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Abstract

Combining molecularly targeted agents and chemotherapeutics is an emerging strategy in cancer 

treatment. We engineered sub-50 nm diameter diblock copolymer nanoparticles (NPs) that can 

sequentially release wortmannin (Wtmn, a cell signaling inhibitor) and docetaxel (Dtxl, genotoxic 

anticancer agent) to cancer cells. These NPs were studied in chemoradiotherapy, an important 

cancer treatment paradigm, in the preclinical setting. We demonstrated that Wtmn enhanced the 

therapeutic efficacy of Dtxl and increased the efficiency of radiotherapy (XRT) in H460 lung 

cancer and PC3 prostate cells in culture. Importantly, we showed that NPs containing both Wtmn 

and Dtxl release the drugs in a desirable sequential fashion to maximize therapeutic efficacy in 

comparison to administering each drug alone. An in vivo toxicity study in a murine model 

validated that NPs containing both Dtxl and Wtmn do not have a high toxicity profile. Lastly, we 

demonstrated that Dtxl/Wtmn-coencapsulated NPs are more efficient than each single-drug-loaded 

NPs or a combination of both single-drug-loaded NPs in chemoradiotherapy using xenograft 

models. Histopathological studies and correlative studies support that the improved therapeutic 

efficacy is through changes in signaling pathways and increased tumor cell apoptosis. Our findings 

suggest that our nanoparticle system led to a dynamic rewiring of cellular apoptotic pathways and 

thus improve the therapeutic efficiency.

Graphical abstract

*Address correspondence to zawang@med.unc.edu. 

Supporting Information Available: The Supporting Information is available free of charge on the ACS Publications website at DOI: 
10.1021/acsnano.5b02913.
Experimental details (PDF)

Conflict of Interest: The authors declare no competing financial interest.

HHS Public Access
Author manuscript
ACS Nano. Author manuscript; available in PMC 2016 September 22.

Published in final edited form as:
ACS Nano. 2015 September 22; 9(9): 8976–8996. doi:10.1021/acsnano.5b02913.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

cancer; dynamic rewiring of cell apoptotic pathways; combination chemotherapy; concurrent 
chemoradiotherapy; diblock copolymer NPs; dual drug encapsulation

Radiotherapy (XRT) is a key treatment modality in cancer management. It is estimated that 

70% of cancer patients will receive XRT during their treatment.1 Its principle mechanism of 

function is through DNA double-strand damage, which preferentially eradicates tumor 

cells.2,3 The concurrent administration of chemotherapy and radiotherapy, also known as 

chemoradiotherapy (CRT), is a key treatment paradigm.4 It is part of the curative 

management of many difficult to treat cancers, including brain, head and neck (HNSCC), 

esophageal, gastric, pancreatic, small-cell and non-small-cell lung (NSCL), rectal, bladder, 

anal, vulvar, and cervical cancers.4–14 Because of its importance, there has been strong 

interest in the development of strategies and novel agents (radiosensitizers) to improve CRT. 

Radiosensitizers are agents that can increase the efficacy of XRT by sensitizing tumor cells 

to its effects.4,15 An emerging strategy in cancer research is the dynamic rewiring of cell 

signaling pathways to improve therapeutic efficacy of anticancer agents.16–18 Dynamic 

rewiring refers to the preadministration of cell signaling inhibitor sensitized cancer cells to 

the genotoxic anticancer agent due to down-regulation of cell signaling pathways related to 

the genotoxic effects of the latter administered anticancer agent. We hypothesized that this 

strategy can be applied to the CRT paradigm, and its application can significantly improve 

the therapeutic index of CRT.

In this proof-of-principle study, we chose docetaxel (Dtxl) and wortmannin (Wtmn) as 

model drugs. Dtxl is a well-established chemotherapeutic agent with efficacy against a wide 

range of cancers, such as NSCLC and HNSCC. Dtxl is also a known radiosensitizer and is 

utilized clinically in CRT regimens. In vivo studies demonstrated that Dtxl is an excellent 

radiosensitizer due to its ability to arrest the cell cycle in more radio-sensitive G2/M 

phases.19,20 A recent in vitro study found that Dtxl reduced the production of glutathione 

(GSH) and increased production of reactive oxygen species (ROS) in the nucleus during 

ionization radiation, hence increasing the efficiency of ROS-induced DNA damage despite 

the mechanism not being fully established.21 Wtmn is a steroid metabolite of the fungus 

Penicllium funiculosum and a potent inhibitor of phosphoinositide 3-kinases (PI3-Ks).22 It is 

known to inhibit DNA-dependent protein kinase (DNA-PK), Ku-70, Ku-80, and ataxia 

telangiectasia mutated (ATM) proteins,22–26 all of which are critically important to DNA 

double-strand repair.22 Hence, Wtmn holds high potential in increasing DNA damage-
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mediated apoptosis. A recent study suggested that Wtmn pretreatment (but not cotreatment/

post-treatment) can also significantly enhance the in vitro toxicity of Dtxl by down-

regulating the PI3k/Akt pathway.26 Our own group has also demonstrated that Wtmn is both 

a chemosensitizer27 and a radiosensitizer.28 Thus, Wtmn is an excellent agent for rewiring 

signaling pathways and improving CRT.27–29 We hypothesized that Wtmn can sensitize 

cancer cells to the effects of both Dtxl and radiation.

In this study, we engineered sub-50 nm diameter poly(ethylene glcol)-co-poly(lactic-co-

glycolic acid) (PEG-PLGA)-based diblock copolymer NPs that can co-deliver Dtxl and 

Wtmn. Since the Dtxl to Wtmn ratio can affect drug-release kinetics as well as therapeutic 

efficacy, we engineered NPs with different Dtxl:Wtmn ratios and systematically 

characterized their physiochemical properties, drug release kinetics, and in vitro 
cytotoxicity. We then identified the optimal Dtxl:Wtmn ratio that provides the maximum 

therapeutic efficacy using H460, a NSCLC cell line, and PC3, a prostate cancer cell line. 

Our in vitro data were further validated using mouse xenograft models of cancer. 

Importantly, we compared the therapeutic efficacy of co-delivering Dtxl and Wtmn to each 

agent delivered separately. Lastly, we demonstrated that NP Dtxl and Wtmn improve the 

therapeutic efficiency by inhibiting blood vessels growth, increasing tumor cell apoptosis, 

and preventing DNA repair.

RESULTS AND DISCUSSION

Fabrication and Characterization of Single- and Dual-Drug-Loaded NPs

To engineer NP formulations of Dtxl and Wtmn, we chose to utilize the PEG–PLGA NP 

platform because of its clinical translation potential and the ability to modify drug release 

kinetics. Single and dual drug-loaded PEG–PLGA NPs with different target drug loading 

were prepared using nanoprecipitation method (see Figure 1a). A mixture of two different 

PLGA block lengths PEG–PLGA diblock copolymers were used as building blocks of the 

NPs because changing the PLGA block length effectively change the viscosity of the PLGA 

core (and thus the drug release kinetics).

The mean number-average diameters (Dn) of the single and dual drug-loaded NPs were 

found to be about 36 ± 6 nm (see Figure 1b). This is consistent with the mean intensity-

average diameters (Dh, also known as hydrodynamic diameter) of about 65 nm 

(polydispersity index, PDI ≤ 0.1; see Table S1) determined by the dynamic light scattering 

method and the mean number-average diameter of approximately 57 nm determined by the 

NP tracking analysis (NTA) technique. The characterizations confirm the change of PLGA 

molecular weight did not significantly change the diameter of the drug-loaded PEG–PLGA 

NPs (see Figures S1a and b). These PEG–PLGA NPs have near-zero mean zeta potential (ζ; 

see Figure 1b and Table S1), confirming the nonionic hydrophilic PEG chain is located at 

the surface of the NPs, which shields the anionic charges from the hydrophobic PLGA 

core.30 The complementary characterizations confirm that the encapsulation of hydrophobic 

drug(s) in the amorphous PLGA core did not affect the size of the diblock polymer NPs.

The drug encapsulation efficiencies of the single- and dual-drug-loaded NPs were found to 

be about 24 ± 1% and 9 ± 1% for Dtxl and Wtmn (see Table S1), respectively, as determined 
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by the quantitative HPLC method. Coencapsulation of Dtxl and Wtmn in the dual-drug-

loaded NPs did not affect the encapsulation efficiency of the individual drugs. The lower 

encapsulation efficiencies recorded for Wtmn in both drug-encapsulated NPs can be 

explained by the fact that the lower molecular weight Wtmn diffused more rapidly out of the 

hydrophobic PLGA core than the larger Dtxl molecule during the nanoprecipitation and 

purification processes, despite having similar hydrophobicities (log P of Dtxl = 2.6; log P of 

Wtmn = 2.6).31 Therefore, the actual Dtxl/Wtmn molar ratios in the dual-drug-loaded NPs 

were approximately 4:1 and 8:1 for target Dtxl/Wtmn molar ratios of 3:2 and 3:1, 

respectively.

In Vitro Drug-Release Kinetics of Single- and Dual-Drug-Loaded PEG–PLGA NPs

The kinetics of Dtxl and Wtmn release from the NPs under sink physiological conditions 

(37 °C, in a large excess of 0.1 M PBS) were characterized. A time-dependent drug-release 

study indicated that both encapsulated drugs were released in highly controllable manners 

(see Figure 2) and fit the empirical Weibull drug-release model very well (see Table S2 and 

Materials and Methods for details).32 In general, coencapsulation did not significantly affect 

the kinetics of drug release of the individual drugs. The encapsulated Wtmn was released 

significantly faster than the encapsulated Dtxl. Approximately 75% of the Wtmn was 

released in the first 8 h, and all encapsulated Wtmn was completely released within 24 h (see 

Figure 2). On the other hand, less than 25% of the encapsulated Dtxl was released in the first 

8 h (with about 2 h lag-release period (tlag), when an insignificant amount of Dtxl was 

released), and the release of Dtxl followed sigmoidal-type drug-release kinetics for up to 48 

h (see Figure 2). We showed that our PEG–PLGA NPs can dynamically release encapsulated 

drugs according to their molecular weights. This controlled drug-delivery system allows 

low-molecular-weight Wtmn to be released prior to high-molecular-weight Dtxl and rewires/

inhibits the cell DNA repair pathways to enhance cell death induced by genotoxic Dtxl and 

radiation. The fact that Wtmn has a more rapid release than Dtxl is favorable to this rewiring 

process. We were also able to demonstrate that despite having similar physical properties, 

NPs formulated with higher molecular weight PLGA had slower drug release owning to the 

more hydrophobic NP core (see Figure S1c).

