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Abstract

We compare the speed and effectiveness of two genetic optimization algorithms to the results of 

statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust 

method for determining real space structure in periodic gratings measured using critical dimension 

small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and 

differential evolution algorithm are implemented and compared using various objective functions. 

The algorithms and objective functions are used to minimize differences between diffraction 

simulations and measured diffraction data. These simulations are parameterized with an electron 

density model known to roughly correspond to the real space structure of our nanogratings. The 

study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-

absolute error log objective function is the most efficient combination of algorithm and goodness 

of fit criterion for finding structures with little foreknowledge about the underlying fine scale 

structure features of the nanograting.
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1 Introduction

The recent progression of information processing technology moving toward device 

components with smaller and smaller feature sizes has required the advent of novel 

metrology methods for characterizing the fine details of those nanostructures. Traditional 

photolithographic fabrication methods have started to reach fundamental limits in the size of 

features they can produce1–3 and the next generation methods such as extreme ultraviolet 

lithography4,5 have many lingering issues needing to be addressed to become economically 

viable6,7. Thus, alternative lithographic methods such as block copolymer (BCP) directed 

self-assembly (DSA)8–13, direct write focused ion or electron beam14,15, or other multistep 

patterning photolithography techniques16–18 are necessary to continue the trend predicted by 

Gordon Moore of device density doubling every couple of years19. In particular, BCP DSA 

can be quite prone to defects20 and poor long-range order21,22 compared to traditional 
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lithography, and as a result better metrology techniques for measuring the overall order need 

to be implemented. Regardless of the fabrication method chosen, precisely characterizing 

the structures made at these sub-10 nm dimensions is critical for ensuring quality control 

and device performance.

Current methods for characterizing defects in thin film BCPs include a combination of 

optical defect detection with scanning electron microscopy (SEM)23, scatterometry or 

optical critical dimension (OCD) metrology24, and X-ray scattering metrology using critical 

dimension small angle X-ray scattering (CDSAXS)25–30 with resonant soft X-rays31–35. 

SEM is most useful for detecting defects related to pattern registration, where deviations 

from the patterned template are visible at the surface. However, simulation studies have 

shown that for BCP thin films, deviations in the through-film morphology can be present 

below the top surface36 and thus not be discernable by scanning electron microscopy. 

CDSAXS on the other hand has demonstrated the capability for detecting periodic buried 

structure morphologies that differ from a desired uniform grating34 but requires an inverse 

algorithm to convert the scattering intensity data into a meaningful real space structure. If 

the goal is having fast turn-around non-destructive characterization of detailed internal 

structures (with many model parameters), then traditional optimization refinement methods 

are not practical due to the long run times necessary to solve and test simulated scattering 

data iteratively and the very real possibility of identical-cost, degenerate structural solutions 

(common to scattering analysis). Thus an optimization algorithm that converges to the global 

best fit quickly and consistently is desired. Supplemental knowledge of the underlying 

structure can expedite this process and has to be used to some degree in model design, but 

such sample knowledge is not always readily available.

Previous studies33–35 have used a Markov chain Monte Carlo (MCMC) algorithm37 to 

determine the parameter set for the given structure model that best fits the measured 

scattering data. This approach requires a relatively good initial guess with tight parameter 

search bounds for the structure parameters and requires multiple independent chain runs to 

ensure the algorithm has convergence. However, the potential for fabrication errors require 

larger parameter search bounds to ensure the solution found is the actual structure; thus such 

an approach may not be able to distinguish a potential faulty sample. Approaches have also 

been tried that use massive computing resources with parallelization and highly refined grid 

based models with a reverse MCMC38, but such an approach is limited by the availability of 

the computing resources. Genetic and evolutionary based algorithms have shown the 

capability to search large parameter spaces with wide bounds successfully. These algorithms 

mimic biological evolution using the model parameter sets as the encoding genetic 

information that is then processed through some kind of mixing strategy over many 

generations until the optimal parameter set evolves from an initial set of randomly generated 

parameters39. The mixing strategy can be simple such as in a differential evolution (DE)40 

approach or more complicated such as in the covariance matrix adaptation evolutionary 

strategy (CMAES)41–43. These methods are better suited to search a wider parameter space 

than stochastic algorithms like the MCMC. Previous work44,45 used an MCMC-like 

approach to determine the positions of post motifs directing the self-assembly of BCPs into 

complex patterns and required many runs that were averaged over space to find the most 

optimal solutions that yielded the desired target structure morphology. Similar work was 
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performed using chemical spot motifs using a CMAES algorithm that showed convergence 

to global solutions was possible consistently within a reasonable number of algorithm 

generations46,47.

