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Abstract

The exponential rise in the number of functional brain connectivity studies, particularly those 

examining intrinsic functional connectivity (iFC) at rest, and the promises of this work for 

unraveling the ontogeny of functional neural systems motivate this review. Shortly before this 

explosion in functional connectivity research, developmental neuroscientists had proposed theories 

based on neural systems models to explain behavioral changes, particularly in adolescence. The 

current review presents recent advances in imaging in brain connectivity research, which provides 

a unique tool for the study of neural systems. Understanding the potential of neuroimaging for 

refining neurodevelopmental models of brain function requires a description of various functional 

connectivity approaches. In this review, we describe task-based and resting-state functional 

magnetic resonance imaging (fMRI) analytic strategies, but we focus on iFC findings from 

resting-state data to describe general developmental trajectories of brain network organization. 

Finally, we use the example of drug addiction to frame a discussion of psychopathology that 

emerges in adolescence.
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INTRODUCTION: ADOLESCENT BEHAVIORAL, PHYSIOLOGICAL, AND 

NEURAL DEVELOPMENT

In this section, we describe the complexity of one critical stage of development, 

adolescence, to set the stage for the rationale underlying the need to understand functional 

brain development, particularly during this time window. The field of functional brain 

connectivity is rapidly evolving but is still so young that it would be premature to address in 

a review the specific transition period of adolescence in terms of specifically changing 
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networks. Nonetheless, we hope that this initial clinical description of adolescence will 

inspire researchers to use some of the techniques described below to further examine this 

pivotal period, which seems to be most vulnerable for the development of psychopathology. 

We end this review with a look at how changes in functional brain connectivity could 

contribute to a vulnerability to drug addiction in adolescence.

Adolescence is a transitional period linking childhood to adulthood. The definition of this 

period varies, but it is commonly anchored to the start of puberty (~9–11 years of age in 

girls and 11–13 in boys) and ends at the age of legal adulthood (Adkins 2013). Adolescence 

is characterized by considerable changes in multiple domains (i.e., physical, neurobiological, 

cognitive, emotional, motivational, and social). For example, goal-directed behaviors are 

executed faster in comparison with adults, motoric and cognitive inhibitions are facilitated, 

and working memory is improved (Bedard et al. 2002, Ernst & Mueller 2008, Gathercole et 

al. 2004, Munoz & Istvan 1998, Williams et al. 1999). Concurrently, impulsivity, emotional 

lability, and risk taking increase during this transition period before tapering down in 

adulthood (Arnett 1999, Buchanan et al. 1992, Dahl 2004, Ernst et al. 2006, Hardin & Ernst 

2009). These latter changes, when extreme, can have potentially dramatic consequences, 

such as drug addiction, serious car accidents, sexually transmitted infections, and unplanned 

pregnancies (Kann et al. 2014). In addition, these adolescent changes are concomitant with 

the peak incidence of many psychiatric disorders, including mood and anxiety disorders 

(Angold & Costello 2006, Kessler et al. 2005).

Of particular relevance, these behavioral transformations have been considered in light of 

large structural brain reorganizations, which can be hormone dependent or hormone 

independent. Structural neuroimaging studies describe a prepubertal increase followed by a 

postpubertal decrease in total gray matter volume (e.g., Gogtay & Thompson 2010). These 

findings have been refined to show distinct trajectories across specific regions, with 

inflection points earliest in temporal cortex (11 years of age in boys and 11.8 years in girls), 

later in frontal cortex (12.1 years in boys and 11 years in girls), and latest in temporal cortex 

(16.5 years in boys and 16.7 years in girls). The prepubertal rise in gray matter volume has 

been associated with intense synaptogenesis (O’Muircheartaigh et al. 2013), and the 

postpubertal decline with synaptic pruning (e.g., Bourgeois & Rakic 1993). In parallel with 

these changes, structural studies also document linear increases in white matter volume and 

density across adolescence (Giedd et al. 1999, Lenroot et al. 2007), which are attributed to 

increases in axonal caliber and myelination (Mädler et al. 2008, Paus 2005, Snook et al. 

2005). Finally, investigators measuring surface morphology have reported increases in brain 

gyrification, putatively reflecting axonal growth and biomechanical tensions during brain 

expansion (Blanton et al. 2001). These developmental shifts in brain structure converge to 

increase the efficiency and specificity of information exchange across the brain.