In Vitro Toxicities and Chemosensitizing and Radiosensitizing Efficiencies of Free Drug(s) 
and Single- and Dual-Drug-Loaded NPs

In vitro cytotoxicity studies were performed in H460 lung cancer and PC3 prostate cancer 

cell lines. Figure 3 and Table S3 show the half-maximal inhibitory concentration (IC50) of 

different molar ratios of small-molecule (“free”) and encapsulated Dtxl and/or Wtmn in 

H460 and PC3 cell lines, as determined by the 23-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation assay at 

72 h after 2 h of in vitro drug treatments (see Materials and Methods for details). Small-

molecule Dtxl is an efficient chemotherapeutic drug with an IC50 of 280 and 740 nM in the 

H460 and PC3 cell lines, respectively. Wtmn is a well-established PI3K cell signaling 

inhibitor with moderate in vitro toxicity (IC50 > 10 mM) in both cell lines.22,28 In vitro 
cotreatments with 4:1 and 8:1 mol/mol of small-molecule Dtxl and Wtmn did not 

significantly increase the toxicity compared with free Dtxl in both cell lines (IC50 = 310 μM 

in H460 cell line, p = 0.54 versus control group; IC50 = 10.1 mM in PC3 cell line, p = 0.02 
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versus control group). However, small-molecule Wtmn pretreatment (administrated 2 h 

before Dtxl) significantly increased the toxicity (IC50 = 40 and 190 nM for 4:1 and 8:1 

mol/mol of Dtxl/Wtmn cotreatments in the H460 cell line; IC50 = 90 and 190 nM for 4:1 and 

8:1 mol/mol of Dtxl/Wtmn cotreatments in the PC3 cell line), especially when combining 

4:1 small-molecule Dtxl/Wtmn, compared with in vitro cotreatment at the same time. A 

control study indicated small-molecule Dtxl pretreatment did not significantly increase the 

toxicity compared with small-molecule Dtxl and Dtxl/Wtmn cotreatments (p = 0.10 and 0.15 

versus the cotreatment group in the H460 and PC3 cell lines, respectively). The time-

dependent in vitro studies indicated that Wtmn pretreatment, but not cotreatment or post-

treatment, sensitized Dtxl and increased the overall drug toxicity, which was consistent with 

the mechanism of rewiring cell apoptotic pathways purposed by Zhang et al.26

Cancer cells rapidly take up hydrophobic drugs via active diffusion.33,34 The uptake of drug-

encapsulated NPs often occurs through a slower endocytosis pathway, which is affected by 

the physicochemical properties of the NPs.33,34 Similar to previous studies, high 

concentrations of drug-free PEG–PLGA NPs (up to 5 mg/mL) showed insignificant in vitro 
toxicities in both H460 and PC3 cell lines (cell viabilities above 90% in both cell lines; see 

Figure S2).35–37 In general, the toxicity of encapsulated drug(s) followed the toxicity trends 

of small-molecule drugs, but the toxicities of all nanoformulations were lower than their 

small-molecule counterparts (IC50 of encapsulated drugs was about 60–80% lower than that 

of small-molecule drug(s); see Figure 3) because of the slower uptake. The toxicities of both 

4:1 and 8:1 Dtxl/Wtmn coencapsulated NPs were similar to those of the 4:1 and 8:1 

combinations of Dtxl NPs and Wtmn NPs (p < 0.05 in both cases). Similar to the small-

molecule in vitro toxicity studies, the 4:1 Dtxl/Wtmn nanoformulation showed the highest 

toxicities in both cell lines because the tailor-made PEG–PLGA NPs release the 

encapsulated Wtmn before Dtxl. This confirms that the tailor-made PEG–PLGA NPs 

allowed in vitro combination therapy to be performed at once rather than in two separate in 
vitro drug applications. Thus, the remaining parts of this article focus on small molecules 

and nanoformulation based on the 4:1 Dtxl/Wtmn molar ratio.

The efficacy of small-molecule and (co)encapsulated Dtxl and Wtmn in CRT was studied in 

the H460 and PC3 cell lines via cologenic survival assays.38 Figure 4 shows the radiation 

dose-dependent cologenic survival curves recorded for the H460 and PC3 cell lines after 

they were treated with therapeutic doses (i.e., IC50; see Table S3) of small-molecule or 

encapsulated drug(s) before irradiation. Small-molecule Dtxl and Wtmn sensitized both cell 

lines to ionizing radiation. The dose-enhancement factors (EF) to achieve a survival fraction 

of 0.1 of Dtxl and Wtmn treatments were calculated to be 1.22 (for Dtxl in the H460 cell 

line; see Figure 4a (i)), 1.50 (for Wtmn in the H460 cell line; see Figure 4a (i)), 1.27 (for 

Dtxl in the PC3 cell lines; see Figure 4b (i)), and 1.52 (for Wtmn in the PC3 cell line; see 

Figure 4a (i)) for H460 and PC3 cells (see Table S4), respectively. Thus, these drug 

treatments increased the efficiencies of radiotherapy by 22%, 50%, 27%, and 52%, 

respectively. In addition, both drug treatments reduced the quasi-threshold dose (Do, the 

minimum dose required to kill cancer cells) from above 3.4 Gy (in both cell lines) to 1.6–2.5 

Gy (see Table S4). This reduces the chances for cancer cells to develop radioresistance at 

low doses of ionization radiation treatment. The radiosensitizing effects of both encapsulated 

drugs are very similar (p < 0.05 in all cases) to those of their small-molecule counterparts 
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(see Figure 4a (i) and b (i)), suggesting that encapsulation of chemotherapy agents into the 

tailor-made PEG–PLGA NPs would not affect their radiosensitizing efficiency.

The combination of Wtmn and Dtxl further enhances the radiosensitivity of both cell lines 

(see Figure 4a (ii) and b (ii)). Small-molecule Wtmn and Dtxl cotreatment and Dtxl 

pretreatment slightly increased the dose enhancement factors to 1.7–1.8 (increased the 

efficiencies of radiotherapy by 70–80%) versus 1.3–1.5 determined in single-drug treatments 

(see Table S4). The enhanced effects observed in both combination treatment groups were 

approximately the sum of the enhancement effects contributed by Dtxl (increased efficiency 

of radiotherapy by about 25%) and Wtmn (increased efficiency of radiotherapy by about 

50%). However, small-molecule Wtmn pretreatment significantly enhanced the radiotherapy 

efficiency by 120% (EF = 2.2) and 100% (EF = 2.0) for the H460 and PC3 cell lines (see 

Table S4), respectively. In addition, the quasi-threshold dose of Wtmn pretreatment 

significantly decreased to 1.2 and 1.7 Gy for the H460 and PC3 cell lines (see Table S4), 

respectively.

The radiosensitizing effects of combining 4:1 Dtxl NPs and Wtmn NPs or using 4:1 Dtxl/

Wtmn coencapsulated NPs are similar to those of Wtmn-pretreatment combination therapy 

(see Figure 4a (iii) and b (iii)). Both nanoformulations increase the enhancement factor to 

achieve a survival fraction of 0.1 to about 2.3 (increased the efficiency of radiotherapy by 

130%) in the H460 cell line and about 2.1 (increased the efficiency of radiotherapy by 

110%) in the PC3 cell line (see Table S4) because slower drug release can improve the 

therapeutic efficiencies of both drugs. The clear advantage of using coencapsulated 

nanoformulations is that the encapsulated drugs can be administrated to the cancer cells at 

once (since the tailor-made PEG–PLGA NPs release Wtmn before Dtxl in a highly 

controllable manner), whereas small-molecule-based combination therapy requires separate 

administrations in order to achieve a combined therapeutic effect.

In Vitro and in Vivo Tumor Uptake of Rhodamine B-Labeled PEG–PLGA NPs

Drug-free Rhod-labeled PEG–PLGA NPs were prepared to get better insights into the 

cellular and tumor uptakes of the tailor-made sub-50 nm diameter PEG–PLGA NPs. Figure 

S3a and b show the concentration- and time-dependent cellular uptake of the Rhod-labeled 

PEG–PLGA NPs in the H460 and PC3 cell lines, respectively. It was found that the NP 

uptake increases with the incubation time in both cell lines. Both cell lines (plating cell 

density = 104 cells per well) took up about 5% of the labeled NPs (incubation concentration 

= 50 μg/mL ≈ 4.7 × 109 particles per well) after incubation for 2 h (see Figure S3a). Plateau 

NP uptake can be observed after incubation for 48 h, as the H460 and PC3 cells took up 

approximately 47% and 38% of the incubated NPs, respectively. The differences in the NP 

uptake can be explained by the different growth rates of the two cell lines (the cell densities 

of H460 and PC3 increased to 1.43 × 104 and 1.15 × 104 cells per well after plating at 

physiological conditions for 24 h, respectively, as determined by a cell counter). A 

concentration-dependent study indicated that NP uptake increased with the NP 

concentration. Plateau NP uptake can be observed when the concentration increases to about 

450 μg/mL (equivalent to 4.2 × 1010 particles per well). The quantitative cellular uptake 

study indicated that both cell lines only took up about 10% of the incubated NPs (thus about 
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10% of the encapsulated drug(s) in the in vitro toxicity studies) during the 2 h in vitro 
treatment period. This indicates that nanoformulations have higher in vitro therapeutic 

efficiency than free drugs.