In this work, we compare these methods of inverse structure determination from CDSAXS 

measurements using MCMC, DE, and CMAES algorithms. First, the algorithms are 

compared by fitting the parameters of model target structures with simulated intensity 

profiles, starting from random initial parameters and typical parameter search ranges. Next, 

a set of experimental data from a silicon nanograting made using a BCP mask pattern 

transfer was used to compare the three algorithms, which were also compared with the 

results previously found using this data and only an MCMC approach. Additionally, a series 

of objective functions are investigated for each algorithm to see how the high dynamic range 

of scattering intensity measurements affects convergence of model parameters. Similar high 

dynamic range data is encountered in other problems where inverse solutions are needed 

such as X-ray or neutron reflectivity48, ellipsometry49,50, scatterometry/OCD metrology51, 

or seismic surveying52,53, thus the methods presented should be applicable in those fields as 

well. The results of these various runs are compared to infer which algorithm and objective 

function combination is best suited for optimized fitting of scattering data in terms of both 

refinement speed and convergence robustness.

2 Methods

2.1 Inverse Algorithms

The three different methods tested were the MCMC, DE, and CMAES algorithms. Here we 

detail general parameters and procedures that are shared between the three methods. Details 

of each algorithm, how the internal parameters for each algorithm were chosen and 

optimized, and any nuances each algorithm presents to the problem of inverse structure 

determination are provided in the appendices (see Appendix A).

For all the inverse algorithms considered, the goal is to find a set of model parameters that 

best parameterizes the real space structure of the sample investigated via CDSAXS intensity 

measurements. The model parameter set contains NShape parameters describing the 

geometric positions of the defining features in the periodic structure of the thin film and the 

relative magnitude of the scattering length density, SLD ≡ ρ(r⃗), of the material as a function 

of those geometric positions. Additionally, three intensity scaling parameters are included to 

properly scale the simulated intensities with the measured experimental intensities and 

account for interfacial roughness, giving the total model parameters needed for a given 

structure as NParam = NShape + 3. Model parameter indices are denoted as κ = 1, …, NParam. 

These model parameters are stored in a vector P⃗
G,C, where the index G represents the 

current iteration in the case of MCMC or generation for the genetic algorithms and C is 

either the chain number in the MCMC algorithm or individual index of the population in the 

genetic algorithms.

A general outline of the methodology is shown in Fig. 1. The approach is initiated by 

choosing which inverse optimization algorithm to use, selecting what kind of geometric 

model to use (and thus how many NParam are needed), initiating model parameters within the 
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relevant bounds, picking the kind of objective function to be used to measure goodness of fit 

Ω, importing the experimental (or simulated) target intensity profile, and simulating an 

intensity profile for a test model parameters set. The main algorithm then commences as 

follows: 1) The scattering intensity profile for each model parameter set P⃗
G,C within the 

population (for the genetic algorithms) or for the current step of the chain set (for the 

MCMC) is simulated yielding ISim,G,C(q⃗), the simulated scattering intensity as a function of 

the reciprocal space vector q⃗ = [qx, qz] for Nq qx and qz values. 2) The goodness of fit Ω is 

calculated for ISim,G,C(q⃗) with the experimental or target intensity profile ITar(q⃗). 3) 

Depending on the exact algorithm used, a comparison is made between Ω values of previous 

iterations/generations, amongst P⃗
G,C in the current population, or a best found “most fit” 

P⃗
MF and a decision is made on how to proceed with the algorithm. 4) For the genetic 

algorithms, if the population has bottlenecked into a constant Ω solution not less than ΩCrit 

(based on the average change in the goodness of fit over a fixed number of generations 

