Fig. 5b).
In contrast, oxPt treatment of HCT116.625.map2k6 cells was
associated with increased MAPK14 substrate phosphorylation
(Fig. 5b), indicating that ectopic MAP2K6 was able to rescue
oxPt-induced MAP2K6 signalling. Interestingly, the moderate
induction of MAPK14 activity (1.4-, 1.4- and 1.7-fold increased
HSPB1Ser82, 4EBP1Ser65 and CDC25cSer216 phosphorylation)
shows that MAP2K6 overexpression is not associated with
hyperactivation of MAPK14 signalling under these conditions.
To directly address whether ectopic MAP2K6 in itself made
HCT116 cells hypersentitive to oxPt, we induced ectopic
MAP2K6 in HCT116.ctrl cells (HCT116.ctrl.map2k6) for 48 h
before treating them with oxPt for 30 min (Fig. 5c). No
hyperactivation was observed, in fact the induced increase
in HSPB1Ser82, 4EBP1Ser65 and CDC25cSer216 phosphorylation
(2.2-, 1.5- and 1.6-fold increased HSPB1Ser82, 4EBP1Ser65

and CDC25cSer216 phosphorylation) was less than in
HCT116.ctrl.mock cells and comparable to HCT116.625.map2k6
cells (Fig. 5c). This suggests the presence of feedback mechanisms
such as the dual-specificity protein phosphatases14 or that
other signalling components become limiting15.

We next investigated how ectopic expression of the miR-625-3p
insensitive MAP2K6 variant affected the ability of miR-625-3p to
inhibit oxPt-induced cell death (Fig. 5d). As expected, after 48 h
of oxPt treatment cell death was reduced in HCT116.625.mock
compared to HCT116.ctrl.mock cells. The introduction of ectopic
MAP2K6, however, resensitized HCT116.625.map2k6 cells to
oxPt, reaching the same level of cell death as HCT116.ctrl.mock
cells. In agreement with the changes in MAPK14 activity assessed
after 30 min oxPt treatment (Fig. 5b,c), the control experiment
with HCT116.ctrl.map2k6 cells confirmed that expression of
MAP2K6 did not lead to oxPt hypersensitivity (Fig. 5d). Taken
together, these findings indicate that increased oxPt resistance
mediated by miR-625-3p is conveyed through its target MAP2K6.

To further corroborate the importance of MAP2K6 for
mediating the effect of miR-625-3p in CRC cells, we generated
stable HCT116 cell lines expressing a dominant-negative version
of MAP2K6 harbouring a K82A mutation, which abolishes
kinase activity16. Western blotting showed the dominant-negative
MAP2K6 to be expressed at many times higher level
than the endogenous MAP2K6 (Fig. 5e). Dominant-negative
MAP2K6 expressing cells showed a B40% reduction in 64 mM
oxPt-induced cell death compared with control HCT116 cells
(Fig. 5e), and hence, mimics the phenotype of miR-625-3p
overexpressing cells.

We finally asked whether MAP2K6 might be correlated with
miR-625-3p and chemotherapy response in patients? Indeed,
although not reaching significance, we found that MAP2K6 was
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24 h after transfection with psiCHECK-2 reporter containing MAP2K 30UTR, either of the mutated 30UTR sequences shown in f or mock. Experiments

where a miR-625-3p or control (Scr) pre-miR were co-transfected together with psiCHECK-2 are indicated. *Po0.05 (t-test); NS, not significant.
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negatively correlated with miR-625-3p expression in 26 mCRC
tumours (Pearson’s r¼ � 0.22; Fig. 5f). In addition, we also
found MAP2K6 to be slightly downregulated in non-responder
patients compared with responder patients (Fig. 5g). Altogether,
these data suggest that the oxPt-resistant phenotype induced by
miR-625-3p in CRC cells operates through the direct target
MAP2K6.

miR-625-3p dysregulates MAPK signalling pathways. The
results presented above indicates that the p38 MAPK subfamily

(MAPK11–14) could be implicated as a mediator of platinum
drug-induced stress signalling including apoptosis, a concept
that has been exploited by others17,18. We therefore profiled
the phosphoproteome of both untreated and oxPt-treated
HCT116.ctrl and HCT116.625 cells using stable isotope
labelling by amino acid (SILAC)-based mass spectrometry of
TiO2-enriched phosphopeptides (Fig. 6a). We detected 9,423
distinct phosphopeptides on 3,217 different proteins including
177 kinases and 50 phosphatases (Supplementary Fig. 8a).
We found between one and three phosphosites per protein on
475% of all detected proteins (Supplementary Fig. 8b), and
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Figure 5 | miR-625-3p regulates resistance to oxPt through MAP2K6 and MAPK14. (a) Western blotting using antibodies against the phosphorylated

forms of MAPK14T180/Y182, HSPB1Ser82, 4EBP1Ser64 and CDC25cS216 in HCT116.625 and SW620.625 cells 48 h after DOX induction. b-Actin and tubulin

was used as loading control (left). Quantification of HSPB1Ser82, 4EBP1Ser64 and CDC25cS216 western blot bands from three to five western blots

normalized to a-tubulin and b-actin and displayed as log2(625/ctrl)±s.e.m. In one case the HSPB1Ser82 signal in SW620.625 was below detection level,

and for this sample the median value for the two other replicates was used (right). (b) Changes in phosphorylation of activated pT180/Y182-MAPK14 and

downstream substrates in HCT116.ctrl.mock, HCT116.625.mock and HCT116.625.map2k6 cells after 48 h of DOX induction followed by 30 min of 64 mM

oxPt treatment (left). Quantification of HSPB1Ser82, 4EBP1Ser64 and CDC25cS216 substrate phosphorylation from three to five western blots normalized to

a-tubulin and b-actin and displayed as oxPt-induced phosphorylation change compared with untreated cells (log2(64 mM/0mM)±s.e.m. (right). (c) Same

as b for the HCT116.ctrl.map2k6 cells. (d) Cells were DOX-induced for 48 h and treated with 0–64mM oxPt for 48 h before cell death was determined (LDH

assay). Bars represent the mean percentage of cell death±s.e.m. (n¼ 3). Significant difference between HCT116.625.mock and HCT116.625.map2k cells is
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treated with 64mM oxPt or left untreated for 48 h before the increase in cell death (64 mM/0mM) was determined by LDH. Results are displayed relative to
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levels and mir-625-3p in clinical samples (P¼0.212, Pearson’s correlation). (g) MAP2K6 mRNA was downregulated in tumours from mCRC patients not
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detected predominantly serine phosphorylations (8,582 versus
816 and 25 threonine and tyrosine phosphopeptides, respectively;
Supplementary Fig. 8c).