A full-body in vivo fluorescence imaging study was performed to investigate the tumor 

uptake of the sub-50 nm diameter PEG–PLGA NPs in H460 and PC3 tumor xenograft 

athymic nude (Nu) mice. Time-dependent fluorescence images were taken preinjection, 5 

min, and 3, 6, 9, 24, and 48 h after tail vein intravenous (iv) injection of 165 mg/kg of drug-

free Rhod-labeled PEG–PLGA NPs. As shown in Figure 5a, systemic distribution of the 

fluorescent NPs can be observed 3 h after intravenous administration, indicating the NPs 

were not rapidly cleared by the mononuclear phagocyte system (MPS, also known as the 

reticuloendothelial system, including the liver, kidney, lymph nodes, and spleen).39,40 As 

time elapsed, the fluorescence intensity (photon flux) recorded at the tumor site increased 

(see Figure 5a and 5b), suggesting the Rhod-labeled NPs progressively accumulated in the 

tumor due to the EPR effect.39,41 The photon flux recorded at the tumor site remained 

relatively high at 48 h postinjection (8 times higher than that recorded at 5 min 

postinjection). A further ex vivo imaging study was performed at 48 h postinjection to 

investigate the biodistribution of the Rhod-labeled PEG–PLGA in the tumor and other key 

organs (liver, kidney, spleen, heart, and lung). As shown in Figure 5c and Figures S4, S5, 

and S6, approximately 35% and 30% of the total measured signals (photon flux) from the 

administrated NPs were retained in the H460 and PC3 tumors, respectively. The majority of 

the administrated NPs were accumulated in the liver (about 55% of the total measured 

signals in the tumor-bearing mice and about 85% of the total measured signals in the tumor-

free mice). Less than 10% of the total measured signals from the administrated NPs were 

accumulated in the kidney, spleen, heart, and lung. The excellent tumor uptake of the tailor-

made PEG–PLGA NPs was confirmed by confocal fluorescence images of H460 and PC3 

tumors collected 48 h after iv administration, where the Rhod-labeled NPs can be easily 

identified from both tumor sections (see Figure 5d). Similar to previous studies, certain 

regions of the tumor showed lower NP uptake than the other regions.42

Systemic Toxicity of Small-Molecule and PEG–PLGA NP (Co)Encapsulated Drug(s)

Hepatotoxicity and hematologic toxicity are two major side effects of traditional 

chemotherapy that often lead to early termination of chemotherapy.27,29,43 Figure 6a and b 

summarize the hepatotoxicity and hematologic toxicity profiles recorded for healthy tumor-

free CD1 mice 4 days after iv administration of 167 mg/kg of empty PEG–PLGA NPs, 1.91 

mg/kg of small-molecule/(co)encapsulated Dtxl, and/or 0.25 mg/kg of small-molecule/

(co)encapsulated Wtmn (1/10th of the maximum tolerated dose (MTD) of the individual 

drug).28,29 The administration of small-molecule Dtxl or Wtmn significantly increased the 

plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (both 

reflect liver function), despite both parameters being within the upper limit of documented 

normal ranges for healthy CD1 mice.44 Encapsulation of Dtxl and Wtmn into the tailor-

made PEG–PLGA NPs was more efficient to maintain the AST and ALT levels at the 

normal ranges compared with their small-molecule analogues. The combination of two 

small-molecule drugs not only increased the therapeutic effects but also increased the 

hepatotoxicity. Conversely, the coadministration of encapsulated Dtxl and Wtmn did not 
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significantly affect the AST and ALT levels compared with the control group. The reduction 

of hepatotoxicity in the nanoformulations can be explained by the fact that the slower drug 

release allows the liver to slowly break down these cytotoxic drugs. It is also worth noting 

that the hepatic functions in control mice administered drug-free PEG–PLGA NPs are no 

different than mice injected with PBS despite the fact that the majority of the administrated 

NPs accumulated in the liver.

The administrations of small-molecule/encapsulated Dtxl and Wtmn showed very similar 

hematological toxicity profiles (see Figure 6c). Single drug treatment at 1/10th the MTD of 

the free drug did not significantly affect the white blood cell (WBC, including granulocytes 

and lymphocytes) and red blood cell (RBC) counts. However, the coadministration of small-

molecule Dtxl and Wtmn significantly lowered the WBC and RBC counts to below the 

normal ranges, which increased the risks of anemia and infection. On the other hand, the 

administration of Dtxl and Wtmn coencapsulated NPs did not show any significant 

hematological toxic effects because the slow drug release allowed the hematologic system 

(include blood, spleen, bone marrow, and liver) to slowly clear the cytotoxic drugs from the 

body.29 Therefore, the remaining part of this article focuses on the use of different single- 

and dual-drug nanoformulations for chemotherapy and concurrent chemoradiotherapy.

Tumor Growth Inhibition and Radiosensitizing Efficiencies of Dtxl and Wtmn 
(Co)Encapsulated NPs in Fast-Growing H460 Lung Xenograft Tumor

In vivo combination chemotherapy and CRT studies were performed using a mouse H460 

xenograft model. Mice were given a single subtherapeutic dose of chemotherapy (followed 

by two low-dose grade radiotherapies in the CRT groups) to enable precise quantification of 

the therapeutic effects of each treatment without eradication of tumor in all experimental 

arms (see Scheme S1).19,20 In the chemotherapy groups, the administration of drug-free 

PEG–PLGA NPs, Wtmn NPs, and Dtxl NPs did not significantly delay the tumor growth (p 
≈ 0.12–0.31 versus the control group) compared with the control group administrated with 

PBS (see Figure 7). Co-administration of Dtxl NPs and Wtmn NPs slightly delayed the 

tumor growth (p = 0.04 versus the control group) with an absolute group delay (AGD) for 

the tumor to grow to 40 times its initial volume of 2.4 days compared with the control group 

(see Figure 7 and Table S5). The administration of Dtxl/Wtmn coencapsulated NPs further 

delayed tumor growth (p = 0.03 compared with the separate administration group) and 

increased the AGD to 4.8 days (see Figure 7 and Table S5). The administration of a 

combination of Dtxl NPs and Wtmn NPs separately has lower therapeutic efficiency than 

that of dual-drug-loaded NPs due to uneven NP uptake, as observed in the ex vivo 
histological study. Interestingly, we did not observe better efficacy for the codelivery of both 

agents in our in vitro studies. The difference between our in vitro and in vivo studies is likely 

due to in vivo biodistribution. While cells under in vitro conditions have equal access to both 

NP therapeutics (given separately), they do not have such equal access under in vivo 
conditions owing to the biodistribution differences of the NPs. Therefore, only co-delivery 

enables the appropriate drug ratio under in vivo conditions, which led to the increase in 

efficacy.
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Concurrent radiotherapy is more efficient in delaying the growth of H460 xenograft tumors 

than combination chemotherapy. Treatment with 8 Gy of fractionated radiotherapy 

significantly delayed tumor growth compared with the control group (p = 0.01) and 

increased the AGD to 12.4 days (see Figure 7 and Table S5). Similar to the chemotherapy 

treatment groups, CRT with drug-free PEG–PLGA NPs, Dtxl NPs, or Wtmn NPs slightly 

delayed the tumor growth compared with the treatment group that only received 8 Gy 

radiotherapy (p = 0.08–0.31 versus the radiotherapy-only treatment group). The dose-

dependent radiotherapy enhancement factors of the Dtxl NPs and Wtmn NPs were 

calculated to be 1.12 (i.e., increased efficiency of radiotherapy by 12%) and 1.34 (increased 

efficiency of radiotherapy by 34%), respectively, indicating both single-drug-encapsulated 

NPs moderately enhanced the efficiency of radiotherapy in vivo (see Table S5). The 

coadministration of Dtxl NPs and Wtmn NPs for CRT significantly delayed the tumor 

growth for about 4 days (p = 0.04 versus the chemoradiotherapy treatment groups 

administrated with Dtxl NPs or Wtmn NPs; see Figure 7 and Table S5). The dose-dependent 

enhancement factor for radiotherapy was calculated to be 1.52 (increased efficiency of 

radiotherapy by 52%), which is approximately equal to the enhancements contributed by 

encapsulated Dtxl (about 12%) and Wtmn (about 34%). The administration of Dtxl/Wtmn-

coencapsulated NPs for chemoradiotherapy further delayed the tumor growth (p < 0.01 

compared with the chemoradiotherapy treatment group administrated with Dtxl NPs and 

Wtmn NPs), with absolute growth delay increased to 33.2 days: 28 days longer than the 

treatment group receiving only radiotherapy and about 10 days longer than the 

chemoradiotherapy treatment group coadministrated with Dtxl NPs and Wtmn NPs. The 

dose-dependent enhancement factor was calculated to be 2.29 (the efficiency of radiotherapy 

increased by 129%). This confirms our hypothesis that coencapsulation of two drugs in the 

same package allows more precise drug dosing and hence enhances the efficiency of 

radiotherapy by rewiring cell apoptosis pathways.

Tumor Growth Inhibition and Radiosensitizing Efficiencies of Dtxl and Wtmn 
(Co)Encapsulated NPs in Slow-Growing PC3 Prostate Xenograft Tumor

In vivo combination chemotherapy and CRT study were also performed in PC3 xenograft 

tumor-bearing Nu mice to investigate the therapeutic efficiency of different 

nanoformulations. PC3 tumor-bearing mice received an identical set of the drug treatments 

(see Scheme S1) that were used in the H460 in vivo study 14 days after tumor inoculation 

(initial tumor volume, Vi = 54 ± 4 mm3). The concurrent chemoradiotherapy treatment 

groups received 8 Gy of fractionated radiotherapy 4 and 15 h after chemotherapy (4 Gy of 

radiation per treatment). Similar to the H460 study, drug-free PEG–PLGA NPs did not delay 

tumor growth (p = 0.46 versus with the control group). In general, the PC3 xenograft tumors 

responded better to different nanoformulations than the fast-growing H460 lung tumors. The 

administrations of Dtxl NPs or Wtmn NPs slightly delayed the tumor growth for an average 

of 6.9 and 5.1 days (p ≈ 0.04 versus control nontreatment group; see Figure 8), respectively. 

The coadministration of Dtxl NPs and Wtmn NPs delayed tumor growth for an average of 

16 days (p = 0.03 versus the control group; see Figure 8 and Table S6). The administration 

of Dtxl/Wtmn-coencapsulated NPs significantly delayed the tumor growth for an average of 

26 days (p = 0.04 versus the coadministration group, p < 0.01 versus the control 
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nontreatment group; see Figure 8 and Table S6) due to dynamic rewiring of apoptotic 

signaling pathways by Wtmn and reduction of uneven drug dosage within the tumors.