Aspects of these local changes can be captured at the gross spatial scale visible with human 

magnetic resonance imaging (MRI); they are also reflected in functional changes observable 

with human functional MRI (fMRI) studies (e.g., Rubia 2013). Activation studies identify 

brain regions involved in specific cognitive processes associated with the tasks that 

individuals perform in the scanner (e.g., Richards et al. 2013). Functional connectivity 

studies, however, extend these local findings to network changes by testing and exploring 
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neural networks across which information is shared and integrated. These advances are 

particularly relevant in testing the neural systems models that have been proposed to 

describe neural changes underlying adolescent behavioral patterns, such as risk taking, 

novelty seeking, and increasing emotional intensity (Casey et al. 2011, Ernst et al. 2014, 

Ernst & Fudge 2009, Steinberg et al. 2008). These models posit a distinct functional 

equilibrium among two (Casey et al. 2011) or three (Ernst et al. 2006) distributed networks 

based on the relative degree of maturation of these networks. For example, Casey and 

colleagues (2011) describe a cognitive control system within the prefrontal cortex, which 

lacks efficiency to regulate the reward-related system centered within the striatum and which 

is particularly active in adolescence. The triadic model (Ernst et al. 2006) adds a third 

network to these two networks, the avoidance-related network, which codes preferentially 

negative emotions and is centered within the amygdala. The triadic model was developed to 

account not only for risk-taking behaviors but also for the emotional/social changes that 

strongly influence motivated behaviors. A number of task-based fMRI studies have tested 

these models (for a review, see Richards et al. 2013), but no studies as yet have focused on 

the relative connectivity and communication within and between these networks across age. 

Here, we present the tools available to examine these questions in the future and summarize 

some of the fundamental shifts that have been identified in the maturational patterns of brain 

networks in general.

Indeed, research in functional connectivity has witnessed an exponential growth, particularly 

with the development of sophisticated tools and an explosion of resting-state investigations 

(e.g., Friston 2011). Critically, these techniques—which are being applied to understand 

brain development in health and pathology—can provide important clues to vulnerability to 

psychopathology. We first review various functional connectivity methodologies before 

focusing on resting-state functional connectivity studies.

FUNCTIONAL MAGNETIC RESONANCE IMAGING METHODOLOGIES

Functional connectivity is operationally defined as statistical dependencies, such as 

correlations or coherence, among distinct neurophysiological events (Friston 2011). With 

fMRI, functional connectivity typically is measured by calculating correlations between time 

series of voxels or regional seeds, or both. The assumption is that high interregional 

correlations reflect neural communication between regions, i.e., that they are “working 

together.” The inferred nature of this communication largely varies depending on what 

subjects do during scanning. The following section is an effort to organize and make broadly 

comprehensible a variety of analysis methods that have grown from many questions over the 

past two decades. We do not take a historical perspective but instead a user’s perspective. We 

hope this section will orient readers to primary literature and help them select the design and 

analytical strategies appropriate to their specific research questions.

Task-based studies refer to the examination of blood-oxygen-level-dependent (BOLD) 

signals in response to a behavioral paradigm (e.g., Stroop task, face emotion identification 

task) that targets specific and experimentally controlled cognitive processes. In contrast, 

resting-state studies are so named because data are collected while subjects lie at rest in the 

scanner and are instructed to not fall asleep. Resting-state fMRI analyses are designed to 
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probe general properties of brain organization that relate, most commonly by inference, to 

specific cognitive processes. Therefore, different analyses typically accompany these two 

broad types of neuroimaging data (task-based versus resting-state), which offer different but 

overlapping pictures of network organization.

Two additional factors broadly characterize the nature of the information gained about brain 

organization from connectivity studies. The first factor is whether the analysis is model 

driven (e.g., a strong hypothesis about the connectivity of a particular region or group of 

regions) or data driven (e.g., an algorithm blindly separates network features within the 

data). The second factor is whether the analysis provides insights into the direction of 

information flow (e.g., from region A to region B; its effective connectivity) (Friston et al. 