We first looked at the overall effect on the phosphoproteome
after 48 h of increased miR-625-3p levels. Proteins with altered
phosphorylations were mostly associated with GO terms involved
with increased GTPase activity in nucleus, cytoplasm and
adherence junction components, and with the mTOR, ErbB,
insulin signalling and MAPK pathways (Fig. 6b). To look for
changes in the activities of individual kinases, we did kinase
substrate enrichment analysis (KSEA)19 using a merged collection
of specific kinase phosphorylation site mappings obtained
from the Human Protein Reference Database20, PhosphoSitePlus21

and PhosphoELM22 (see ‘Methods’ section). KSEA indicated
decreased activity of MAPK8, MAPK14, MAPK1 and MTOR
kinases, and increased activity of the CDK7, PRKACA and
CSNK2A1 kinases, respectively, after miR-625-3p induction
(Fig. 6c). In agreement, the mean log2 ratios of MAPK14,
MTOR and MAPK1 substrate groups were significantly lower
than the experimental mean, and for the PRKACA substrate group
it was significantly higher (Fig. 6d). Collectively, this indicates that
miR-625-3p overexpression leads to decreased activity of MTOR,
MAPK1 and the MAPK14 kinases. The latter in agreement with
the notion that miR-625-3p targets MAP2K6.

To more specifically investigate the role of MAPK14 in oxPt
resistance, we first inactivated MAPK14 signalling (indicated by
reduced HSPB1Ser82 phosphorylation) in HCT116 and SW620

cells through siRNA mediated depletion of MAPK14
(Supplementary Fig. 9). MAPK14 depletion was associated with
increased resistance to oxPt-induced cell death. In HCT116 cells
the induced death was reduced to 50% of control cells, and in
SW620 cells to 85% of controls (Fig. 7a).

Second, we used the small molecule inhibitor SB203580 to
obstruct oxPt-induced MAPK14 activation in HCT116 cells as
indicated by reduction of HSPB1Ser82 phosphorylation (Fig. 7b).
SB203580 treatment reduced oxPt-induced cell death to less than
75% of control cells (Fig. 7c). A similar reduction in oxPt-induced
cell death was also observed in SW620 cells (Fig. 7c). We also
tested a second MAPK14 inhibitor, SB202190, which reduced the
oxPt sensitivity in HCT116 cells, but not SW620 cells (Fig. 7c).
Taken together, our observations in HCT116 and SW620 support
that abrogation of MAPK14 signalling plays a role in oxPt
resistance.

Speculating whether the observations could be generalized and
extended to additional CRC cell lines we generated stable,
inducible miR-625-3p expression in the HCC2998 CRC cell line
(Fig. 7d). This line represents a tumour etiology distinct from
HCT116 and SW620 by being microsatellite stable, expressing
a truncated TP53 variant, and displaying a hypermutator
phenotype as a consequence of a POLE missense mutation23.
miR-625-3p levels in HCC2998.625 cells after DOX induction was
increased 420-fold (Supplementary Fig. 10) and associated with
decreased MAP2K6 levels as well as with decreased MAPK14
activity (Fig. 7d). Similar to HCT116 and SW620 cells, ectopic
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miR-625-3p expression reduced the 64 mM oxPt-induced cell
death to B75% of control cells (Fig. 7e). Using the same
conditions as above (Fig. 7c), chemical inhibition of MAPK14
signalling in HCC2998 cells by SB202190 also reduced oxPt
induced cell death to B70%, while SB203580 had no effect
(Fig. 7f).

To further generalize the involvement of MAPK14 signalling in
oxPt response, the two MAPK14 inhibitors were applied to four
additional CRC cell lines. In all four cell lines, MAPK14
inhibition reduced the sensitivity to oxPt (Fig. 5g). Taken
together, these data show that inhibition of MAPK14
phenocopies the effect of miR-625-3p overexpression and
supports the notion that the MAP2K6–MAPK14 signalling
network plays a central functional role in miR-625-3p-induced
oxPt resistance (Fig. 7h).

The phosphoproteomic response to oxPt in CRC cells.
To further characterize the role of miR-625-3p during oxPt
treatment in CRC cells, we delineated phosphorylation changes
associated with the immediate (30 min) response to oxPt in
control CRC cells. Totally, we detected 205 phosphopeptides with

phosphoserines/threonines preceding a glutamine, which are
potential substrates of ATM and ATR DNA damage response
kinases (Fig. 8a)24. The pS/pTQ motif was enriched among
peptides that had increased phosphorylation after oxPt
treatment (Fig. 8b), indicating that the DNA damage response
signalling was induced after 30 min of oxPt exposure. Although
phosphorylation of pS/pTQ motifs increased upon oxPt
treatment, the general trend was the opposite. Indeed, we found
more than three times as many phosphopeptides with decreased
phosphorylation (n¼ 993) compared with phosphopeptides
with increased phosphorylation (n¼ 313) after oxPt treatment
(Fig. 8c), suggesting global dephosphorylation in CRC cells
immediately after oxPt exposure similar to what has been
observed after cisplatin treatment25. Dysregulated phosphoproteins
were associated with processes involved in chromatin remodelling,
mitotic cell cycle, microtubule organisation and pathways such as
mTOR, cell cycle, ErbB and MAPK signalling (Supplementary
Fig. 11). KSEA analysis suggested increased activities of ribosomal
protein S6 kinases beta-1 and alpha-1 (RPS6KB1 and RPS6KA1),
and various protein kinases known to be implicated in genotoxic
stress signalling (PRKACA, PRKCD and PRKD1)26–29 as well as
AKT1 (Fig. 8d). Reduced activities were found for cyclin-dependent
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In the canonical model MAP2K6 in complex with MAP2K3 phosphorylates and activates MAPK14, which in turn—directly or indirectly via substrate

kinases such as MAPKAPK2—activates a diverse number of target proteins central to stress-induced transcription, translation, cell cycle control

and apoptosis.
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kinase 1 and 2 (CDK1 and CDK2) and polo-like kinase 1 (PLK1;
Fig. 8d), in agreement with all three being positively involved in cell
cycle progression and inhibition of DNA damage response30,31. The
importance of these kinases in the immediate cellular response to
oxPt was also supported by increased mean log2 phosphorylation
ratios for the RPS6KB1, RPS6KA1, PRKD1, AKT1 and PRKACA
substrate groups, and by decreased ratios for the CDK1 and CDK2
substrate groups (Fig. 8e).