(chosen here as 20) staying below a predefined small value (chosen here as 10−2)), the 

population is reseeded keeping the best model parameter set P⃗
MF but reinitializing all other 

model parameter sets. This step generally occurs after the solution parameter set is already 

very close to the best solution, thus the aggressiveness of the step is only for fine refinement 

of the solutions. 5) The algorithm being used is implemented to modify P⃗
G,C based on the 

decision of the Ω comparison. These steps are repeated each time using the modified P⃗
G,C in 

the first step until either a convergence criterion is reached (i.e. a predetermined value for Ω 
= ΩCrit that is deemed an acceptable solution; ΩCrit is usually determined by running a few 

preliminary algorithm runs and seeing what the Ω values starts to converge towards such that 

only a few accepting events occurs within several hundred generations, otherwise ΩCrit is 

just set to 0) or for a preset number of generations/iterations.

2.2 Modeling Scattering Length Density

In order to simulate scattered intensity profiles, an appropriate model must be used to 

convert ρ(r⃗) into a shape profile that can be defined in a set of parameters of size NParam. In 

general, the simulated intensity is written as

(1)

where IS is an intensity scaling parameter, DW is the Debye-Waller factor, IBk is the 

background intensity, and I0(q⃗) is the amplitude squared of the Fourier transform of ρ(r⃗) 
such that

(2)

For this study, a model using stacks of trapezoids was used. In the model, a system of M 
trapezoids is used to represent ρ(r⃗) each with their own SLD = ρm, bottom width WB,m, top 

width WT,m, height Hm, and position of the bottom left corner in x and z (xm, zm). Here m is 
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an index for the mth trapezoid. In principle each trapezoid is defined by 6 parameters, but 

generally constraints are assumed with trapezoids in the same stack having the same 

parameters defined for adjoining sides and one trapezoid has a corner defined as the origin, 

thus the actual total number of parameters will be less than 6M. Additional details of how 

the intensities for the trapezoid model simulated intensities are calculated are in the 

appendices (see Appendix B). Fig. 2 shows how example composite shape profiles are 

developed from the trapezoid model with both single column (SC) and double columns (DC) 

of trapezoidal stacks. Details of how these model parameters are related and determined are 

also discussed in the appendices (see Appendix B).

2.3 Objective Function – Goodness of Fit

In order to find an optimal set of parameters producing a simulated intensity profile which 

most closely matches the experimental or target structure intensity profile, an objective 

function that properly captures the goodness of fit needs to be selected. The symbol Ω is 

defined as the measure of the goodness of fit for a general objective function. Each specific 

objective function then has its own designated symbol. Depending on the data being 

sampled and compared, various objective functions may be appropriate. For the intensity 

data examined in CDSAXS experiments, the sampled data can cover orders of magnitude in 

values suggesting some logarithmic objective function may be appropriate. At the same 

time, Poisson noise is expected to dominate the measured intensity values in terms of 

random error, suggesting a χ2 objective function might be appropriate. Based on these facts, 

we chose to use three functions in the algorithm comparison study: χ2, a mean-absolute 

error logarithmic function, and a mean-absolute error function as a control. It should be 

noted that a parameter set that gives a minimum using one objective function does not 

necessarily give a minimum for other objective functions; thus the proper selection of an 

objective function that precisely embodies the goodness of fit for all the data is essential to 

inverse structure determination.

2.3.1 χ2 goodness of fit—The χ2 goodness of fit objective function is a standard 

objective function that compares the square difference of values in the measured data and the 

simulated data normalized to the expected model value (treated here as the simulated value). 

In our intensity simulation studies, the following form of χ2 was used:

(3)

χ2 works best for cases where the error in the data obeys a Poisson distribution.

2.3.2 Mean-absolute error log goodness of fit—The mean-absolute error log 

(MAElog) goodness of fit objective function is a standard objective function that compares 

the difference of the logarithm of the values in the measured data and the simulated data54. 

In our intensity simulation studies, the following form of this objective function was used:
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(4)

This objective function is best suited for data that has values that span many orders of 

magnitude which is true for scattering intensity data where the primary peak can be many 

orders of magnitude larger than the higher order peaks40. When compared with a mean-

squared error type function, this function has been shown to be less sensitive to statistical 

noise40.