2003, Roebroeck et al. 2005) or not (i.e., its functional connectivity). Although these two 

features of connectivity analyses (model driven versus data driven and directional versus 

nondirectional) theoretically could be applied to both task-based and resting-state 

connectivity studies, the current state of development of these techniques is not equally 

applicable to both types of studies. The data-driven analyses are directed most commonly to 

resting-state studies, whereas the directional analyses currently are usually accessed with 

task-based studies. For orientation, Figure 1 schematically summarizes these analyses along 

a hypothesis-driven to data-driven gradient as they apply to the two major types of fMRI 

data currently being collected. The next section addresses coactivation and connectivity 

analyses used in task-based studies, followed by connectivity analyses used in resting-state 

studies.

Task-Based Studies

Coactivation as connectivity clue—Some investigators have considered that the 

concomitant activations of regions in response to a specific task, or coactivation, constitute a 

network engaged in a particular process. For example, Knutson et al. (2001) used a monetary 

reward task and reported activation of a set of regions that included the ventral striatum, 

caudate, amygdala, mesial prefrontal cortex, and anterior cingulate cortex. A subsequent 

meta-analysis based on 142 neuroimaging activation studies echoed these findings, reporting 

that this same set of regions was consistently activated in response to reward processes (Liu 

et al. 2011). The meta-analysis project NeuroSynth.org offers similar insight across a wide 

variety of processes (Yarkoni et al. 2011). However, although an activation study (or meta-

analysis) can reveal the areas involved in a cognitive process, the coactivation approach is 

limited because it does not directly test network properties and does not describe the 

strength or signs (positive or negative) of specific region-to-region couplings.

Task-based functional connectivity—In contrast to the qualitative inference of 

networks from coactivation maps, a statistical approach called psychophysiological 

interaction (PPI) analysis regresses the activity of a seed region with activity across the rest 

of the brain, which tests whether connection strengths vary as a function of the experimental 

or behavioral manipulation (Friston et al. 1997). The idea underlying PPI is that brain 

regions exhibit a level of baseline communication that may be modulated (i.e., strengthened 

or weakened) by a particular cognitive process. In one study, for example, the task of 
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viewing fearful faces versus neutral faces boosted connectivity strength between the right 

amygdala and fusiform gyrus (Das et al. 2005).

PPI analyses are usually driven by an a priori hypothesis regarding the connectivity pattern 

of a particular seed region, and the technique is usually applied such that task-induced 

couplings are then shown across the rest of the brain. This is an advantage when one focuses 

on a specific cognitive function known to change with age or to be differentially affected by 

a disease process.

Despite the benefits and popularity of the PPI technique, it remains subject to some of the 

same weaknesses as any task-based study. Task-based studies can be problematic when used 

to compare populations with systematic biases in performance. For example, young children 

or patients may use different strategies or experience distinct difficulties when performing 

certain tasks, relative to older or healthy individuals, and thus it is difficult to specify 

whether group differences are age or disease related or simply reflect a general difference in 

performance. This issue of variability in task performance is the source of continual debate 

in the literature and should be considered when deciding on any task-based analysis (e.g., 

Snyder et al. 2011).

Another potential disadvantage of PPI analysis lies with the fact that a hypothesis about the 

connectivity of a particular brain region may bias findings by restricting the analysis to 

seeding one region at the expense of other potentially important loci. Finally, PPI, which is 

regression based, does not allow for inferences on the direction of information flow. For 

these inferences, effective connectivity techniques have been developed.

Task-based effective connectivity—Effective connectivity analyses for fMRI are 

sophisticated attempts to find degrees of evidence for causal or directional influences among 

brain regions. The most common directional analyses are the Granger causality (GC) and the 

dynamic causal modeling (DCM) techniques. In the late 1960s, economist Clive Granger 

developed a way to infer causal relations among time series based on lag; more recently, this 

approach was adapted to time series in neuroimaging data (Roebroeck et al. 2005). DCM 

was originally developed by neuroscientists who used dynamic system modeling to infer 

causal influences in a subset of regions (Friston et al. 2003, Stephan et al. 2010). Like PPI, 

DCM essentially looks for task-based changes in coupling, but in contrast to PPI, DCM 

focuses on a subset of regions (generally fewer than eight). The investigator specifies models 

of how these regions may causally interact, and, with a very strong hypothesis, tests which 

of the models the data support best (Penny et al. 2004). Advances with this technique also 

allow the testing of a large number of models if the available knowledge of a particular 

network is insufficient to support very specific hypotheses (Penny et al. 2010, Torrisi et al. 