miR-625-3p blocks the normal cellular response to oxPt.
We next investigated whether miR-625-3p expression affected the

predicted activities of the oxPt-regulated kinases identified by
KSEA (see Fig. 8d,e). In the 625þOX/ctrlþOX experiment, a
mean log2 ratio different from zero is expected for kinases whose
activities after oxPt treatment are altered by increased miR-625-3p
levels, while unaffected kinases will have a mean log2 ratio
around zero. The mean phosphorylation ratios for the
oxPt-induced PRKD1 and AKT1 substrate groups were
decreased, while CDK1 and CDK2 substrates on average showed
increased phosphorylation levels (Fig. 9a). Strikingly, the
strongest change in mean log2 phosphorylation ratios were found
for the MAPKAPK2 substrate group (MAPK14 substrate and
binding partner) whose log2 ratio was decreased after oxPt
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(log2(ctrlþOX/ctrl)o0.58) (‘Loss’) and increased phosphorylation (log2(ctrlþOX/ctrl)40.58) (‘Gain’). (d) KSEA was done on log2(ctrlþOX/ctrl)

ratios (as described in Fig. 5). Only substrate groups with indication of altered activities after oxPt exposure are shown (*Pr0.05, hypergeometric test).

(e) Mean log2 phosphorylation ratios for the nine substrate groups in d; (coloured boxes indicate Pr0.05, z-test). NS, not significant.
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treatment in HCT116.625 cells (Fig. 9b). The mean log2 ratios for
all the five substrate groups were in the opposite direction in
the 625þOX/ctrlþOX as compared with the OXþ ctrl/ctrl
experiment. In agreement with the miR-625-3p-induced oxPt
resistance phenotype (Fig. 2a,b), this suggested that miR-625-3p
blocks signalling cascades central in the normal response to DNA
damage.

Further, we investigated whether miR-625-3p-mediated
blockage of oxPt-induced signalling also was evident on a
phosphorylation motif level. KSEA analysis and mean log2

phosphorylation ratios on motif groups (that is, phosphopeptides
with a similar 15 amino acid-motif centred on the phosphorylated
residue) suggested that oxPt treatment of control cells led to
increased kinase activities directed towards serines that are
preceded by one or two basic arginine residues (R-pS motifs),
or followed by an acidic aspartate (pS-D motifs) (Fig. 9c).
Dephosphorylation after oxPt treatment was seen on proline
directed motifs with or without a single trailing basic residue

(pS/pTP-R/K and pS/pTP motifs; Fig. 9c), which are typically
associated with the CDK, MAPK and GSK families32. In contrast,
the oxPt response in the context of miR-625-3p led to increased
pS/pTP-R/K-associated kinase activity, and generally, decreased
R-pS-directed activity, while phosphorylations on pS/pTP motifs,
in general, were similar in ctrl and 625 cells (Fig. 9c).

We used the network-based NetworKIN data set33 to
identify kinases most likely associated with the differentially
phosphorylated R-pS, pS-D and pS/pTP-R/K motifs
(Supplementary Fig. 12). A significant association was found
between the oxPt-induced motifs (R-pS and pS-D) and multiple
kinase families including AKT1 and AKT2 kinases, protein kinase
A, Calcium/Calmodulin-Dependent Protein Kinase II kinases
(CAMKII), as well as HIPK2 and PAK kinases. The miR-625-3p
specific pS/pTP-R/K motif was most strongly associated with
cyclin-dependent kinases (CDK1, CDK2 and CDK5), and to a
lesser extent with MAP kinases and TTK kinase. As expected,
many of these kinases are involved in DNA damage response
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dephosphorylation of Serine 130 (S130) of Cyclin-Dependent Kinase Inhibitor 1 (CDKN1A, also known as p21CIP1), which has been linked to increased

stability of CDKN1A and inhibition of CDK/cyclin-mediated cell cycle progression65. In contrast, increased S130 phosphorylation was seen in cells with

ectopic miR-625-3p expression. As indicated, this phosphorylation may itself be mediated by elevated CDK activity66. Increased CDK activity at the

G1/S checkpoint or in early M phase was also indicated by S138/S151 phosphorylations on inactivated FZR1 (also known as CDH1) in miR-625-3p

expressing cells, whereas unphosphorylated FZR1 in control cells suggested decreased CDK signalling at G0 or early G1 (ref. 67). In support of mitotic-

induced nuclear lamina breakdown, increased phosphorylation was observed on multiple residues on LMNA in miR-625-3p cells; On the contrary, these

became dephosphorylated after oxPt treatment in control cells indicating decreased cell cycle progression (also see Supplementary Fig. 14). (e) Western

blotting against the CDK1 substrate phospho-LAMIN A/CS22 on lysates from oxPt-treated HCT116.ctrl and HCT116.625 cells. Quantification of bands

representing Lamin A and C isoforms are indicated (normalized to b-actin signal). (f) Western blotting against the phosphorylated CDK motif p-TPXK on

lysates from oxPt-treated HCT116.ctrl and HCT116.625 cells. Individual substrates are indicated with a dot with red and black indicating increase or

decrease/no change in intensity, respectively, in HCT116.625 as compared with HCT116.ctrl cells.
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(for example, AKT, CAMKII, HIPK2 and PAK) and cell cycle
regulation (for example, CDK, MAPK and TKK). Furthermore,
several of them overlap with the kinases identified in the substrate
group analysis.

To identify individual phosphoproteins associated with the
observed progressive cell cycle signalling, we first defined
regulatory classes based on those phosphopeptides with phos-
phorylation changes in opposite direction in the ctrlþOX/ctrl
and 625þOX/ctrlþOX experiments (Supplementary Fig. 13).
Among these, we identified several cell cycle-associated proteins,
including CDKN1A, FZR1 and LAMIN A/C (Fig. 9d), with
differential phosphorylation patterns that supported increased
cell cycle progression in oxPt-treated HCT116.625 cells compared
with control cells (Supplementary Fig. 14).

Phosphospecific western blotting against LAMIN A/CSer22

(Fig. 9e)—a known CDK1 target at the onset of mitosis34—
confirmed the observed increase in lamin phosphorylation
(Supplementary Fig. 14), which is a marker of nuclear envelope
disassembly during mitosis. Interestingly, increased LAMIN
A/CSer22 phosphorylation in oxPt-treated HCT116.625 cells
appeared to be a consequence of an increase in the LAMIN C
over the LAMIN A isoform (Fig. 9e).

To confirm increased CDK activity after oxPt treatment in
HCT116.625 cells, we did phosphospecific western blotting
against the most differentially phosphorylated CDK motif pTPXK
(Fig. 9c, a target for CDKs 1 and 2, among others). This revealed
increased phosphorylation in oxPt-treated HCT116.625 cells at
the majority of CDK substrates consistent with increased activity
(Fig. 9f).