2.3.3 Mean-absolute error goodness of fit—The mean-absolute error (MAE) 

objective function is another common cost function which incorporates elements of both χ2 

and MAElog. The MAE objective function can be appropriate for X-ray diffraction 

measurements when there is important information in the lower order peaks (i.e. the largest 

intensities)40. Mathematically this function is written as:

(5)

This function is essentially the sum of the absolute value of the residuals between the data 

and simulated fit data.

2.4 Algorithm Comparison Methodology

To test the three algorithms and their ability to converge to acceptable parameter solutions 

for target scattered intensities, two approaches were devised. In the first approach, various 

target shape profiles built from trapezoids were constructed using defined parameter sets and 

used to create a simulated ITar(q ⃗) for testing the algorithms. Poisson noise typical to that of 

measured data was added to the simulated structure intensities to make the data more 

realistic and avoid having sharp features in the solution space (see Appendix C for how this 

noise was added to the simulated data). In the second approach, experimental data 

previously studied using an MCMC algorithm was fit with trapezoid models using all three 

algorithms. The success of the different algorithm and objective function combinations were 

measured based on two primary criteria: the magnitude of the best goodness of fit converged 

by that algorithms ΩBest and the normalized time to converge tConv/τGen to within a given 

target goodness of fit value ΩTar. tConv, the absolute time for an algorithm to converge within 

ΩTar, is the number of generations/iterations to converge GConv multiplied by τα, the average 

CPU time per generation/iteration for a given algorithm α, such that tConv = GConvτα. This 

value is normalized by the average time of a CMAES generation τGen (CMAES generation 

time was chosen arbitrarily for the normalization as any algorithm could have been used) 

such that τGen = τCMAES ≅ 0.95τDE ≅ 1.17τMCMC. In other words, a single step or 

generation in all three algorithms takes nearly an identical amount of time. ΩTar is defined 

for the simulated structures as 1.1 times the theoretical goodness of fit ΩConv for an exact 

match (found by removing the simulated Poisson noise from the simulated intensities) and 

1.1 times ΩBest for the experimental data. This corresponds to a 10 % range of error in the 
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converged goodness of fit values which will be shown to be reasonable for the parameters 

examined in the results and discussion section. The algorithms were run using MATLAB® 

(R2014b) code on a system with dual 8 core processors (Intel® Xeon® E5-2687W v2) with 

3.4 GHz clock speed†.

3 Results and Discussion

Here we present the results of using all three algorithms and objective functions. We then 

discuss which algorithm and objective functions worked best for the different data. For the 

genetic algorithms, the population size was always fixed to psize =96 for consistent 

comparison. 96 parallel chains were used in the MCMC runs to be comparable with the 

genetic algorithms.

3.1 Simulated Structure Results

For the target simulated data case, an initial test was done using a single trapezoid with 

NParam = 6 and refinements were performed varying these NParam. Fig. 3 shows the 

parameters for this structural model and the intensity data produced for fitting by the 

algorithms. Bounds for fitting of the model parameters were chosen for each parameter and 

are detailed in the appendices (see Appendix C). To correspond to previous studies of such 

systems33–35, only a selection of data was used to fit the parameters, with five constant qx 

values being used to extract the intensity as a function of qz for those five constant values 

(see Fig. 3(d)). Each slice each contained 1001 data points for each ITar(qz) for a total Nq 

=5005 among the 5 qz slices. qz was varied from ≈ −1.0451 nm−1 to 1.0451 nm−1 in steps of 

0.00209 nm−1 which is a similar resolution and range of values to those measured 

experimentally. Experimentally this qz range is a function of the qx resolution and angle step 

size as the experimental data is reconstructed from qxz slices at different X-ray incidence 

angles. The qx values for the slices were chosen to have a good range in intensity order of 

magnitude to reflect how such differences are encountered in experiments. Background 

noise was simulated as a constant plus Poisson distributed random noise, emulating detector 

read out noise behavior. Once the target data was simulated, our inverse methodology was 

implemented with parameters initiated randomly for the given population in the case of 

CMAES or DE or chain set for MCMC and the algorithm cycled until a solution close to the 

actual parameters was found with Ω saturating within the ΩTar value. Fig. 4 shows a 

representative set of fits using the CMAES algorithm with Ξ objective function for a DC 

structure with M = 2 (NParam = 13). The test fits, the target simulated data, and the residuals 

between the fit data and target simulated data are all plotted.