2013b).

Over the past decade, researchers have applied GC and DCM to both activation studies and 

resting-state studies (see below) (Friston et al. 2014, Kahan & Foltynie 2013, Liao et al. 

2010), although their use with resting-state data is much less common. Finally, these 

analyses remain difficult to conduct and are not without controversy (David et al. 2008, 

Lohmann et al. 2012, Ramsey et al. 2010, Smith et al. 2011a, Webb et al. 2013).
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Functional Connectivity at Rest

Resting-state functional connectivity analyses assess synchronous activity between brain 

regions when subjects are awake but resting. A great advantage of such data over those 

involving psychological tasks is that they can be collected from a wide variety of 

populations because the resting-state condition involves minimal instructions and low 

demands on attention. Thus, most patient populations (Zhang & Raichle 2010) and children 

of all ages (Thomason et al. 2013) can participate in resting-state studies. Another advantage 

is the ability to perform wholly exploratory or data-driven analyses, less biased by our 

present knowledge of brain dynamics and possibly more likely to lead to the discovery of 

new principles of brain organization.

Because activity during resting state is spontaneous and uncontrolled, intrinsic functional 

connectivity (iFC) analyses do not focus on particular cognitive processes per se but rather 

aim at elucidating the dynamics and components of general networks. These general or 

intrinsic networks are not necessarily identical to those activated during targeted 

psychological tasks and are instead thought to reflect genetically guided structural and 

experience-dependent functional substrates underlying normal cognitive processing (Sporns 

2013). Despite this division, brain networks elicited from task-based fMRI studies appear to 

be qualitatively and quantitatively similar to those elicited from resting data, and some 

researchers are actively trying to clarify this relationship (Barnes et al. 2009, Rehme et al. 

2013, Schultz et al. 2012, Smith et al. 2009).

Resting-state studies have thus revealed a number of active canonical networks, defined by 

distinct sets of correlations among discrete regions. Many of these resting state networks 

have been identified using both model-based and model-independent analyses. Furthermore, 

they are associated with specific sensory functions (e.g., auditory, vision, and motor control 

networks) or cognitive functions (e.g., salience, attention, and default mode networks). The 

interrelationships of these networks themselves (not simply nodes within networks) have 

also been a source of investigation that has opened a new window into a higher level of brain 

organization (Fox et al. 2005, Sridharan et al. 2008).

The advantages of the absence of tasks in resting-state studies can also represent a 

disadvantage. Specifically, without a task-induced process, which provides unique timing of 

events, resting-state correlations can fall victim to spurious and nonneuronal sources of 

covariation, including scanner artifacts, cardiac pulsations, respiration, and head motion (Jo 

et al. 2010). These nonneuronal physiological events can produce false-positive or highly 

skewed results. Therefore, careful and sophisticated preprocessing approaches must be 

employed to eliminate the impact of such systematic biological noise (Murphy et al. 2013, 

Saad et al. 2012). A second disadvantage is directly linked to the complexity of the analyses, 

which, in recent years, has given rise to an increasing number of techniques resulting in a 

general lack of replication. However, we expect this limitation to be resolved in the near 

future with improved technology and consensus on the most valid and reliable analyses. A 

third disadvantage, as alluded to above, is that we do not fully understand the relationship 

between task and resting-state data, and the relationship between, for example, the higher 

frequencies of activity usually studied with tasks and the lower spontaneous frequencies 
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analyzed with rest. In the next section, we describe the three techniques most commonly 

used to analyze the latter.

Seed-based connectivity at rest—Analogous to the PPI technique used for assessing 

task-based functional connectivity, the most common analytic approach for resting-state 

connectivity requires selecting a seed region and examining the pattern of connectivity, via 

correlations, from this seed to the rest of the voxels in the brain (Biswal et al. 1995, van den 

Heuvel & Hulshoff Pol 2010). For example, a number of studies have examined how key 

functional regions communicate with the rest of the brain in health and disease, such as the 

amygdala in anxiety (e.g., Roy et al. 2013). Alternatively, more constrained hypotheses can 

be tested by correlating the time series of a small number of regions with one another 

(Torrisi et al. 2013a). This approach requires a stronger rationale and basis on how to select 

the regions of interest, but it benefits from fewer multiple comparisons. In contrast to these 

relatively simple analytic strategies that query known discrete networks, more complex 

analytic schemes can be applied to examine metrics of global brain organization, using 

graph theory techniques, which we describe in the next section.