Finally, we found that phosphorylation of ATM/ATR pT/pSQ
motifs in the oxPt-treated HCT116.625 cells was significantly
increased (Po0.05, Fisher’s exact test), indicating that alteration
of cell cycle signalling in these cells was not related to lack of
DNA damage sensing per se (Supplementary Fig. 15a,b).
This suggests that miR-625-3p acts after, or independently of,
the immediate ATM/ATR-mediated DNA damage response
(Supplementary Fig. 15c).

Altogether, these analyses are in support of the hypothesis that
miR-625-3p induces blockage of signalling pathways involved in
normal oxPt response, which, among other things, culminates in
increased cell cycle progression signals relative to control cells.

Discussion
Previously, we reported that high expression of miR-625-3p in
primary tumours of mCRC patients was associated with an odds
ratio above 6 for a poor response to first-line oxPt-based therapy5.
In the present work, we have shown that miR-625-3p functionally
leads to oxPt resistance by preventing the DNA damage response
system to induce cell cycle arrest and apoptosis. Furthermore, we
have identified MAP2K6 as a functional target for miR-625-3p,
and as a mediator of miR-625-3p-induced oxPt resistance. To the
best of our knowledge, MAP2K6 is the first functionally
documented target of miR-625-3p, and conversely, miR-625-3p
is the first described microRNA targeting MAP2K6. MAP2K6
(together with MAP2K3) catalyses dual phosphorylation of the
TGY motif in the activation loop of the four p38 MAPK isoforms
(MAPK11–14; refs 35–37), and as such conveys p38-mediated
cellular stress signalling10. The presented results are consistent
with a model were miR-625-3p through downregulation of
MAP2K6 impairs p38-MAPK stress signalling (Fig. 7h and
Supplementary Fig. 15c). It is important to emphasize, however,
that our model only addresses miR-625-3p signalling through
MAP2K6. It is likely that miR-625-3p additionally could mediate
resistance by regulating other unknown target proteins.

On the basis of our results using chemical inhibitors and
MAPK14 knockdown, and in agreement with other studies38,39,

we are inclined to believe that the MAPK14 isoform of p38 is a
mediator of miR-625-3p-induced oxPt resistance. We are aware of
the discrepancy in the effect on oxPt sensitity after chemical
inhibition in two (SW620 and HCC2998) out of seven cell lines
tested, which we attribute to the cell-specific off-targeting effects
known to exist for SB203580 and SB202190 (refs 40,41). Our
phosphoproteome data in exponentially growing unstressed CRC
cells also revealed that MAPK14 was the kinase whose activity
(on a substrate level) was mostly affected by miR-625-3p
induction. Finally, oxPt treatment showed increased activity of
the MAPKAPK2 kinase, which is a canonical MAPK14 substrate
and binding partner responsible for nuclear translocation of
MAPK14 after stress42. This suggests that MAPK14–MAPKAPK2
activation plays a role during oxPt response in cancer cells. Such
notion is further supported by our observation of reduced activity
of MAPKAPK2 in oxPt-resistant HCT116.625 cells.

We observed resistance to oxPt after miR-625-3p induction in
all three cell models—with the strongest phenotype obtained
in HCT116 cells—despite different levels of induction (3� in
HCT116, 25� in HCC2998 and 4400� in SW620) and
different degrees of MAP2K6 reduction (0.8� in HCT116,
0.4� in HCC2998 and 0.2� in SW620). This indicates that the
resulting level of MAP2K6 protein—rather than changes in
miR-625-3p and MAP2K6 per se—determines response to oxPt.
Alternative explanations include cell-specific wiring and
dependencies of the MAP2K6–MAPK14 signalling pathway15,
and diversity in a stress mediator downstream of MAPK14. An
interesting candidate is TP53, which is mutated in SW620 and
HCC2998 cells but wild type in HCT116. These hypotheses will
have to be addressed in future studies.

Induction of p38 signalling by platinum-based drugs has
been ascribed a pro-apoptotic role in multiple types of cancer
cells10,17,39,43,44. On the other hand, p38 may also induce survival
signals after cytotoxic stress45–47. In fact, MAP2K3/6-p38-
MAPKAPK2/3 activation has recently emerged as a third
signalling axis during DNA damage response, alongside
ATM-CHEK2 and ATR-CHEK1 (refs 48,49). In this setting,
p38 signalling functions as a cell cycle checkpoint by deactivating
CDC25s, cyclinE and CDK1 to prevent premature mitotic
entry48,50. Thus, the outcome from dysregulated p38 signalling
in drug-treated cancer cells appears to be a function of several
factors including the extent and nature of the cellular insult.
In that respect, we note that increased sensitivity to the
topoisomerase I inhibitor irinotecan (another drug used to treat
CRC patients) has been shown to correlate with decreased p38
phosphorylation in CRC patients51. Following this, CRC patients
with high mir-625-3p levels and reduced MAP2K6–MAPK14
signalling, and therefore resistance to oxPt, may instead benefit
from irinotecan treatment as first-line therapy.

The findings reported suggest that the expression level of
miR-625-3p, possibly in combination with the expression level
and activity of MAP2K6 and MAPK14, has the potential to serve
as a biomarker for predicting response to oxPt. Since up to 20% of
mCRC patients show high miR-625-3p expression5, the number
of patients that potentially could benefit from quantification
of the miR-625-3p biomarker is substantial. In addition, the
observation that anti-miR-625-3p treatment makes cells with
high miR-625-3p level responsive to oxPt, indicates that it may be
possible to sensitize patients with high miR-625-3p expressing
cancers to oxPt by miR-625-3p antagonist treatment before, or
simultaneously with, oxPt treatment.

In conclusion, we have shown that overexpression of
miR-625-3p in CRC cells can induce resistance to oxPt by
directly targeting MAP2K6 and consequently inactivating
genotoxic stress signalling conveyed by the MAP2K6–MAPK14
pathway.
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Methods
Patients. Fresh frozen primary tumour biopsies originated from 26 patients
who were treated with oxPt and 5-FU as first-line therapy for mCRC in the
Departments of Odense University Hospital and Aarhus University Hospital,
Denmark, as described in ref. 52. Informed consent was obtained from all
the patients. The study was approved by the national ethics committees and
governmental authorities in Denmark and was conducted in accordance with the
Declaration of Helsinki. The patients were grouped according to objective therapy
response into nine poor responders (best response being either ‘Progressive disease’
or ‘Stable disease’) and 17 good responders (‘Partial response’ or ‘Complete
response’).