For the case of a single trapezoid with dimensions defined in Fig. 3, NRuns = 10 runs were 

performed using all three algorithms each with the three objective functions for a maximum 

of 10000 generations each run. To quantify the performance of the different algorithm and 

objective function combinations, tConv/τGen and ΩBest were compared. These values are 

†Disclaimer
Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure 
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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shown for the single trapezoid structure in Table 1. The tConv/τGen values here are averaged 

over the 10 runs with the ΩBest values being the minimum observed for all 10 runs. The 

values for ΩTar here were chosen such that the goodness of fit had converged within 10 % of 

the theoretical ΩConv value (i.e. ΩTar =1.1ΩConv) found using the intensities with noise as ITar 

and without noise as ISim. This convention was used for all three objective functions, so 

since each objective function scales goodness of fit differently, strict comparisons should 

only be made within the same objective function basis when considering convergence rates. 

The CMAES clearly outperformed in tConv/τGen, followed by the DE and then MCMC. In 

terms of ΩBest, both genetic algorithms reached similar best values while the MCMC tended 

to not refine exactly to the same value. However, the values converged towards were below 

or close enough to ΩConv to be deemed an acceptable solution. For the χ2 and Ξ objective 

functions, the actual ΩBest values found were even better than ΩConv. This just means the 

parameters converged toward are slightly different than the actual parameter set without 

noise but are still acceptable solutions.

To examine how the algorithms perform with increasing NParam, additional simulations were 

performed with SC trapezoid stacks of size M = 2 to 4 (NParam = 8,10, and 12) as well DC 

stacks of one and two trapezoids with fixed column widths (NParam = 9 and 13) using the Ξ 
objective function. 10 runs were performed for each case for a maximum of 200000 

generations. Fig. 5 shows plots of ΩBest versus t/τGen for the different numbers of parameters 

with the ΩTar lines added to see where the target goodness of fit values are reached for each 

algorithm along with the corresponding shape profile used to simulate the intensity data. The 

CMAES algorithm clearly outperforms the DE and MCMC by ≈ 1 to 2 orders of magnitude 

in speed for all NParam. The DE algorithm generally descends faster to start relative to the 

CMAES, but the CMAES always at some point descends in goodness of fit rapidly 

overtaking the DE and MCMC. This observation is due to the way the CMAES converges 

once the covariance matrix is well developed after several generations43. As NParam 

increases, the CMAES and DE continues to converge consistently toward the lowest Ω 
values, while the MCMC starts to take exponentially longer to get to those lowest Ω values 

after converging below ΩTar. Examining the target shape profiles (dotted black lines) with 

the solution shape profiles (colored lines), the solution shape profiles found match exactly 

for all targets except for the SC M = 4 with the MCMC where there is a slight mismatch in 

the placement of the bottom of the middle trapezoid (however, the overall shape matches 

well) and for the DC M = 2 with the MCMC where there are a couple of slight shifts in the 

trapezoid dimensions. The MCMC would likely eventually converge better for these cases 

with many more generations, but seeing each generation takes around 1 s to 2 s to run and 

200000 generations or ≈ 4.6 d of computation time were already performed compared to the 

CMAES converging within an hour, continuing to run the algorithm for such further 

refinement was deemed unnecessary. Also, the DE takes longer to finally converge for the 

DC M = 1 case likely due to the search space for this structure having a local solution 

minimum in which the algorithm is staying. Additional discussion of the performance of the 

different algorithms with NParam and number of columns plus all goodness of fit trajectory 

plots are given in the appendices (see Appendix D).
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3.2 Experimental Structure Results

For experimental comparison, a data set with intensity ITar(qz) for four qx values that was 

used previously for determining a structure with multiple chain runs of an MCMC 

algorithm35 was chosen to compare the efficiency and effectiveness of the different 

algorithms. The previous study found a stack of M = 3 trapezoids to yield an appropriate fit 

for the silicon lines formed from the pattern transfer of a block copolymer template, but for 

comparison with that study stacks of size M = 1 to 5 were additionally tested. The 

parameters that yielded the lowest goodness of fit solutions found in this study using the 

CMAES algorithm with Ξ objective function are shown and compared in Table 2. These 

results show the CMAES yielded a similar solution but with a lower Ξ value for M = 3 

(normalized here by Nq − 1= 2792), slightly better fit with M = 4 trapezoids, and slightly 

worse fit with M = 5. Additional details of these comparisons are in the appendices (see 

Appendix D).