In general, CRT treatment further delayed the growth of PC3 xenograft tumors. The 

administration of Dtxl NPs or Wtmn NPs followed by 8 Gy of fractionated radiotherapy 

delayed tumor growth for an average of 37 days (p ≈ 0.04 versus the treatment group that 

received only radiotherapy; see Figure 8 and Table S6), which is significantly longer than 

the AGD of 26 days recorded for the treatment group that received only radiotherapy. It was 

calculated that Dtxl NPs and Wtmn NPs increased the efficiencies of radiotherapy by 14% 

and 40% (EF = 1.14 and 1.40; see Table S6), respectively. The combination of Dtxl NPs and 

Wtmn NPs and fractionated radiotherapy significantly delayed the growth of PC3 tumors (p 
= 0.02 versus the CRT treatment group administrated with Dtxl NPs or Wtmn NPs) for an 

average of 56 days compared with the nontreatment control group (see Figure 8 and Table 

S6). The radiosensitizing enhancement factor was calculated to be 1.52 (efficiency of 

radiotherapy increased by 52%), which was approximately equivalent to the enhancement 

effects resulting from Dtxl NPs (14%) and Wtmn NPs (40%). The therapeutic effect from 

dynamic rewiring of apoptotic signaling pathways from encapsulated Wtmn is insignificant 

in this case. Perhaps the most surprising result was that CRT treatment with Dtxl/Wtmn-

coencapsulated NPs completely inhibited the growth of PC3 tumors (see Figure 8). A 8 Gy 

dose of radiation (divided into two doses of 4Gy) is a relatively low dose, and we have not 

seen complete tumor control with CRT at this dose. Moreover, our administered drug dose is 

also a very low dose compared to the MTD of Wtmn and Dtxl. The use of Dtxl/Wtmn-

coencapsulated NPs increased the efficiency of radiotherapy by more than 130% (EF > 2.30; 

see Tabel S5). The significant tumor growth delay observed in this combination CRT group 

further confirms our hypothesis that coencapsulation of two drugs in the same package is 

essential to ensure correct drug dosing for rewiring of cell apoptosis pathways and, hence, to 

enhance the efficiency of radiotherapy.

Three-dimensional ultrasound tomography was employed to investigate the cancer 

progression in both CRT treatment groups after they received combination chemotherapy. 

Figure S7a shows 3D ultrasound tomography images recorded for mice in both 

chemoradiotherapy treatment groups at 96 days after the initial treatment (110 days after 

tumor inoculation). The ultrasound images indicate the tumors were invading the nearby 

tissues after receiving chemoradiotherapy with Dtxl NPs and Wtmn NPs, as justified by the 

ill-defined tumor boundary. Quantitative image analyses (see Figure S7b) indicate that these 

tumors are mainly made up of closely packed high-ultrasound-scattering live cancer cells. 

Conversely, the xenograft tumors treated with Dtxl/Wtmn-coencapsulated NPs followed by 

radiotherapy remained relatively small and had very clear tumor boundaries. Quantitative 

ultrasound image analyses (see Figure S7b) indicate these tumors were mainly made up of 

low-backscattering dead cells or fluid, which is consistent with the corresponding 

hematoxylin and eosin (H&E)-stained tumor sections collected at the end-point of the in 
vivo study (122 days after treatment), where most of the cells in the tumors did not have a 

nucleus (see Figure S7c).
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Histopathological Insight into Encapsulated-Wtmn-Assisted Dynamic Rewiring of Cell 
Apoptosis Pathways for Combination Chemotherapy and Concurrent Chemoradiotherapy

Comprehensive histopathological studies were performed to get better insight into the tumor 

growth inhibition mechanism in different chemotherapy and concurrent chemoradiotherapy 

treatments. Representative H460 and PC3 xenograft tumors (3 per group) were removed 4 

days after initial treatment to investigate the underlying therapeutic effects of different 

treatments.

Antiangiogenesis (inhibition of blood vessel growth) plays an important role in delaying 

tumor growth. Immunohistochemistry stain for CD-31, an angiogenesis biomarker (see 

Figure 9), was performed on representative xenograft tumor sections to label vascular 

endothelial cells for the quantification of blood vessels.45 The average blood vessel count in 

the Wtmn NPs treatment group (in both H460 and PC3 xenograft tumors) was similar to that 

of the nontreatment control group (p = 0.45), whereas treatment with Dtxl NPs, a 

combination of Dtxl NPs and Wtmn NPs, or Dtxl/Wtmn NPs significantly reduced the 

number of blood vessels by up to 80% (p < 0.05). The number of blood vessels was reduced 

in the Dtxl-treated group because Dtxl efficiently stabilized the microtubules and inhibited 

microtubule depolymerization of vascular endothelial cells.46 In fact, a previous study found 

that endothelial cells in tumors are 100 times more sensitive to Dtxl treatment (second-

generation taxane) than paclitaxel treatment (first-generation taxane), and hence Dtxl more 

efficiently inhibits blood vessel growth.46 Radiotherapy was also very efficient at inhibiting 

blood vessel growth by about 60% (compared with the nontreatment control group, p < 0.01) 

because ionization radiation induced apoptosis (programmed cell death) of endothelial cells 

of blood vessels.47 However, the administration of Wtmn NPs for chemoradiotherapy did 

not significantly inhibit blood vessel growth (p = 0.53 versus the treatment group receiving 

only radiotherapy). The administration of Dtxl NPs, a combination of Dtxl NPs and Wtmn 

NPs, or Dtxl/Wtmn-coencapsulated NPs for CRT almost completely inhibited blood vessel 

growth due to the synthetic effect between radiotherapy and encapsulated Dtxl. The 

antiangiogenic effect of encapsulated Dtxl and radiotherapy was further confirmed by H&E 

histological study (see Figure S8) and Masson’s trichrome immunohistochemistry study, in 

which less porous collagen fibers, fibrin, and erythrocytes that inhibit drug uptake during 

chemotherapy are stained in blue (see Figure S9).46 The use of an antiangiogenic drug (e.g., 

Dtxl) and radiotherapy to control tumor angiogenesis and normalization of tumor local 

microenvironments was found to play a key role in controlling tumor growth and improve 

the uptake of anticancer drugs.46

Wtmn Rewired Cell Apoptotic Pathways and Enhanced Dtxl-Induced DNA Damage

DNA damage arising from ionization radiation and/or genotoxic chemotherapy drug (e.g., 

Dtxl, cisplatin) triggers programmed cell death (also known as apoptosis) if DNA-repairing 

proteins fail to repair the damage.19,20,23–25,28,36,48,49 The degree of DNA damage caused 

by chemotherapy and/or CRT can be quantified by γ-H2AX immunohistochemistry stain, a 

biomarker for DNA double-strand breaks. As shown in Figure 10, the administration of 

Wtmn NPs did not trigger any significant DNA damage compared with the control group. 

The administration of Dtxl NPs caused moderate DNA damage, with γ-H2AX 

phosphorylation increasing by about 30% compared with the control group in both cell lines. 
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This is attributed to the ability of Dtxl to stabilize microtubules and inhibit microtubule 

depolymerization via the γ-H2AX formation pathway. The administration of a combination 

of Dtxl NPs and Wtmn NPs or Dtxl/Wtmn-coencapsulated NPs significantly increased the 

γ-H2AX phosphorylation in both cell lines by about 55% and 65% (see Figure 10), 

respectively. This is because Wtmn rewired the cell apoptosis pathways and enhanced the 

therapeutic effect of Dtxl. The DNA damage increased after the administration of Dtxl/

Wtmn-coencapsulated NPs, as the tailor-made PEG–PLGA NPs precisely controlled the 

drug doses. Similar to previous studies,2,50 radiotherapy caused extensive DNA damage, as 

indicated by the increase of γ-H2AX phosphorylation by 66% and 45% for H460 and PC3 

tumors (see Figure 10), respectively. The administration of Dtxl NPs or Wtmn NPs in 

conjunction with radiotherapy further increased the γ-H2AX phosphorylation because both 

drugs act as radiosensitizers to inhibit other metabolic processes to repair DNA damage 

caused by ionization radiation: Dtxl inhibits DNA repair by stabilizing microtubules and 

inhibiting microtubule depolymerization,19,20,49 and Wtmn inhibits DNA repair by 

inhibiting key DNA repair proteins (including DNA-PK, KU-70, KU-80, and ATM).23–25,28 

The administration of a combination of Dtxl NPs and Wtmn NPs or Dtxl/Wtmn NPs for 

chemoradiotherapy increased the DNA damage due to dynamic rewiring of apoptotic 

pathways.26 The coadministration of both single-drug-loaded NPs increased γ-H2AX 

phosphorylation by about 120% compared with the control group in both tumors. The 

administration of Dtxl/Wtmn NPs further increased DNA damage with γ-H2AX 

phosphorylation by 160% and 150% versus the control group administration with PBS in 

H460 and PC3 tumors (see Figure 10), respectively. This improvement is likely due to the 

fact that co-delivery allows more precise control of drug dose and ensures that each tumor 

cell receives the desirable ratio of therapeutics.

The degree of early-stage apoptosis in H460 and PC3 xenograft tumors after receiving 

different treatments was investigated using caspase 3 (an early-stage apoptosis marker) 

immunohistochemistry stain51 on representative tumor sections (see Figure 11). Treatment 

with Dtxl NP or Wtmn NP did not significantly (p = 0.09) increase the caspase 3 activity 

compared with the nontreatment control group. Conversely, treatment with a combination of 

Dtxl NPs and Wtmn NPs or Dtxl/Wtmn-coencapsulated NPs significantly increased the 

caspase 3 activities by about 80% and 115%, respectively. The percentage increases in 

caspase 3 activities in both combination therapy treatment groups are significantly higher 

than the sum of those induced by both single-drug treatments. This quantitative 

immunohistological study confirms that the increases in apoptosis in both combination 

chemotherapy groups primarily resulted from dynamic rewiring of cell apoptosis pathways 

by Wtmn-encapsulated NPs and hence increased efficiency of Dtxl-induced cell death in 
vivo,26 which is consistent with the quantitative study of tumor growth delay in both cell 

lines. Ionization radiation induces cell death via caspase 3-dependent pathways.52 The use of 

8 Gy fractionated radiotherapy alone efficiently increased the caspase 3 activities by 60–

70% compared with those of the nontreatment group. Concurrent chemoradiotherapy 

treatment with Dtxl NPs did not significantly increase the caspase 3 activity (p = 0.29–0.33 

versus radiotherapy-only treatment groups), whereas chemoradiotherapy administered with 

Wtmn NPs slightly further increased the caspase 3 activity (p = 0.03–0.05 versus the 

radiotherapy-only treatment group in both cell lines) because Wtmn is a more efficient 
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radiosensitizer than Dtxl, as justified by the in vitro cologenic survival. Similar to 

chemotherapy, the caspase 3 activities after chemoradiotherapy treatments with a 

combination of Dtxl NPs and Wtmn NPs or Dtxl/Wtmn-coencapsulated NPs were 

significantly increased by 450–610% in the H460 cell line and 150–280% in the PC3 cell 

line compared with the control group, which is much higher than the sum of increase in 

caspase 3 activities as a result of radiotherapy and two single-drug treatments. This further 

confirms the dynamic rewiring effect of the encapsulated Wtmn. The increase in caspase 3 

activities in the Dtxl/Wtmn-coencapsulated NPs treatment group in both cell lines was 

significantly higher than that resulting from the coadministration of Dtxl NPs and Wtmn 

NPs (p = 0.01–0.03) in the chemotherapy and chemoradiotherapy groups. This histological 

study confirms our hypothesis that coencapsulation of two drugs in the same package is 

essential to precisely control the drug doses for rewiring of cell apoptosis pathways and thus 

enhances the efficiency of chemoradiotherapy.