Graph analyses—Graph theory provides a number of metrics that characterize networks, 

such as social networks, for which they were originally developed. Graph analyses have 

been applied to many fields to describe global and local characteristics of networks (Strogatz 

2001), and they are best used to characterize large networks with many nodes. In the brain, 

these metrics compute descriptive measures of pairwise connections (“edges”) between 

dozens or hundreds of regions (nodes) to reveal both between- and within-network 

connectivity structure. Terms such as path length, motifs, hubs, global efficiency, centrality, 

and small-worldness describe the measures of a rich variety of global connectivity properties 

(Rubinov & Sporns 2010).

However, similar to seed-based analyses, graph analyses of brain function still depend on the 

functional relevance of the nodes selected for analysis, and recent work suggests that 

functionally defined parcellations provide better network estimates than do structural atlases 

or arbitrarily defined sampling grids (Craddock et al. 2012, Sepulcre et al. 2012, Smith et al. 

2011b). A larger issue with graph theory, however, lies in the difficulty to specifically 

connect its metrics and global descriptive power with underlying biological phenomena. 

Fully hypothesis-free analytic approaches are described in the next section.

Model-independent methods—A model-independent analysis approach called 

independent component analysis (ICA) is a multivariate decomposition method that blindly 

separates spatial signals across the brain on the basis of their temporal characteristics 

(Beckmann et al. 2005). This technique is optimal for discovery findings. Without the 

necessity of a priori node selections, ICA can be used to identify complex interactions 

among regions that might otherwise go undetected (McKeown et al. 2003). In addition, it 

can be used to reveal the multifunctionality of nodes (i.e., nonmodularity) that are involved 

in multiple networks by separating independent signals from the same, often functionally 

heterogeneous, region (Beckmann et al. 2005). One difficulty with ICA, however, is that the 

optimal number of components to extract can be unclear, and different algorithms 

calculating this number often produce different results (Calhoun & Adali 2012). This is 
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especially problematic when extracting separate ICAs for different populations that need to 

be compared (e.g., children versus adults). Another difficulty is how to classify which 

components are neural networks and which are not, such as noise. In sum, ICA is strong as 

an exploratory technique and can be used as a later guide for hypothesis-driven analyses.

Summary

For well over a decade, these fMRI-based connectivity analyses have led an emerging 

picture of network-level properties of brain function. Some of these properties undergo 

substantial changes during development. These ontogenic changes need to be carefully 

delineated to understand the various neural mechanisms underlying improvement of brain 

functionality; as a moving target, they critically warrant replication. However, fMRI task-

based connectivity studies are specific to the task employed, which can greatly vary from 

study to study. Because of task specificity and differences in networks studied, PPI findings 

have often not been replicated (e.g., Rubia 2013), making it currently difficult to integrate 

task-based connectivity results into a coherent review of connectivity in development. 

Therefore, the next section focuses selectively on resting-state studies, which do not suffer 

as strongly from this methodological issue.

RESTING-STATE FUNCTIONAL CONNECTIVITY ACROSS DEVELOPMENT

In this section, we review a selected number of landmark studies on ontogenic changes in 

brain connectivity. At present, no longitudinal studies of intrinsic connectivity in typically 

developing individuals have been conducted, although a number of laboratories are in the 

process of collecting such data. We consider only those studies that examined both youths 

(children and/or adolescents) and adults. Notably, only a few studies include all three age 

groups (children, adolescents, and adults), and these studies suggest that the adolescent iFC 

pattern reflects intermediary stages between children and adults. Overall, findings reflect 

robust transformations of the brain network organization from childhood into adulthood. 

These transformations can be organized along three themes: (a) local to distributed, (b) 

strength modifications, and (c) relationships among networks. Although these thematic 

categories are not necessarily mutually exclusive, this classification is helpful for its 

heuristic value (see also Figure 2).