To examine the speed of the algorithms in the experimental case, plots of the goodness of fit 

Ω values as a function of t/τGen for the runs that yielded ΩBest upon completion are shown in 

Fig. 6. From the plots, the CMAES converged to a solution ≈ 1 to 2 orders of magnitude in 

time faster than the MCMC and less than an order of magnitude faster than the DE for the 

experimental structure for all objective functions. Fig. 6 also shows plots of the best shape 

profile fits (colored lines) for different combinations of algorithm and objective function 

used compared with the previously found solution (dashed black lines). The CMAES fits 

matched well with the previous study for all objective functions, the DE relatively well, and 

the MCMC only well for the Ξ objective function. These discrepancies are likely due to a 

combination of the χ2 and ψ weighing the first order slice too much compared to the higher 

ordered slices while the Ξ objective function weighs them more evenly, as shown in Table 3, 

and the MCMC not completely converging. Since the higher order peaks contain the 

information on the finer details of the periodic nanostructures (i.e. dfeature ∝ q−1), knowing 

how the objective function used weighs the calculated goodness of fit is important in 

deciding if a parameter solution set is an appropriate fit to the measured data. Thus, the fact 

that the Ξ function weighs the higher order peaks more appropriately in addition to giving a 

similar shape profile to the previously reported solution for all the algorithms gives credence 

to it being the best objective function for analyzing X-ray scattering data.

When comparing between algorithms for these simulations, there does not appear to be any 

correlation in a particular peak slice having a better fit with a particular algorithm; only 

when changing the objective function used do such discrepancies arise. Based on the fact the 

Ξ objective function gave the best match to the previous work, that objective function is 

expected to fit this kind of scattered intensity data most accurately in terms of weighing 

residual contributions from different peaks with large order of magnitude differences. For 

both the simulated structure and experimental data algorithm tests, the CMAES was 

determined to be the best algorithm to use for fast convergence to an accurate parameter set 

solution with basically no need to have an accurate starting solution population set.

Hannon et al. Page 9

J Micro Nanolithogr MEMS MOEMS. Author manuscript; available in PMC 2017 July 07.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



4 Conclusion

The results of both the experimental and simulated structure studies demonstrate the 

CMAES algorithm converged most rapidly and reliably to an acceptable solution, the DE 

did so reliably as well, but at a slower rate, and the MCMC mostly converged to an 

acceptable solution but at the slowest rate. Higher structure model parameters resulted in 

longer computation time for all algorithms and slightly higher ΩBest values for the DE and 

MCMC compared to the CMAES but still gave acceptable solutions for the highest 

parameter numbers tested (i.e. ΩBest < ΩTar). For the experimental data tested, the CMAES 

with Ξ objective function gave the best match with the previously determined model 

parameters from an MCMC study35.

Seeing that the CMAES algorithm generally had a faster absolute time to converge to 

solutions and always had the lowest observed ΩBest values for the various objective 

functions, the algorithm shows great promise in advancing X-ray scattering metrology. With 

the insight gained from this study of genetic algorithms in analyzing CDSAXS data, future 

studies will be able to utilize these methods to analyze data quickly and efficiently with little 

foreknowledge of the internal structure. This current study only examined parameterized 

structures with up to 13 independent parameters, so future studies should examine the 

efficiency of the algorithms at shape models with NParam in the range of 20 to 100. There 

may be further algorithm enhancements than those posited here such as hybrid algorithms 

(e.g. using the CMAES to find the relative location of the parameter solution and honing in 

on better solutions with a local MCMC algorithm with tighter parameter bounds or 

Levenberg-Marquardt algorithm55), making structure reconstruction more tractable and 

deterministic. Overall, the results of this study show the CMAES algorithm will enhance X-

ray scattering in turn-around time for inverse complex structure determination.
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Appendix A: Inverse Algorithm Details