Cell lines. HEK293 Flp pFRT/eGFP was a gift from Jacob Giehm Mikkelsen,
Aarhus University, while CRC cells originated from the ATCC and NCI-60
repositories (kind gift from Nils Brünner, University of Copenhagen). The cell lines
were authenticated by our in-house STR analysis (http://identicell.dk), and were
tested negative for mycoplasma using MycoSensor PCR Assay Kit (Stratagene).
All the cell lines were grown in RPMI medium 1640 with L-glutamine (Life
Technologies) supplemented with 10% heat-inactivated fetal calf serum (Life
Technologies). The cells were propagated in 37 �C at 90% air humidity and with 5%
CO2. For oxPt treatment cells were first induced for 48 or 72 h with 50 ng ml� 1

doxycycline hyclate (Sigma-Aldrich), and then cultured in medium supplemented
with the indicated concentrations of oxPt (Fresenius Kabi) together with
doxycycline. Chemical inhibitors SB203580 (Invivogen) and SB202190 (Invivogen)
were dissolved in dimethyl sulphoxide (DMSO) and kept in aliquots at � 20 �C
until use. The cells were pre-incubated 1 h with inhibitor (or DMSO) supplemented
medium before exposure to oxPt (or medium) containing inhibitor (or DMSO).

Vectors. The pSBinducer vector was made by modification of the pINDUCER
vector53. Using the pSBT-PGK-Puro plasmid as a template the SB right inverted
repeat (SB-RIR) and the mouse phosphoglycerate kinase 1 polyadenylation segment
(PGApA) cloning fragments were PCR-amplified with primer pairs MreI-SB-RIR
and HindIII-XcaI-c (SB-RIR), and HindIII-PacI-PGKpA and MreI-c (PGKpA),
respectively (the oligos are shown in Supplementary Data 3). The SB left inverted
repeat (SB-LIR) cloning fragment was amplified from pT2_CMV-eGFP-SV40-neo
using primers SgrDI-SB-LIR and NheI-c (SB-LIR). The PGKpA and SB-RIR
fragments were digested with MreI (Fermentas) and ligated together with T4 ligase
(New England Biolabs), before cloned into pUC18 using HindIII digestion.
Lentiviral elements from the pINDUCER vector were removed by restriction
digestion with SgrDI (Fermentas) and NheI (Fermentas) and the SB-LIR fragment
inserted using the same restriction sites. The PGKpA.SB-RIR fragment was excised
from pUC18.PGKpA.SB-RIR using PacI (Fermentas) and XcaI (Bst1107I,
Fermentas) and introduced into pINDUCER.PGKpA.SB-LIR using the same
restriction sites to generate the final pSBInducer vector. A DNA oligo constructed
to allow expression of a specific shRNA when inserted into the pSBInducer vector
was amplified using the universal primers miR30PCRXhoI and miR30PCREcoRI
and cloned into pSBInducer using XhoI and EcoRI restriction sites (Supplementary
Data 3). To generate DOX-inducible SB-mediated stable expression of recombinant
FLAG-MAP2K6 and FLAG-MAP2K6DN, we first used the pINDUCER11 vector
(in which the puromycin resistance gene is replaced by EGFP53) to make an EGFP
expressing pSBInducer version according to the strategy outlined above. From this,
we removed the tRFP-miR30-shRNA-miR30 element (see Supplementary Fig. 1)
using AgeI and MluI restriction digestion and a multiple cloning site-N-FLAG
sequence (MCS-NFLAG, PCR amplified) inserted using the same restriction
sites. The MAP2K6 ORF was then PCR amplified from pcMKK6wt or
pcMKK6(S87A)54,55 using primers BspEI-map2k6 and NotI-map2k6 and cloned
using BspEI and NotI to generate the pSBInducer.map2k6. Mock vector
(pSBInducer.mock) was made by removing MAP2K6 by restriction cloning.
In all the steps, plasmid DNA was purified with GeneElute Plasmid Miniprep Kit
(Sigma-Aldrich). Correct insertion was confirmed by sequencing and with
appropriate restriction digestions.

Generation of pSBInducer cells. To generate pSBInducer cells, approximately
10 mio. cells were transfected with 1,500 ng pSBInducer.shRNA DNA (siREGFP,
miR-625-3p or scramble) and 1,500 ng pCMV-SB100XCO helper plasmid
(or, as a negative control, 1,500 ng pUC19 DNA) using 15 ml Lipofectamine 2000
(Invitrogen) in 500 ml Opti-Mem I Medium (Gibco, Invitrogen-Life Technologies).
After transfection, cells were incubated for 24 h before refreshing the media. The
cells were treated with a puromycin concentration of 1 mg ml� 1 (HCT116 and
HCC2998) or 2 mg ml� 1 puromycin (SW620 and HEK293 Flp pFRT/eGFP) for
5 days to eliminate control transfected cells. We used the tRFP fluorescence marker
to sort for cell populations expressing the shRNA after induction; these cells were
frozen and used for subsequent experiments. All the experiments were conducted
with low-passage (o10 passages after sorting) cell populations. Single cell clones
were generated from single RFP-positive cells sorted directly into 96 wells from
where they were propagated and frozen. We generated MAP2K6 (or Mock)
expressing cells by transposing HCT116.625 (and HCT116.ctrl) cells with pSBIn-
ducer.map2k6 (and pSBInducer.mock) as described above, except that we used
FACS to isolate EGFP/tRFP double positive cells. We used western blotting and

quantitative PCR with reverse transcription (qRT–PCR) to confirm expression of
FLAG-MAP2K6 protein and miR-625-3p, respectively. Sorting was performed at
the FACS Core Facility, The Faculty of Health Sciences, Aarhus University,
Denmark, on a FACSAria IIII (BD Biosciences).

Western blotting. Protein extraction and western blotting analysis were
performed according to standard procedures. Antibodies were GFP (1:1,000,
Abcam, ab1218), b-actin (1:25,000, Abcam, ab49900), tubulin (1:5,000, Abcam,
ab7291), p38a/MAPK14 (1:500, Santa Cruz Biotechnologies, SC-81621),
MAP2K6/MKK6 (1:500–1:1,000, Cell Signaling, #8550), MXI1 (1:200, Santa
Cruz Biotechnologies, SC-1042), IRAK2 (1:1,000, Cell Signaling, #4367),
phospho-Thr180/Tyr182-p38a/MAPK14 (1:750, Cell Signaling, #9211),
phospho-Ser82-HSPB1 (1:2,000, Cell Signaling, #2406), phospho-Ser216-CDC25c
(1:750, Cell Signaling, #4901), phospho-Ser65-4EBP1 (1:750–1:1,000, Cell
Signaling, #9456), phospho-Ser22-Lamin A/C (1:1,000, Cell Signaling, #2026)
and phospho-CDK Substrate[pTPXK] (1:1,000, Cell Signaling, #14371).
Densitometrical quantification of MAP2K6 protein and MAPK14 phospho-
substrates was done in ImageJ using b-actin and a-tubulin as loading controls
(Supplementary Fig. 16).