CONCLUSIONS

Our study has demonstrated that dynamic rewiring of cell apoptosis pathways by sequential 

application of a cell signaling inhibitor (e.g., Wtmn) and a genotoxic anticancer agent (e.g., 

Dtxl) is an excellent strategy to improve CRT. We engineered near-monodisperse sub-50 nm 

diameter Dtxl and/or Wtmn (co)encapsulated PEG–PLGA NPs that can sequentially release 

encapsulated Wtmn and Dtxl. A time-dependent in vitro toxicity study revealed that small-

molecule Wtmn pretreatment (but not cotreatment or post-treatment) sensitized small-

molecule Dtxl and enhanced cell killing in fast-growing H460 lung cancer and slow-growing 

PC3 prostate cancer cell lines, which can be achieved by a single administration of the 

encapsulated Wtmn and Dtxl (either as a combination of two single-drug-loaded NPs or as 

dual-drug loaded NPs). A clonogenic survival assay demonstrated that a single 

administration of a therapeutic dose (i.e., IC50) of encapsulated Wtmn and Dtxl (either as a 

combination of two single-drug-loaded NPs or as dual-drug-loaded NPs) increased the 

efficiency of radiotherapy by nearly 100% and reduced the quasi-threshold doses by about 

50%, which can only be achieved by sequential in vitro application of small-molecule Wtmn 

and Dtxl.

Poor uptake of anticancer drugs is a major challenge in traditional chemotherapy. A time-

dependent in vivo fluorescent imaging study in H460 and PC3 tumor xenograft-bearing Nu 

mice indicated that tailor-made sub-50 nm diameter fluorescent-labeled PEG–PLGA NPs 

were rapidly taken up and approximately 35% of the administrated NPs were retained in 

xenograft tumors due to the enhanced permeability and retention (EPR) effect. 

Hepatotoxicity and hematologic toxicity studies demonstrated that encapsulation of 

cytotoxic Dtxl and Wtmn into the tailor-made PEG–PLGA NPs significantly reduced the 

systemic toxicities that were observed after the administration of their small-molecule 

counterparts. An in vivo tumor growth delay study demonstrated that co-delivered Dtxl and 

Wtmn via the novel PEG–PLGA NPs were more efficient in delaying xenograft tumor 

growth than coadministration of Dtxl NPs and Wtmn NPs. Histopathological studies 

revealed that Dtxl/Wtmn-coencapsulated NPs efficiently delayed tumor growth through 

inhibition of blood vessel growth, normalization of tumor local environment, enhancement 

of DNA damage induced by Dtxl and fractionated radiotherapy, and enhancement of 
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apoptosis induced by Dtxl and fractionated radiotherapy. Future studies will focus on 

identifying other novel combination of agents that are synergistic in CRT.

MATERIALS AND METHODS

Materials

Near-monodisperse (Mw/Mn < 1.5) methoxy poly(ethylene glycol)-block-poly(lactic-co-

glycolic acid) (PEG–PLGA) with molecular weights of 5000:10 000 (PEG(5K)–

PLGA(10K), cat. No. AK010) and 5000:55 000 (PEG(5K)–PLGA(55K), cat. no. AK026) 

were purchased from Akina, Inc. (West Lafayette, IN, USA). The viscosities of the 1:1 lactic 

acid/glycolic acid hydrophobic block of the PEG(5K)–PLGA(10K) and PEG(5K)–

PLGA(55K) were 0.16–0.24 and 0.61–0.74 dL/g (0.1 w/v % in chloroform), as provided by 

the manufacturer. Rhodamine B-labeled PLGA (MW ≈ 30 000, cat. no. AV11) was 

purchased from Akina, Inc. Docetaxel and wortmannin were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Acetonitrile (HPLC grade) and double-deionized (HPLC grade, 

submicrometer filtered) were purchased from Fischer Scientific (Hampton, NH, USA). 

Dulbecco’s phosphate buffer saline (0.1 M, PBS) was purchased from Gibco by Life 

Technologies (Carlsbad, CA, USA).

Preparation of Wtmn and/or Dtxl (Co)Encapsulated PEG–PLGA NPs

Wtmn and/or Dtxl (co)encapsulated PEG–PLGA NPs were prepared via a nanoprecipitation 

method. Briefly, small-molecule Wtmn and Dtxl with different target molar ratios, 

PEG(5K)–PLGA(10K), and PEG(5K)–PLGA(55K) were dissolved separately in acetonitrile 

at final concentrations of 1 mg/mL for free drug(s) and 20 mg/mL for both diblock 

copolymers, respectively. For a typical preparation of 10 mg drug-loaded PEG–PLGA NPs 

with 5 wt/wt % target drug loading, 250 μL of PEG(5K)–PLGA(10K) solution and 250 μL 

of PEG(5K)–PLGA(55K) solution were mixed with 500 μL of the dissolved drug solution 

via vortex mixer (3000 rpm, 30 s) and added dropwise (1 mL/min) into 3 mL of deionized 

water under constant stirring (1000 rpm). The mixture was stirred under vacuum at 20 °C for 

2 h to allow self-assembly. The resulting NPs were purified by washing four times using an 

Amicron Ultra-4 ultracentrifugation filter membrane (Millipore, Billerica, MA, USA) with a 

molecular weight cutoff at 30 kDa, and they were then resuspended in 0.1 M PBS.

Preparation of Rhodamine B-Labeled Empty PEG–PLGA NPs

Rhodamine B-labeled empty PEG–PLGA NPs were prepared via a nanoprecipitation 

method in the presence of 2.5 wt/wt % rhodamine B-conjugated PLGA (Rhod-PLGA(30K)). 

Briefly, 0.5 mg/mL of Rhod-PLGA, 20 mg/mL of PEG(5K)–PLGA(10K), and 20 mg/mL of 

PEG(5K)–PLGA(55K) were dissolved separately in acetonitrile via sonication (1 min). For 

the preparation of 10 mg of Rhod-labeled PEG–PLGA NPs, 500 μL of Rhod-PLGA and 250 

μL of each PEG–PLGA solution were mixed together via vortex mixer (3000 rpm, 30 s) and 

added dropwise (1 mL/min) to 3 mL of deionized water under constant stirring (1000 rpm). 

The mixture was stirred in the dark under vacuum for 2 h before being purified by 

ultrafiltration using an Amicron Ultra ultrafiltration membrane filter with a 30 000 nominal 

molecular weight cutoff (four times, 3000g for 15 min). After each washing, the NPs were 
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resuspended in 0.1 M PBS. The purified NPs were concentrated to 5 mg/mL before further 

use.

NP Characterization

Purified drug-free, single- and dual-drug-loaded PEG–PLGA NPs dispersed in 0.1 M PBS 

were fully characterized by TEM, NTA, DLS, and aqueous electrophoresis techniques. TEM 

images were recorded using a Zeiss TEM 910 transmission electron microscope operated at 

80 kV (Carl Zeiss Microscopy, LLC, Thornwood, NY, USA) in Microscopy Services 

Laboratory Core Facility at the UNC School of Medicine. Prior to TEM imaging, 

concentrated NP samples were diluted to 5 μg/mL by mixing with deionized water. A 5 μL 

portion of each diluted sample was mixed with 5 μL of 4% uranyl acetate aqueous solution 

before being added to a 400-mesh carbon-filmed copper grid via a pipet. Excess NP 

dispersion was removed by filter paper at the edge of the copper grid. The recorded TEM 

images were processed using ImageJ (NIH). Number-average diameter (Dn) was determined 

based on the average diameter of at least 150 particles from a representative TEM image. 

The mean number-average diameter and particle concentrations of different NP dispersions 

were determined by an NP-tracking analysis method recorded on a Nanosight NS500 

instrument (Malvern, Inc.) in the Microscopy Services Laboratory Core Facility at the UNC 

School of Medicine. All NP dispersions were diluted to 5 μg/mL prior to the NP-tracking 

analysis. Intensity-average diameter (Dh, also known as hydrodynamic diameter) and mean 

zeta potential (mean ζ) of NP dispersions were determined by dynamic light scattering and 

an aqueous electrophoresis method using a Zetasizer Nano ZS Instrument (Malvern, Inc.). 

Prior to the measurements, NPs were diluted to 1 mg/mL with 0.1 PBS. All measurements 

were based on the average of three separate measurements.

Drug-Loading Determination

Dtxl and Wtmn loading in the single- and dual-drug-loaded PEG–PLGA NPs was quantified 

using a Shimadzu SPD-M20A high-performance liquid chromatography (HPLC) instrument 

equipped with a diode array detector and a GP-C18 reverse-phase column (pore size = 120 

Å, 4.6 × 150 mm; Sepax Technology Inc., Newark, DE, USA). A linear gradient from 10% 

acetonitrile in water to 100% acetonitrile was run over 10 min. Then, 100% acetonitrile was 

run for 5 min. Finally, 10% acetonitrile in water was run for 5 min. The flow rate was 1 mL/

min, and detections were at 227 nm (retention time = 8.9 min) for Dtxl and 254 nm for 

Wtmn (retention time = 7.8 min). A 20 μL amount of each type of purified PEG–PLGA NPs 

(5 mg/mL) was mixed thoroughly with 180 μL of acetonitrile and left overnight at 5 °C to 

disrupt the NPs prior to HPLC analysis. Drug concentration was determined using standard 

curves. All measurements were performance in triplicate.