Local to Distributed Functional Integration

During prenatal development, neuronal communication consists largely of short-range links 

between regions, a pattern that forms local networks (Hoff et al. 2013). As development 

progresses, the abundance of short-range connections is tempered by an increasingly 

integrated system with long-range connections, such as those that link hemispheres or 

connect occipital or parietal with frontal or temporal lobes (Fair et al. 2007). Fair and 

colleagues (2009) suggest that the timing of this transition relies on the protracted axonal 

myelination, which greatly speeds information transfer across longer distances. As 

connections strengthen between networks, the brain function becomes more integrated, 

dynamic, and flexible (Hwang et al. 2013). Figure 3 represents the results of a multivariate 

pattern analysis of 238 scans of typically developing individuals, 7 to 30 years of age, 

conducted by Dosenbach et al. (2010). This figure illustrates a weakening of short-range 
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connections (green lines) and a strengthening of long-range connections (orange lines) with 

age. This transition may represent a developmental shift of local to distributed function, 

which contributes to the increased efficiency of large-scale integration of information. 

Conversely, the smaller networks that are being integrated may become more refined, 

specialized, and restricted. More generally, the developmental shift from short-range to long-

range connectivity together with the refinement of smaller networks is consistent with the 

many observations of greater focality of activation (i.e., stronger connectivity within discrete 

networks) in adults compared with children; this greater focality is associated with improved 

cognitive performance (for a review, see Rubia 2013). In addition to this general evolution in 

the global network architecture of the brain, strengths of connections within networks also 

undergo substantial modifications with development.

Changing Network Strengths

The general developmental trend of increasing long-range connections with decreasing 

short-range connections coincides with the strengthening of some specific networks and the 

weakening of others. Researchers have, for example, seeded nodes from different networks 

to investigate the integration of the default mode network (DMN) (Anderson et al. 2011, Fair 

et al. 2008), or the salience network (Uddin et al. 2011), or of thalamo-frontal 

communication (Fair et al. 2010). In a recent review, Sporns (2013) discussed the idea that 

networks observed during the resting state result from patterns of coactivation and common 

recruitment associated with cognitive processes and actions. In other words, the more 

frequently certain processes are used in daily life, the more these processes entrench 

themselves in networks that are detectable with resting-state analyses. Such an interpretation 

would extend the Hebbian theory that “neurons that fire together wire together” to the 

network level (Morris 1999), and it is critical for understanding changes during 

development, when experience-based plasticity is particularly high. This theory is supported 

by a study examining the different maturational trajectories across distinct functional 

networks (Figure 4) (Khundrakpam et al. 2013). Specifically, this study analyzed scans from 

203 healthy subjects divided into four age groups. Figure 4 indicates that the sensorimotor 

network, which serves the most basic functions of an organism, matures the earliest, as 

evidenced by the highest efficiency level of this network in the youngest age group, whereas 

the highest efficiency level in the oldest group is found for the association-related network.

Although the experience-guided shaping of the functional brain organization is paramount 

during development, the genetically determined structural aspects of the formation of brain 

networks across development remain foundational to this organization. Clearly, the gradual 

shaping of brain function consists of a continuous interplay between hardwired capacities 

and experience. At present, most resting-state developmental investigations simply describe 

different types of changing neural network dynamics without links to causal mechanisms at 

molecular or genetic levels. The alteration of strengths of connections within and between 

networks introduces the next critical principle of network organization, which is based on 

the notion of modularity, and particularly hierarchical modularity (Meunier et al. 2010).
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Network Interactions and Relationships

A brain network module is composed of processing units (nodes) that are closely interlinked 

by connections (edges) for the exchange of information (see Figure 2). Each module (i.e., a 

set of nodes interconnected by edges) supports a distinct function (e.g., color vision). A 

network can consist of one module or be composed of several modules. The principles under 

which these modules and networks work together are currently under investigation. One of 

the most robust but flexible and efficient schemes has invoked a hierarchical pattern in 

which networks themselves act modularly, nested within a hierarchical architecture. The 

shaping of such organization is guided by the integration of repeated experiences and a 

biological scaffolding, and the most critical time for the establishment of this organization is 

during development.

Several investigators have reported findings of ontogenic changes at the network level. 