RNA extraction, reverse transcription and qRT–PCR. Total RNA from cell lines
was purified using QIAzol Lysis Reagent (Qiagen) according to the manufacturer’s
guidelines. RNA quality and integrity was ensured according to Agilent 2100
Bioanalyzer runs (RIN score 49.5 for all samples; Agilent Technologies). Small
RNA expression levels were quantified with qRT–PCR according to the protocol of
the Universal cDNA synthesis kit (Exiqon) using miRCURY LNA Universal RT
microRNA PCR assays (Exiqon) and SYBR Green master mix (Exiqon) according
to the manufacturer’s instructions. For mRNA detection, single-strand cDNA was
synthesized using the Superscript Reverse Transcriptase Kit (Life Technologies)
and qRT–PCR was performed using SYBR Green PCR Master Mix (Applied
Biosystems) as described in the protocol. Small RNA and mRNA expression was
normalized with 5S and GAPDH, respectively. Samples with a mean Ct440 were
assigned ‘Undetermined’. All qRT–PCR measurements were done on a 7900 HT
instrument (Applied Biosystems). MAPK14 mRNA was detected using TaqMan
Assay Hs01051152_m1 (Cat# 4331182 Applied Biosystems) and normalized
to UBC.

Cell viability and death assays. Cell viability was measured using the
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay
(Roche Applied Science). Cellular death (LDH release) was measured using the
Cytotoxicity Detection Kit PLUS (LDH) (Roche Applied Science). Fluorescence
signal was measured using a multi-well ELISA reader (Synergy HT-reader, BioTek).

Annexin V—PI apoptosis assay. For the apoptosis assay, cells were DOX-induced
and treated with 64mM oxPt for 48 h. Adherent and non-adherent cells were
collected, pooled and stained using the Annexin V-FITC Apoptosis Detection Kit
(Sigma-Aldrich) according to the manufacturer’s protocol. Flow cytometry was
performed at the FACS Core Facility, The Faculty of Health Sciences, Aarhus
University, Denmark on a FACSAria IIII (BD Biosciences). FlowJo software
version 8.8.3 (Tree Star Inc.) was used for data analysis. Initially, cells were gated
with forward scatter-area (FSC-A) versus side scatter-area (SSC-A) followed by
FSC-A versus forward scatter-height (FSC-H) to obtain cell singlets after which the
percentage of cells in each quadrant of the fluorescein isothiocyanate (FITC) versus
PI plot were obtained. For clarity only n¼ 8,000 cells were visualized although
typically at least 50,000 cells were counted.

Anti-miR and siRNA experiments. For anti-miR experiments, cells were
DOX-induced for 24 h prior transfection with anti-miR (MH12612, mirVana
miRNA inhibitor (miRBase ID: hsa-miR-625-3p) catalogue (Cat.) #4464084, Life
Technologies) or control miR (Pre-miR miRNA Precursor Molecules—Negative
Control #2 Cat. #AM17111, Life Technologies) for 24 h before incubation in the
presence of 0 or 64mM oxPt for additional 48 h. To knock down MAPK14, we used
SMARTpool, siGENOME MAPK14 siRNA (#M-003512-06-0005, Dharmacon
Cat.). The cells were transfected with 20 nM siRNA 48 h prior LDH oxPt treatment.
A scrambled siRNA (Cat. #4390843, Ambion) were transfected at 20 nM in parallel
and used as control.

AGO2 pull-down. The SW620.625 and control cells were scraped off culture flasks
on ice in gentle lysis buffer (20 mM TRIS pH 7.5, 10 mM NaCl, 0.5% NP-40, 2 mM
EDTA supplemented with RNase inhibitor RNaseOut (Life Technologies) and
Complete Mini protease inhibitor cocktail (Roche Applied Science)), incubated for
5 min before being hypertonically lysed by increasing the NaCl concentration to
150 mM and incubated for additionally 5 min on ice. After 4 �C centrifugation at
19,000g for 10 min, the supernatant was collected and subjected to pull-down (10%
was used for input control) by incubation with monoclonal AGO2 antibody 11A9
(Sigma-Aldrich, Cat. #SAB4200085)-bound Protein G-coupled Magnetic
Dynabeads (Life Technologies; 15 mg 11A9 per 25 ml beads) following the
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manufacturer’s recommendation. All washing steps were performed in ice cold
washing buffer (50 mM TRIS pH 7.5, 150 mM NaCl and 0.05% NP-40), and total
RNA from input and immunoprecipitate fractions purified with QIAzol (Qiagen).
A parallel pull-down using monoclonal M2 anti-FLAG antibody (Sigma-Aldrich,
Cat. #F1804) was performed as negative control.

miR-625-3p luciferase reporter assay. Wild-type and mutated versions of part of
the MAP2K6 30UTR centred on the miR-625-3p target site were generated by
primer extension PCR using oligos notI-map2k6.3UTR-rev and either of
xhoI-map2k6.3UTR.wt-fwd, xhoI-map2k6.3UTR.mut1-fwd and xhoI-map2k6.
3UTR.mut2-fwd (see Supplementary Data 3), and cloned into the psiCHECK-2
plasmid after the Renilla luciferase (Rluc) reporter gene. psiCHECK-2 contains
Firefly luciferase, which enables accurate control of differences in transfection
efficiency between experiments and wells. psiCHECK-2 vector without MAP2K6
30UTR gave a robust signal and were used as mock control. 8000 HEK293T cells
were transfected with Lipofectamin-2000 (Thermo Scientific) in 96-well plates
using 50 ng mock, 30UTR wild-type or mutated vectors alone, or cotransfected
together with 20 nM miR-625-3p pre-miR (Life Technology, #AM17100) or
scramble control pre-miR (Negative Control2 Life Technology #AM17111). One
day after transfection, the cells were lysed and Renilla and Firefly substrates added
using the Dual-Glo Luciferase Assay System (Promega #E2920) following the
manufacturer’s recommendations, and luminescence read in a multi-well ELISA
reader (Synergy HT-reader, Bio-tek). RLuc signals were normalized to Firefly
luminescence.