In Vitro Drug-Release Study

In vitro drug-release profiles of different single- and dual-drug-loaded NPs were recorded 

under sink conditions. NP solutions at a concentration of 5 mg/mL were split into Slide-A-

Lyzer MINI dialysis microtubes with a molecular cutoff of 10 kDa (Pierce, Rockford, IL, 

USA) and subjected to dialysis against a large excess of phosphate buffer saline (500 μL of 

NP dispersion per 1 L of 0.1 M PBS) with gentle stirring at 37 °C. PBS was changed 

periodically (every 6–12 h) during the process. At the indicated times, 20 μL of solution was 
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removed from the microtubes and mixed with 180 μL of acetonitrile to dissolve the NPs. 

Dtxl and Wtmn contents were determined used a Shimadzu SPD-M20A HPLC instrument 

using mentioned experimental settings and quantified using Dtxl and Wtmn standard curves. 

All measurements were performed in triplicate. Drug-release profiles were fitted to an 

empirical Weibull model, where the cumulative percentage of the drug released (Q(t)/Q0) at 

time t is given by the following equation:32

(1)

where tlag is the lag time before drug release takes places, tscale is the time scale for the 

release process, and b characterizes the shape of the drug-release curve: b < 1 represents 

burst release, b ≈ 1 represents an intermediate-release profile, and b > 1 represents sigmoidal 

release. Drug-release half-life (t1/2) is defined as the time for half of the encapsulated drug to 

be released.

Cell Culture

H460 non-small-cell lung cancer cells and PC3 prostate cancer cells were obtained from 

American Type Culture Collection (ATCC). H460 cells were cultured using RPMI-1640 

medium supplemented with 10% (v/v) FBS, 2 mM glutamine, 1.5 g/L sodium bicarbonate, 

10 mM HEPES buffer (Corning), 1 mM sodium pyruvate, 1% (v/v) penicillin/streptomycin, 

and 4.5 g/L glucose (Sigma). PC3 cells were cultured in a 1:1 mixture of DMEM and Ham’s 

F-12 medium (Gibco) supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/

streptomycin (Sigma). The cell density of trypsinized cancer cells was determined by an 

Orflo Moxi Z Mini automated cell counter (Orflo, Ketchum, ID, USA). Phenol red-free 

culture media were used in all fluorescent imaging studies.

In Vitro Cytotoxicity

In vitro toxicities of different drug formulations were evaluated using a cell viability assay. 

In a 96-well plate, 1 × 104 H460 or PC3 cells were plated 24 h prior to treatment with drug-

free PEG–PLGA NPs or small-molecule or encapsulated Dtxl/Wtmn in 1:0, 4:1, 8:1, and 0:1 

molar ratios. [It was determined that the number of H460 and PC3 cells increased from 1 × 

104 cells per well to 1.43 × 104 and 1.15 × 104 cells per well, respectively, after being plated 

in the 96-well plate under the given experimental conditions.] For non-time-dependent 

studies, cancer cells were treated with 1 nM to 40 μM small-molecule or encapsulated 

drug(s) at 37 °C for 2 h. The cells were washed with PBS and allowed to grow in complete 

cell culture media for 72 h. For time-dependent drug treatment studies, the cells were treated 

with the first small-molecule drug for 2 h and washed three times with PBS before being 

treated with the second drug. In both cases, cells were washed with PBS and allowed to 

grow in complete cell culture medium for 72 h. Cell viability was then analyzed using an 

MTS assay according to the manufacturer’s (Promega) instructions. The absorbance at 492 

nm (directly reflects cell viability) was recorded using a 96-well plate reader (Infinite 200 

Pro, Tecan i-control). The IC50 of different treatments was calculated by fitting the dose-

dependent cell viabilities to a four-parameter logistic (4 PL) model using the MasterPlex 
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2010 software pack (MiraiBio Group, Hitachi Solutions America, Ltd.). Student’s t test was 

performed for statistical analysis.

Clonogenic Survival Assay

A 1 × 106 amount of H460 and PC3 cells was seeded in 15 mL of culture medium in a 75 

mL flask overnight before treatment. For non-time-dependent studies, cells were treated with 

therapeutic doses (IC50) of small-molecule or encapsulated drugs for 2 h and washed three 

times with cold PBS. For time-dependent drug treatment studies, the cells were treated with 

the first small-molecule drug for 2 h and washed three times with PBS before being treated 

with the second drug for another 2 h. In both cases, cells were trypsinized and resuspended 

in cold complete culture medium. The 25 mL cell mixtures with densities ranging from 100 

to 10 000 cells per mL were transferred to 50 mL centrifuge tubes and irradiated with 0, 2, 4, 

6, and 8 Gy from an X-RAD 320 (Precision X-ray) machine operating at 320 kVp and 12.5 

mA. The irradiated cells were transferred to 5 mL flasks (each with 5 mL of irradiated cells) 

and allowed to grow for 14 days. After the removal of the culture medium, colonies were 

fixed in 4% (v/v) neutral buffered formalin and stained with trypan blue. All colonies with 

over 50 cells were counted. The quasi-threshold dose (Dq) and the dose required to achieve a 

survival fraction of 0.1 were determined using the CS-Cal clonogenic survival calculation 

software pack (http://angiogenesis.dkfz.de/oncoexpress/software/cs-cal/index.htm) by fitting 

the radiation dose-dependent number of colonies into the linear-quadratic equation.38

In Vitro Cellular Uptake Study

For the time-dependent NP uptake study, 1 × 104 H460 or PC3 cells were plated in a 96-well 

fluorescent imaging plate (Greiner) for 24 h prior to the application of 50 μg/mL of Rhod-

labeled PEG–PLGA NPs (100 μL per well). [It was determined that the number of H460 and 

PC3 cells increased from 1 × 104 cells per well to 1.43 × 104 and 1.15 × 104 cells per well, 

respectively, after being plated in a 96-well plate under the given experimental conditions.] 

At a desired time, the NPs were removed, washed three times with PBS, and fixed with 4% 

(v/v) neutral buffered formalin. The uptake of Rhod-labeled PEG–PLGA NPs was 

determined via a 96-well plate reader (Infinite 200 Pro, Tecan i-control) using an excitation 

wavelength of 535 nm and an emission wavelength of 595 nm. For the concentration-

dependent NP uptake study, 1 × 104 H460 or PC3 cells were plated in a 96-well fluorescent 

imaging plate (Greiner) for 24 h prior to the application of 1 to 500 μg/mL of Rhod-labeled 

PEG–PLGA NPs (100 μL per well). [It was determined that the number of H460 and PC3 

cells increased from 1 × 104 cells per well to 1.43 × 104 and 1.15 × 104 cells per well, 

respectively, after being plated in a 96-well plate under the given experimental conditions.] 

The NPs were removed after being incubated for 2 h, washed three times with PBS, and 

fixed with 4% (v/v) neutral buffered formalin. The fluorescence NPs’ uptake was determined 

using a 96-well plate reader (Infinite 200 Pro, Tecan i-control) using an excitation 

wavelength of 535 nm and emission wavelength of 595 nm. The fluorescent imaging study 

was performed in an eight-well culture slide (Fischer). A total of 1 × 104 H460 or PC3 cells 

were plated in an eight-well culture slide (Fischer) for 24 h prior to the application of 5 

μg/mL of Rhod-labeled PEG–PLGA NPs (100 μL per well). After being incubated for 30 

min, the NPs were removed, washed three times with PBS, and fixed with 4% (v/v) neutral 

buffered formalin; then 4′,6-diamidino-2-phenylindole (DAPI/Antifade solution; EHD 
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Millipore) was added to label the nucleus. The cell culture slide was imaged on a Zeiss 

CLSM 710 spectral confocal laser scanning microscope in the Microscopy Services 

Laboratory Core Facility at the UNC School of Medicine.

In Vivo Studies

Animals were maintained in the Center for Experimental Animals (an AAALAC-accredited 

experimental animal facility) under sterile environments at the University of North Carolina. 

All procedures involving experimental animals were performed in accordance with the 

protocols approved by the University of North Carolina Institutional Animal Care and Use 

Committee and conformed to the Guide for the Care and Use of Laboratory Animals (NIH 

publication no. 86-23, revised 1985).

In Vivo Tumor Uptake and Biodistribution Study

Tumor uptake and biodistribution of iv-administered Rhod-labeled PEG–PLGA NPs were 

determined by an in vivo fluorescence imaging method. Xenograft tumors were inoculated 

in the left flank of male athymic nude mice (6–7 weeks old, 29–30 g; UNC Animal Services 

Core, Chapel Hill, NC, USA) by subcutaneous (sc) injection of 1 × 106 H460 or PC3 cells in 

200 μL of a 1:1 (v/v) mixture of serum-free RPMI-1640 (for H460 cells) or a 1:1 mixture of 

DMEM and Ham’s F-12 medium/Matrigel solution. Ten (for H460 xenograft tumor-bearing 

mice) or 14 (for PC3 xenograft tumor-bearing mice) days after tumor inoculation, each 

mouse was given a tail-vein iv injection of 165 mg/kg of Rhod-labeled PEG–PLGA NPs 

(200 μL). Whole-body fluorescent images were recorded before, 5 min after, and 3, 6, 9, 24, 

and 48 h after iv administration of the Rhod-labeled PEG–PLGA NPs via an IVIS Kinetic 

Imaging System (Caliper Life Sciences, Hopkiton, MA, USA) equipped with an excitation 

filter of 570 nm and an emission filter of 600 nm in the Small Animal Imaging Facility at the 

UNC School of Medicine. All imaging parameters were kept constant for the whole imaging 

study. Region-of-interest values were recorded using Living Image software as photon flux 

(also known as radiance) in total photon count per centimeter-squared per steradian (p s−1 

cm−2 Sr−1). All mice were euthanized 48 h after the live animal imaging study by overdose 

of carbon dioxide. Xenograft tumor, liver, kidney, spleen, heart, and lung were immediately 

preserved for an ex vivo biodistribution study via an IVIS Kinetic Imaging System using the 

previously mentioned imaging parameters. The xenograft tumors were fixed in 4% (v/v) 

neutral buffered formalin at 5 °C for 2 days, then 40% ethanol at 5 °C for another 2 days 

before being sectioned. Tumor sections were stained with DAPI to label the nucleus. The 

tumor sections were imaged on a Zeiss CLSM 710 Spectral confocal laser scanning 

microscope in the Microscopy Services Laboratory Core Facility at the UNC School of 

Medicine.