Uddin and colleagues (2011) examined age-related changes of the relationships among three 

canonical resting-state networks: the frontoparietal central executive network, the DMN, and 

the salience network. The salience network (particularly the right fronto-insular cortex) has 

been hypothesized to facilitate the switch between the central executive network (externally 

oriented attention) and the DMN (internally oriented cognition) in response to cognitive 

demands. Using multimodal imaging methodologies (resting-state fMRI and diffusion tensor 

imaging tractography), Uddin et al. (2011) queried the extent to which this multinetwork 

model operant in adults gradually emerges from childhood. Findings revealed evidence of 

the strengthening of intra- and inter-network connectivity in adults compared to children. In 

agreement with previous work (Fair et al. 2009, Supekar et al. 2009), this study suggested 

that global brain organization appeared to be similar in both age groups but that significant 

sub-network reorganization takes place between childhood and adulthood, in line with an 

increased hierarchical modularity with age.

Accordingly, another study found that children had lower levels of global brain hierarchical 

organization in comparison with young adults, who in turn possessed more long-range 

functional connections, which facilitate functional integration across the whole brain 

(Supekar et al. 2009). The reduction in short-range connectivity with age also suggests the 

emergence of specialized networks. Another study (Stevens et al. 2009) measured “causal 

density,” a metric of network function that reflects the degree of mutual causal interactions 

between networks, perhaps a measure of how tightly the network functions in isolation. 

Findings revealed a reduction in this measure with age, which was interpreted as evidence 

for a more efficient and flexible function of these networks. The Stevens et al. (2009) study 

also reported a decrease in the number of within- and between-network effective 

connections, a result that was construed as reflecting greater independence of these networks 

from one another. As noted by the authors, the complexity of the methodology, including the 

number of assumptions required to conduct these analyses, limits the interpretation of the 

results. More generally, the results represent the current state of this field, which requires 

highly sophisticated network computational approaches that need to be tested systematically 

before being fully exploited to understand the function and development of brain systems.
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Summary

Three categories of change occur in iFC from childhood into adulthood. These local to 

distal, connectivity strength, and network organization changes are all different facets of the 

same general trajectory of the brain organization to become more flexible, efficient, and 

specialized. We are still at the beginning of this exciting new line of discovery about the 

brain function at the systems level. Great hopes accompany this line of research, which 

holds promise to significantly contribute to our understanding of disease mechanisms and to 

open new research directions for other neuroscience fields, such as the molecular and 

genetic domains. Given that most mental disorders are now considered neurodevelopmental, 

it is important to assign a high priority to neurodevelopmental research to understand 

vulnerability to disease states. In the next section, we provide an example of the disease 

formation that is the most common in adolescence, drug addiction.

RELEVANCE FOR ADOLESCENCE VULNERABILITY TO ADDICTION

Substance use is a critical contributor to health problems among youths and constitutes a 

major public health concern (NIAD 2013). In addition, adults who abuse substances 

typically begin substance use in adolescence (Chambers et al. 2003). These observations 

highlight the notion that adolescence is a critical time of vulnerability for the development of 

substance abuse. Ontogenetic changes in functional brain connectivity can provide insight 

into the mechanisms underlying this susceptibility.

As discussed above, functional neural networks mature over the course of development, and 

the networks that mediate higher cognitive processes are among the last to mature (Supekar 

et al. 2009). We identified three major categories of changes. The first category refers to 

functional changes from local to more distributed connectivity patterns. This type of change 

would permit greater processing efficiency and behavioral flexibility during adolescent 

development. Such behavioral improvement might facilitate exploratory behaviors on the 

part of the adolescents, diversifying their life experience. Although these behaviors are the 

norm and are socially encouraged during this transition period, potentially dangerous 

explorations, such as substance use, could strengthen specific networks (e.g., reward and 

salience) that could reinforce substance use–related behaviors, leading to abuse and then 

addiction.

Indeed, the molding and entrenchment of brain networks by experience, expected to be 

particularly strong during adolescence, is what the second category of changes across 

development shows: the modification of network strengths. Developmental findings seem to 

indicate a strengthening of connections within the default mode network in adults (Anderson 

et al. 2011, Fair et al. 2008). Such molding of networks is likely influenced by experience, 

and particularly by exposure to substances of abuse. Specifically, resting-state neuroimaging 

studies of animal models of addiction, which permit researchers to control critical levels and 

contextual parameters of substance exposure and to measure detailed underlying biological 

mechanisms, provide helpful clues to guide human research (e.g., van der Marel et al. 2014).