Microarray profiling and RNA data processing. Expression profiling on cell lines
was performed on three biological replicates on total RNA (all with RIN¼ 10)
isolated from SW620.625 and SW620.ctrl cells treated with 50 ng ml� 1 DOX for
48 h using GeneChip Human Gene 2.0 ST arrays (Affymetrix) according to
manufacturer’s recommendation. Expression profiling on clinical samples was
performed on RNA (median RIN¼ 6.5) from pure cancer epithelium obtained
using laser microdissection as described52. RNA was amplified using the Ovation
Pico WTA system (Nugen) and profiled on GeneChip Human Gene 1.0 ST arrays
(Affymetrix) according to manufacturer’s recommendation. All samples passed
basic quality control measures as performed in Affymetrix Gene Expressing
Console. The data were loaded into the GeneSpring v.12.5 software (Agilent
Technologies), and probe intensities quantile normalized and summarized into
probe set values using the IterPLIER16 algorithm. Probe sets were excluded if they
had (i) a mean log2(expression) o5 in both SW620.625 and control cells;
(ii) an association with multiple gene symbols (that is, overlapping genes);
(iii) no association with a gene symbol; (iv) an association with gene symbols
mapping to several probes sets. Genes with a fold change 41.5 were considered
dysregulated. Unsupervised hierarchical cluster analysis on SW620.625 and
SW620.ctrl expression data were done in Cluster3 (ref. 56) using the most variable
probe sets (that is, with a variance on the log2 expression values 40.25 across all
the six samples) applying an absolute correlation similarity metric, and visualized
using Treeview57. To identify putative miR-625-3p target genes, 30UTR sequences
were obtained from TargetScan (6.2) for all human annotated transcripts, and the
longest 30UTR sequence was chosen for isoforms with identical gene symbol. Genes
were ranked by fold change in expression between miR-625-3p induction and
scrambled control. Subsequently, 30UTR sequences were scored for the presence of
the target motif complementary to the seed sequence of miR-625p-3p (that is,
CTATAGT). The empirical distribution of the ranks for genes with and without the
target motif was compared using a Kolmogorov–Smirnov test. The web-based
miRmap tool (http://mirmap.ezlab.org/app/)8 was used with standard parameters
using the options ‘Species’¼Human and ‘miRNA’¼ hsa-miR-625-3p; Candidate
target genes with a miRmap score 475 were extracted.

SILAC labelling and phosphopeptide enrichment. The HCT116.625 and
HCT116.ctrl cells were grown in SILAC RPMI 1640 medium (PAA, Cat. #E15-087)
with 2 mM L-glutamine and 10% dialysed fetal bovine serum (Sigma, Cat. #F0392)
supplemented with heavy isotopes Arg10-13C6,15N4 (1.14 mM) and Lys8-
13C6,15N2 (0.22 mM; Cambridge Isotope Laboratories, Cat. #CNLM-539-H and
#CNLM-291-H), medium isotopes Arg6-13C and Lys4-D4 (Cat. #CLM-2265-H
and #DLM-2640-O) or light isotopes Arg0 and Lys0 (Sigma). After 46 cell
passages, we ensured that the incorporation rate was 495%. We also ensured that
the HCT116.625 cells retained oxPt resistance after DOX induction compared with
the HCT116.ctrl cells. The cell triplicates were labelled, induced with DOX and
exposed to 16mM oxPt according to the protocol described in Fig. 6a and
Supplementary Fig. 10. Total protein lysates were harvested after several washes in
ice-cold PBS using radioimmunoprecipitation assay buffer (50 mM TRIS pH 7.5,
150 mM NaCl, 50 mM EDTA, 0.1% sodium deoxycholate, 1% NP-40) supple-
mented with 1 mM Na-orthovanadate, 5 mM NaF, 5 mM b-glycerophosphate and
complete Protease Inhibitor Cocktail (Roche). Lysates were pelleted at 4 �C at
15,000g for 15 min and the supernatant transferred to ice-cold acetone. The
precipitated proteins were resuspended in 6 M urea, 2 M thiourea and 10 mM
HEPES pH 8.0 and concentration was estimated with Bradford assay. Two triple
SILAC experiments were designed to cover all conditions (Supplementary Fig. 10).
After mixing proteins 1:1:1, these were reduced in 1 mM dithiothreitol followed by

alkylation with 5 mM chloroacetamide, both steps for 45 min. The mixtures were
pre-digested with LysC (Wako) in an enzyme/protein ratio of 1:100 (w/w) for 3 h
followed by dilution with 50 mM ABC pH 8.0 to 2 M urea and further digested
overnight with trypsin 1:100 (w/w). The digestion was quenched with
trifluoroacetic acid TFA to a final concentration of 2% and the peptide mixture was
washed and eluted from Sep-Pak (C18 Classic Cartridge, Waters). Elution was
done with 2 ml 40% acetonitrile (ACN), 0.1% TFA followed by 4 ml 60% ACN,
0.1% TFA. The sample volume was doubled by addition of 12% TFA in ACN and
subsequently enriched with TiO2 beads (5mm, GL Sciences Inc., Tokyo, Japan) as
previously described58, and finally enriched for a second and third time.

MS/ms—proteome and phosphoproteome processing. The peptide mixture
was separated on an in-house made 50 cm capillary column packed with 1.9 mm
Reprosil-Pur C18 beads (Dr Maisch, Germany) using an EASY-nLC 1,000 system
(Thermo Scientific). The column temperature was maintained at 50 �C using a
column oven (PRSO-V1, Sonation GmbH, Biberach, Germany) and the LC system
was interfaced online with the Q Exactive mass spectrometer (Thermo Scientific).
Formic acid 0.1% was used to buffer the pH in the two running buffers used. The
total gradient was 250 min followed by a 15 min washout and re-equilibration. In
detail, the flow rate started at 250 nl min� 1 and 5% ACN with a linear increase to
25% ACN over 220 min followed by 30 min linear increase to 60% ACN. The
washout followed with 60% ACN for 5 min followed by re-equilibration with a
5 min linear gradient back down to 5% ACN, which were maintained for the last
5 min. For phosphopeptide-enriched samples, the Q Exactive was operated with a
data-dependent method using Top10. Full scan resolutions were set to 70,000 at
200 m/z with a target value of 3� 106 and a maximum fill time of 20 ms. Mass
range was set to 300–1,750 m/z. Fragment scan resolution were set to 35,000 with
target value 1� 105 and maximum fill time 108 ms. Proteome data were acquired
with a Top12 method and fragment scan resolution 17,500 and 44 ms fill time.
Isolation width was 2 m/z and normalized collision energy (NCE) 28 for
phosphor-enriched samples and 2.2 m/z and 25 NCE for proteome samples. All
raw LC-MS/MS data were analysed by MaxQuant v1.4.1.4 (ref. 59), and searched
against the human Uniprot database (April 2012 release). Carbamidomethylation
of cysteine was specified as fixed modification for both groups. For the proteome
data, variable modifications considered were oxidation of methionine, protein
amino (N)-terminal acetylation and pyro-glutamate formation from glutamine.
The phosphoproteome data were additionally searched with phosphorylation as a
variable modification of serine, threonine and tyrosine residues. The match
between run option was enabled, and the minimum score for both modified and
unmodified peptides were set to 25, we used false discovery rate limit of 1% on
peptide level.