In Vivo Toxicity Study

In vivo toxicity of different small-molecule formulations and nanoformulations were 

evaluated in healthy tumor-free CD 1 mice. In the in vivo study, 10-week-old male CD1 

mice (Charles River Laboratory, Durham, NC, USA) were given a tail-vein iv injection of 

200 μL of PBS, 4% v/v of acetonitrile in PBS (acetonitrile was used to dissolve small-

molecule drugs prior to iv injection), 165 mg/kg of empty PEG–PLGA NPs, 1.9 mg/kg of 

small-molecule/(co)encapsulated Dtxl, and/or 0.25 mg/kg of small-molecule/
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(co)encapsulated Wtmn (1/10th of the MTD of an individual drug). Each mouse was 

anesthetized 72 h after iv injection via sc injection of 100 μL of a ketamine hydrochloride/

xylazine hydrochloride solution (Sigma). Circulating blood (about 0.6 mL) was collected 

directly from the heart. A 100 μL amount of each whole-blood sample was stored in an 

EDTA-coated tube and stored at 5 °C prior to blood toxicity study in the Animal Clinical 

Laboratory Core Facility at the UNC Medical School. A 400 μL portion of each whole-

blood sample was transferred to a microcentrifuge tube and stored at room temperature for 

20 min before being centrifuged at 3000g (5 min) to separate the red blood cells from the 

plasma. The isolated plasma was stored at 5 °C before being submitted to the Animal 

Clinical Laboratory Core Facility at the UNC Medical School for hepatotoxicity studies.

In Vivo Anticancer Efficiency

Xenograft tumors were inoculated in the left flank of male athymic nude mice (6–7 weeks 

old, 28–30 g; UNC Animal Services Core, Chapel Hill, NC, USA) by sc injection of 1 × 106 

H460 or PC3 cells in 200 μL of a 1:1 (v/v) mixture of serum-free RPMI-1640 (for H460 

cells) or a 1:1 mixture of DMEM and Ham’s F-12 medium/Matrigel solution. Ten days (for 

H460 xenograft tumor) or 14 days (for PC3 xenograft tumor) after tumor inoculation, the 

mice were randomly distributed into 16 groups (5 or 6 per group) for different treatments. 

Prior to treatment, all mice were ear-tagged, the initial tumor volumes were measured by a 

caliper, and the average body weights were recorded. For the chemotherapy treatment 

groups, the mice received a single tail-vein iv administration of either 200 μL of PBS 

(control group), 33 mg/kg of drug-free (“empty”) PEG–PLGA NPs, 0.38 mg/kg of 

encapsulated Dtxl, 0.05 mg/kg of encapsulated Wtmn, or 0.38 mg/kg of encapsulated Dtxl 

and 0.05 mg/kg of encapsulated Wtmn (either a combination of two single-drug-loaded NPs 

or dual-drug-loaded NPs). For the concurrent CRT groups, mice received a total of 8 Gy of 

fractionated radiation at 3 and 15 h (4 Gy in each section) after chemotherapy. In vivo 
radiotherapy was performed in a Precision X-RAD 320 (Precision X-ray, Inc.) machine 

operating at 320 kVp and 12.5 mA. The source–subject distance was 70 cm, and the dose 

rate was 50 cGy/min. Only the tumor regions (left flank) of the mice were irradiated, as the 

remaining parts of the body were lead-shielded. Tumor volume was measured every 2–3 

days via a caliper. Tumor volumes were calculated by measuring two perpendicular 

diameters with a caliper and by using the formula V = 0.5 × a × b2, where a and b are the 

larger and smaller diameters, respectively. The initial tumor volumes for H460 and PC3 

xenograft tumors were found to be 67 ± 4 and 54 ± 4 mm3, respectively. Tumor growth for 

different treatment modalities was monitored until the large diameter increased to above 20 

mm or the volume increased to above 40 times its initial volume, at which point the animals 

were euthanized by overdose of carbon dioxide.

The average growth delay, normalized growth delay (NGD), and enhancement factor 

determined for the CRT groups were defined and calculated according to a well-documented 

method.19,20 Briefly, AGD is equal to the number of days it took for the tumor in the treated 

group to grow to 40 times its initial volume minus the time for the tumor in the untreated 

control group (administrated with PBS only) to reach the same size. NGD was defined as the 

time for the tumor in the CRT treatment groups to grow to 40 times its initial volume minus 

the time for the tumor in the chemotherapy-only treatment groups to grow to 40 times its 
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initial volume. EF equals the ratio of the NGD of a particular treatment group to the AGD of 

the treatment group receiving only radiotherapy.

The tumor growth of PC3 xenograft tumor-bearing mice receiving CRT with encapsulated 

Dtxl and Wtmn (either a combination of two single-drug-loaded NPs or dual-drug-loaded 

NPs) was further monitored using a Vevo-2100 ultrasound instrument (Visualsonics Inc.) in 

the Small Animal Imaging Facility at UNC School of Medicine. Tumors were collected at 

the study end-point (122 days after treatment) and fixed in 4% (v/v) neutral buffered 

formalin at 5 °C for 2 days and 40% ethanol at 5 °C for another 2 days before being 

submitted to the Animal Histopathology Core Facility at the UNC Medical School for 

hematoxylin and eosin staining via a biological tissue automatic staining machine. 

Representative tumor sections were imaged using an Olympus IX 81 inverted wide-field 

light microscope in the Microscopy Services Laboratory at the UNC Medical School.

Tumor Histology

Xenograft tumors were inoculated in the left flank of male athymic nude mice (6–7 weeks 

old, 29–30 g; UNC Animal Services Core) by sc injection of 1 × 106 H460 or PC3 cells in 

200 μL of a 1:1 (v/v) mixture of serum-free RPMI-1640 (for H460 cells) or a 1:1 mixture of 

DMEM and Ham’s F-12 medium/Matrigel solution. Ten days (for H460 xenograft tumor) or 

14 days (for PC3 xenograft tumor) after tumor inoculation, the mice were randomly 

distributed into 16 groups (3 per group) for different treatments. Prior to treatment, all mice 

were ear-tagged, the initial tumor volumes were measured by a caliper, and the average body 

weights were recorded. For the chemotherapy treatment groups, mice received a single tail-

vein iv administration of either PBS (control group), 33 mg/kg of drug-free (“empty”) PEG–

PLGA NPs, 0.38 mg/kg of encapsulated Dtxl, 0.05 mg/kg of encapsulated Wtmn, or 0.38 

mg/kg of encapsulated Dtxl and 0.05 mg/kg of encapsulated Wtmn (either a combination of 

two single-drug-loaded NPs or dual-drug-loaded NPs). For the concurrent CRT groups, mice 

received a total of 8 Gy of fractionated radiation at 3 and 15 h (4 Gy in each section) after 

chemotherapy. In vivo radiotherapy was performed in a Precision X-RAD 320 (Precision X-

ray, Inc.) machine operating at 320 kVp and 12.5 mA. The dose rate was at a source–subject 

distance of 70 cm and was 50 cGy/min. Only the tumor regions (left flank) of the mice were 

irradiated, as remaining parts of the body were lead-shielded. Four days after the initial 

treatment, mice were euthanized by overdose of carbon dioxide. Tumors were collected and 

fixed in 4% (v/v) neutral buffered formalin at 5 °C for 2 days and 40% ethanol at 5 °C for 

another 2 days before being submitted to the Animal Histopathology Core Facility at the 

UNC Medical School for H&E and Masson’s trichrome staining. CD31, γ-H2AX, and 

caspase-3 immunohistochemistry staining was performed using biological tissue automatic 

staining machines in the Translational Pathology Lab at the UNC Medical School. 

Antibodies (CD31 from Abcam, Cambridge, MA, USA; γ-H2AX from Santa Cruz 

Biotechnology, Dallas, TA, USA; caspase-3 from Cell Signaling Technology, Danvers, MA, 

USA) were diluted to desired concentrations in accordance with manufacturers’ instructions 

before immunohistochemistry staining via automatic staining machines. All 

immunohistochemistry-stained slides were costained with Hoechst stain to label the nuclei. 

H&E-, Masson’s trichrome-, and CD-31-staind tumor sections were imaged using an 

Olympus IX 81 inverted wide-field light microscope in the Microscopy Services Laboratory 
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at the UNC Medical School. γ-H2AX and caspase-3 immunohistochemistry-stained tumor 

sections were imaged on a Zeiss CLSM 710 spectral confocal laser scanning microscope in 

the Microscopy Services Laboratory Core Facility at the UNC School of Medicine. Confocal 

fluorescent images were processed using ImageJ (NIH).