Finally, the third category of changes highlights the organization and formation of 

hierarchical networks. Efficient systems design is often hierarchical, and as such a developed 
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neural hierarchy may also result in greater behavioral flexibility (alluded to above) and 

behavioral and cognitive control. Related to control, the prominence of the limbic networks 

(bottom-up processing) in adolescents might contribute to impulsivity and increased 

emotionality, potentiated by less efficient inhibitory controls from the attention and 

executive networks (top-down processing), a pattern of network connectivity that is 

consistent with the neural systems models of adolescent motivated behavior (Casey et al. 

2011, Ernst & Fudge 2009). A lack of proper interaction of networks, possibly related to 

asynchrony in the timing of network developmental trajectories, might also result in greater 

vulnerability to addictive behaviors, such as substance abuse.

CONCLUSION

After first describing the various approaches to studying functional brain connectivity, each 

targeting unique questions, we extracted three categories of developmental changes across 

childhood into adulthood based on resting-state functional brain connectivity. A critical 

aspect of these changes is the issue of whether experience contributes to a great extent to the 

shaping and strength of brain networks. A few large-scale longitudinal studies, which 

include resting-state fMRI together with intense sample characterization, are under way and 

will soon provide answers to this question. Connectivity tools and analyses are continuously 

being developed and refined. However, for more specific goals, such as understanding the 

neural basis of adolescent behavior and of vulnerabilities or psychopathologies such as 

addiction, additional studies will be necessary, including the use of resting-state fMRI in 

animal models of adolescence and addiction to inform research in humans.

We end this review with reflections on the future of functional brain connectivity. From a 

methodology perspective, we exclusively addressed in this review fMRI connectivity 

without considering other modalities of data collection, such as diffusion tensor imaging 

tractography, magnetoencephalography, or interventional techniques, such as transmagnetic 

stimulation. The judicious combination of these modalities with connectivity fMRI, which 

has already begun to be implemented (Brookes et al. 2011, de Pasquale et al. 2010), could 

significantly improve the anatomical, neural (e.g., temporal resolution with 

magnetoencephalography) and functional (e.g., causal manipulation with transmagnetic 

stimulation) interpretability of connectivity fMRI findings. Conceptually, these techniques 

will help us test neural mechanisms, including neural systems models, to gain insight into 

how the brain develops and functions in health. Clinically, the potential of connectivity 

fMRI for applications is huge. We see three main prospects for connectivity fMRI: to 

provide (a) markers for diseases, (b) paths to investigate disease mechanisms, and (c) 

predictors of clinical course.
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Figure 1. 
A heuristic organization of popular functional magnetic resonance imaging (fMRI)-based 

connectivity methods. A gradient between fully data-driven, exploratory analyses and very 

strongly hypothesis-driven analyses is proposed. Small filled circles indicate functionally or 

anatomically defined nodes. Light blue lines represent functional connectivity, and arrows 

represent effective connectivity. Lines and arrows not pointing to nodes indicate whole-

brain, voxel-wise analyses. Ellipsis indicates the as-yet not fully understood relation 

between task and rest.
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Figure 2. 
Graphic representations of the three types of ontogenic changes in functional neural 

connectivity described in the text. Networks grouped within the gray oval (last graph on 

right) represent a hierarchical grouping separate from the other network.
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Figure 3. 
A representation depicting the age-related changes in connections between brain regions on 

a surface rendering of the brain. Connections that increase with age are shown in orange; 

those that decrease with age are shown in green. The local interactions between brain 

regions seem to decrease ( green) with age, whereas a more distributed organization (orange) 

emerges with age. Also shown are the relative weights of various brain regions (160 ROIs), 

quantified by the weights of afferent and efferent connections of each region. The color-

coding of these regions is based on six resting-state networks (e.g., cingulo-opercular in 

gray). Figure adapted from Dosenbach et al. (2010) and used with permission from the 

American Association for the Advancement of Science.
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Figure 4. 
Age-related differences in regional efficiency in three structural brain networks among four 

age groups (group 1, 4.8–8.4 years; group 2, 8.5–11.3 years; group 3, 11.4–14.7 years; group 

4, 14.8–18.3 years) from a graph theory analysis of 203 individuals. Different developmental 

patterns of maturation (indexed by efficiency) among the three networks are depicted (e.g., 

the primary sensorimotor network evidences early maturation in the youngest group, 

whereas the association network in this group shows a protracted development). Figure 

adapted from Khundrakpam et al. (2013) and used with permission from Oxford University 

Press.
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