Proteome and phosphoproteome data analyses. From the two (HCT116.625
and HCT116.ctrl) triplicate proteome intensity data, we made log2(625/ctrl) ratios,
and used only distinct proteins that were detected in all three ratios (n¼ 2,410). All
proteins with an absolute log2(625/ctrl) 40.58 are listed in Supplementary Data 2.
SW620 proteome data were generated by separating protein lysates on a denaturing
Bis-Tris gel, excise proteins between 20 and 45 kDa, which were then subjected to
in-gel digestion followed by nLC-MS60. In HCT116 cells, MAP2K6 were quantified
using peptides GAYGVVEK and INPELNQK shared with the MAP2K3 paralogue
(since no MAP2K6 specific peptides were detected), whereas we used the MAP2K6
specific peptide DVKPSNVLINALGQVK in SW620 cells. Phosphopeptide
positions were mapped to the Homo sapiens canonical UniProtKB data set61.
We used HGNC gene names obtained from UniProtKB, which together with the
phosphorylation positions acted as unique identifiers. Log2 ratios of normalized
phosphopeptide intensities were generated for each triplicate ctrlþOX/ctrl,
625/ctrl, 625þOX/ctrl and 625þOX/ctrlþOX experiment, and the mean log2

ratio calculated for phosphopeptides detected in at least two of three replicates,
while singly detected phospopeptides were discarded. We used a t-test to test the
null hypothesis of no difference, that is, H0: log2 ratio¼ 0, and estimated the local
false discovery rate to obtain the chance of individual log2 ratios being false
positives62. The Enrichr tool63 was used to obtain enrichment scores (P-values) to
KEGG pathways and GO-terms, using HGNC names as input. Only the top five
(lowest P values) for each category were reported. To detect changes in kinase
activities, we applied the KSEA framework developed by Cassado et al.19 This is
based on assigning individual phosphopeptides to one or more substrate groups
according to the kinase(s) known or believed to catalyse the phosphorylation.
To obtain such information, we merged and manually curated three collections of
kinase phosphorylation mappings obtained from the Human Protein
Reference Database20, PhosphoSitePlus21 and PhosphoELM22. From this collection,
we extracted those phosphorylated substrates detected in our experiments, and used
this to make 25 substrate groups with at least 10 substrate members. The fractional
delta-count (fcount) was then calculated as the number of substrates with increased
(log2 ratio 40, NI) minus the number of substrates with decreased (log2 ratio
o0, ND) phosphorylation divided by the total number of substrates in the group,
that is: fcount¼ (NI�ND)/(NIþND). A Benjamin–Hochberg corrected P-value
from a hypergeometric test was calculated to indicate the statistical significance of
obtaining NI (and ND). In addition to the fcount measure, we also calculated the
mean log2 ratio (x̄) for all substrate log2 ratios within individual substrate groups,
and tested whether this diverged from the population (experimental) mean (m)
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using the z statistics (z¼ (x̄�m)/(s/N0.5), where s is the population standard
deviation and N the number of substrates in the group). The Z values were
converted into two-sided P values via the standard normal distribution
(P¼ 2*F(� abs(z))), which were corrected for multiple testing with the
Benjamin–Hochberg procedure. To find altered phosphorylation motifs by KSEA
for the ctrlþOX/ctrl and 625þOX/ctrlþOX data, we first extracted 15 amino
acids-windows (7þ 1þ 7) around the central phosphorylated amino acid for all
serine and threonine phosphopeptides (detected in two out of three experimental
triplicates). Proteins with phosphorylations within seven amino acids from the
N or carboxy (C) terminus were discarded. Phosphopeptides were then subjected
to the motif-x algorithm64 using the following parameters: ‘occurrences’¼ 5,
‘significance’¼ 0.000001 and ‘background’¼ IPI Human Proteome. This resulted in
84 different motifs based on 7,850 phosphopeptides detected in the experiment.
We further restricted KSEA to 51 motifs that were detected at least 50 times. To find
kinases whose activities were associated with individual substrates and motifs, we
obtained the netwoKIN data set of kinase substrate mappings33, but restricted us to
entries with a high confidence (arbitrarily chosen as a networkin_score 43),
corresponding to 36,972 out of the total 304,338 distinct kinase substrates in
networKIN. To predict kinase activities associated with the differentially
phosphorylated motifs (R-pS, pS-D and pS/pTP-R-K) we simplified the 15 amino
acid motifs to 11 amino acids (5þ 1þ 5) motifs to directly use the 11 amino
acids-phosphorylation windows provided for substrates in the networKIN data.
Note that this resulted in the ‘yy.SPy.K’. motif was removed from the
analysis since it is minimally described by a 6þ 1þ 6 format. We counted the
enrichment score (ES) for each motif being associated with a given kinase as:
ESm,k¼ (nm,k/Nm)/(Nk/N), where nm,k is the number of times a kinase k is mapped to
a motif m, Nm is the total number of motifs m, Nk is the total number kinases k and
N is the total number of kinase motif mappings. We used a BH-corrected P value
from a two-sided Fisher’s exact test as significance for the association, and for each
motif selected the top-10 kinases with the smallest P value and with at least 100
observations for a motif (nm,kZ100). Due to overlap between motifs, this resulted in
39 distinct kinases.

Statistical analysis. If not mentioned otherwise, a two-sided Student’s t-test was
performed to evaluate statistical significance of differences in means, and the
Fisher’s exact test used to test independence of count data. Experiments were
performed at least three times and P values r0.05 were considered significant
(indicated with ‘*’ in figures).

Data availability. Proteome data are available via ProteomeXchange with
identifier PXD002172. Clinical and cell line expression data can be obtained via
GEO with identifiers GSE83129 and GSE83131, respectively. The authors declare
that all other data supporting the findings of this study are available within the
article and its Supplementary Information Files or from the corresponding author
upon reasonable request.
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