Statistical Analysis

Quantitative data were expressed as mean ± SEM. The analysis of variance was completed 

using a one-way ANOVA in the Graph Pad Prism 6 software pack. p < 0.5 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Synthesis and characterization of single- and dual-drug-loaded PEG–PLGA NPs. (a) 

Synthesis of single- and dual-drug-loaded PEG–PLGA NPs via nanoprecipitation of 4:1 

mol/mol (1:1 wt/wt) of PEG(5K)–PLGA(10K) and PEG(5K)–PLGA-(55K) diblock 

copolymers in the presence of 5 wt/wt % of Dtxl and/or Wtmn in 1:0, 3:2, 3:1, or 0:1 molar 

ratios. The target drug loading was 5 wt/wt %. The insets show the chemical structures, 

molecular weights, and hydrophobicity constants (log P) of Dtxl and Wtmn. (b) 

Representative TEM images of (i) drug-free (“empty”) PEG–PLGA NPs, (ii) Dtxl NPs, (iii) 

Wtmn NPs, (iv) 4:1 mol/mol Dtxl/Wtmn coencapsulated NPs,† (v) 8:1 mol/mol Dtxl/Wtmn 

coencapsulated NPs,† and (vi) drug-free Rhod-labeled PEG–PLGA NPs prepared in the 

presence of 2.5 wt/wt % of Rhod-labeled PLGA(30K). The insets show the corresponding 

number-average distribution curve. (c) Number-average diameter (Dn) distribution curve 

recorded for the empty PEG–PLGA NPs (dispersed in 0.1 M PBS) determined by the NTA 

technique. (d) Intensity-average diameter (Dh) distribution curve recorded for the empty 

PEG–PLGA NPs determined by the DLS technique. (e) Zeta potential distribution curve 
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recorded for the empty PEG–PLGA NPs dispersed in 0.1 M PBS, as determined by the 

aqueous electrophoresis method. (f) UV–visible absorption and fluorescence spectrum of 1 

mg/mL of the drug-free Rhod-labeled PEG–PLGA NPs. (N.B. †Actual Dtxl and Wtmn 

molar ratio. The fluorescence spectrum was recorded at an excitation wavelength of 500 

nm.)
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Figure 2. 
In vitro drug-release kinetics of Dtxl NPs, Wtmn NPs, 4:1 mol/mol of Dtxl/Wtmn NPs, and 

8:1 mol/mol of Dtxl/Wtmn NPs under sink physiological conditions, as determined by the 

quantitative HPLC method.
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Figure 3. 
In vitro drug toxicity of small-molecule and encapsulated drugs. IC50 of small-molecule 

(“free”) drugs and single/dual-drug-encapsulated PEG–PLGA NPs in (a) H460 lung cancer 

and (b) PC3 prostate cancer cell lines, as determined by the MTS assay. (N.B. n.s. denotes 

statistical nonsignificance; * denotes p < 0.05, i.e., statistical significance.)
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Figure 4. 
In vitro radiosensitizing efficiencies of small-molecule and encapsulated drugs. Radiation 

dose-dependent clonogenic survival curves recorded for (a) H460 lung cancer and (b) PC3 

prostate cancer cells after being treated with therapeutic dose (i.e., IC50; see Table S3) of (i) 

small-molecule (“free”)/encapsulated Wtmn or Dtxl, (ii) small-molecule Dtxl and Wtmn in 

different administration orders, and (iii) encapsulated Dtxl and Wtmn (either dual-drug-

loaded NPs or a combination of two single-drug-loaded NPs. (N.B. n.s. denotes statistical 

nonsignificance; * denotes p < 0.05, i.e., statistical significance.)
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Figure 5. 
In vivo tumor uptake and biodistribution of PEG–PLGA NPs in healthy tumor-free and 

H460 and PC3 xenograft tumor-bearing mice. (a) Representative time-dependent in vivo 
fluorescence images of (i) H460 and (ii) PC3 xenograft tumor-bearing Nu mice recorded 

preinjection and 5 min to 48 h after tail vein injection of 165 mg/kg of Rhod-labeled PEG–

PLGA NPs. The blue circles highlighted the xenograft tumors inoculated in the left flank of 

the Nu mice. The photon flux measured at an excitation wavelength of 570 nm and an 

emission wavelength of 600 nm is directly proportional to the concentration of Rhod-labeled 
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PEG–PLGA NPs in tissue. (b) Time-dependent photon flux recorded at the tumor site of 

H460 and PC3 tumor-bearing mice after iv administration of Rhod-labeled PEG–PLGA 

NPs. (c) Plot of total photon flux recorded at the tumor site as a function of time in the H460 

and PC3 xenograft tumor-bearing mice. The total photon flux is directly proportional to the 

amount of PEG–PLGA NPs the tumor takes up (n = 3 per group). (d) Biodistribution of 

Rhod-labeled PEG–PLGA NPs in tumor and mononuclear phagocyte system (liver, kidney, 

spleen, heart, and lung) of xenograft tumor-bearing and healthy Nu mice recorded 48 h 

postadministration, as determined by a quantitative ex vivo fluorescence imaging method. 

(d) Representative wide-field fluorescence images of (i) H460 and (ii) PC3 xenograft tumor 

sections collected 48 h postinjection of Rhod-labeled PEG–PLGA NPs. The nuclei were 

stained with DAPI (blue). Uneven uptake of the Rhod-labeled NPs (red) can be observed in 

both wide-field fluorescent images, where some regions have saturated Rhod-fluorescence 

signals (labeled as “H”) due to accumulation of a larger amount of Rhod-labeled NPs, and 

some regions have lower NP uptake (labeled as “L”).
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Figure 6. 
Hepatotoxicity and hematologic toxicity of small-molecule and encapsulated drugs. Plasma 

(a) aspartate transaminase (AST) and (b) alanine transaminase (ALT) levels recorded for 

healthy tumor-free CD1 mice 4 days after iv administration of PBS (control), 0.1 v/v % 

acetonitrile (ACN) in PBS (ACN was used to dissolve hydrophobic small-molecule drug(s) 

before being diluted with PBS for iv injection, control), 165 mg/kg of drug-free “empty” 

PEG–PLGA NPs, 1.91 mg/kg of free/(co)encapsulated Dtxl, and/or 0.25 mg/kg of free/

(co)encapsulated Wtmn (1/10th of the maximum tolerated dose of individual drug). The 

yellow region highlights the normal ranges of plasma AST and ALT levels.44 (c) 

Hematogical toxicity parameters of drug-free (“empty”) PEG–PLGA NPs and small-

molecule and (co)encapsulated Dtxl and Wtmn at one-tenth the MTD of the individual drug. 

(N.B. n.s. denotes statistical nonsignificance; * denotes p < 0.05, i.e., statistical 

significance; † denotes below or above the normal range).
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Figure 7. 
In vivo treatment efficiencies of different nanoformulations for combination chemotherapy 

and concurrent CRT in H460 xenograft tumor-bearing mice. (a and b) Tumor growth delay 

curves recorded for H460 tumor-bearing mice (n = 5–6 per group) after a single course of (a) 

chemotherapy and (b) concurrent chemotherapy treatment with 200 μL of PBS (control 

group), 33 mg/kg of drug-free empty PEG–PLGA NPs, 0.38 mg/kg of encapsulated Dtxl, 

0.05 mg/kg of encapsulated Wtmn, or 0.05 mg/kg of encapsulated Wtmn and 0.38 mg/kg of 

encapsulated Dtxl (either dual-drug-loaded NPs or a combination of two single-drug-loaded 

NPs). Mice in the CRT groups received 8 Gy of fractionated radiotherapy (XRT) at 4 and 15 

h (4 Gy radiation in each treatment) after iv administration of different chemotherapy agents. 

All treatments were performed 10 days after tumor inoculation, and the average initial tumor 

volume (Vi) before treatment was 67 ± 4 mm3. (c) Kaplan–Meier survival analysis for 

xenograft tumors to reach 40 times their initial volume (volume, V ≈ 2600 mm3). (N.B. n.s. 

denotes statistical nonsignificance; * denotes p < 0.05, i.e., statistical significance.)
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Figure 8. 
In vivo treatment efficiencies of different nanoformulations for combination chemotherapy 

and concurrent chemoradiotherapy in PC3 xenograft tumor-bearing mice. (a and b) Tumor 

growth delay curves recorded for PC3 tumor-bearing mice (n = 5 per group) after a single 

course of (a) chemotherapy and (b) concurrent chemotherapy treatment with PBS (control 

group), 33 mg/kg of drug-free empty PEG–PLGA NPs, 0.38 mg/kg of encapsulated Dtxl, 

0.05 mg/kg of encapsulated Wtmn, or 0.05 mg/kg of encapsulated Wtmn and 0.38 mg/kg of 

encapsulated Dtxl (either dual-drug-loaded NPs or a combination of two single-drug-loaded 

NPs). Mice in the concurrent chemoradiotherapy (CRT) groups received 8 Gy of 

fractionated radiotherapy (XRT) at 4 and 15 h (4 Gy of radiation in each treatment) after iv 

administration of different chemotherapy agents. All treatments were performed 14 days 

after tumor inoculation, and the average initial tumor volume (Vi) before treatment was 54 

± 4 mm3. (c) Kaplan–Meier survival analysis for xenograft tumors to reach 40 times their 

initial volume (volume, V ≈ 2600 mm3). (N.B. n.s. denotes statistical nonsignificance; * 

denotes p < 0.05, i.e., statistical significance.)
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Figure 9. 
Antiangiogenic activities of encapsulated Dtxl and Wtmn in H460 and PC3 xenograft 

tumors. (a) Representative optical micrographs of CD31 anitbody-stained tumor section 

collected from xenograft tumor-bearing mice 4 days after iv administration of Dtxl NPs, 

Wtmn NPs, a combination of Dtxl NPs and Wtmn NPs, or Dtxl/Wtmn-coencapsulated NPs 

for chemotherapy/chemoradiotherapy. The immunohistological stain labels vascular 

endothelial cells in brown for blood-vessel-counting purposes. (b) Blood vessel counts of 

different chemotherapy and chemoradiotherapy treatment group tumors (n = 3 per group).
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Figure 10. 
DNA damage in H460 and PC3 xenograft tumors induced by chemotherapy or 

chemoradiotherapy. (a) Representative confocal fluorescent images of γ-H2AX antibody-

stained tumor sections collected 4 days after iv administration of Dtxl NPs, Wtmn NPs, a 

combination of Dtxl NPs and Wtmn NPs, or Dtxl/Wtmn-coencapsulated NPs for 

chemotherapy/chemoradiotherapy. The γ-H2AX antibody (red) binds to the double-strand 

DNA breaks (foci), allowing quantification of DNA damage caused by chemotherapy and/or 

radiotherapy. The nuclei were stained with Hoechst stain (blue). (b) Plot of percentage 

increase in γ-H2AX activity (γ-H2AX fluorescence intensity) of different treatment group 

tumor sections compared with control group tumor sections (n = 3 per group).
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Figure 11. 
Early-stage apoptosis signal in H460 and PC3 xenograft tumors after different chemotherapy 

or chemoradiotherapy treatments. (a) Representative confocal fluorescent images of caspase 

3 antibody-stained tumor sections collected 4 days after iv administration of Dtxl NPs, 

Wtmn NPs, a combination of Dtxl NPs and Wtmn NPs, or Dtxl/Wtmn-coencapsulated NPs 

for chemotherapy/chemoradiotherapy. Caspase 3 cleavage (red) represents early-stage 

apoptosis in cancer cells. The caspase 3 fluorescence intensity (red) is directly proportional 

to the apoptosis activities in tumor. The nuclei were stained with Hoechst stain (blue). (b) 
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Plot of increase in caspase 3 activity versus nontreatment control group (and hence the 

apoptosis activities) of different treatment group tumors (n = 3 per group).
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