A.1 MCMC Algorithm Description and Optimization

In the MCMC algorithm37, a set of chains are started from randomly seeded parameters P⃗
G,C 

where the indices G and C represent the iteration number and chain number, respectively. It 

should be noted the MCMC algorithm is inherently not a parameter search algorithm but a 

statistical distribution sampling method, thus the use and modification of the algorithm here 

as a search method instead should be emphasized. NChains defines the total number of 

Markov chains and was fixed at a value of 96 for this study. Each parameter set chain can be 

initiated from a uniform random number distribution with each parameter being bound by an 

upper and lower bound based on the physical range of the model parameter or using a priori 
knowledge on the approximate value of the parameters. Alternatively, the values for P⃗G,C 

can be initiated using a previously found PG⃗,C that is known to be close to the solution for 

faster convergence (this approach was previously done in prior CDSAXS studies). For the 

simulations performed, only randomly initiated parameters were used for comparison with 

the genetic algorithms where the parameters were also initiated randomly. During the 

algorithm, when Ω is calculated, a decision on how to proceed is made using a Metropolis-

Hastings criterion37. Whenever ΩG,C < ΩG−1,C, the current P⃗
G,C is accepted as the working 

model parameter set for that chain. Also, if the criterion

(6)

is satisfied, that P⃗
G,C is also accepted as the working model parameter set for that chain. 

Here ΩMF is the “most fit” goodness of fit value found thus far amongst all NChains chains. If 

neither of these criteria are satisfied (i.e., Ω did not decrease locally or the weighted 

probability to accept a higher Ω P⃗
G,C did not fall in the bounds of a uniform random 

distribution number selected), then the previous P⃗
G−1,C is set for the working model 

parameter set for that chain.
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After determining whether to use P⃗
G,C or P⃗

G−1,C as the working model parameter set for 

each chain, random walk moves are made based on the following considerations. A set of 

random move vectors V⃗
move,C are added to P⃗

G,C such that

(7)

where

(8)

with

(9)

Here B⃗
Upper and B⃗

Lower are vectors of size NParam containing the upper and lower bounds of 

each corresponding parameter in P⃗
G,C, respectively, and σStep is a step size parameter that is 

either set to a constant value or can be constrained to change as the algorithm converges (for 

simplicity a constant value was used in this study; optimization of the step size is discussed 

in the next subsection). If the addition of this move vector to an individual parameter κ 
would result in the value of that parameter being outside the defined bounds, the plus sign in 

the equation is changed to a minus sign to keep the parameter within the bounds. If changing 

the sign still results in a the parameter moving outside of the bounds (i.e. the move size is 

bigger than the parameter bound range, usually only encountered for small σStep), the 

parameter is set equal to the closest bound. We chose a value σStep ≅ 32 based on 

optimization tests described below, though this can be further optimized depending on 

NParam and ΩG,C − ΩMF.

To ensure the MCMC algorithm was optimized, algorithm runs were performed at different 

values of σStep over a range of orders of magnitude for a given simulated structure for 1000 

iterations. To decide the optimal σStep, both the average minimum goodness of fit values 

converged towards and the rate of acceptance between steps fAcc (for both lowering from the 

previous step and the Metropolis-Hastings criterion for accepting a parameter set with a 

higher goodness of fit value). An example plot of these various values versus σStep is shown 

in Fig. 7 for the single trapezoid target structure. Of note, the average goodness of fit value 

of solutions found was minimized at σStep ≅ 32 while the acceptance rate value started to 

saturate around σStep ≅ 3.2 × 104. Since the study is more concerned with obtaining lower 

global fidelities (and not maximizing the amount of acceptance events) a step size of σStep = 

32 was chosen for all runs performed. The target structure used here was a single trapezoid 
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structure with WBot = 30 nm, WTop =10 nm, H =15 nm, IExp = 2, IBk =0.5, and DW =0.5 

nm.

A.2 DE Algorithm Description and Optimization

For the DE algorithm40, a population set of size psize of P⃗
G,C is initiated and the inverse 

algorithm progresses based on mutation and crossover of these individual parameter sets. 

psize was set to 96 in this study. Here the indices G and C represent the current generation of 

the population and individual member index label, respectively. In the algorithm, after each 

P⃗
G,C has a corresponding ΩG,C calculated, all members in the current generation population 

have their ΩG,C compared against each other and the best value of Ω found thus far. If any 

individual P⃗
G,C yields an ΩG,C value better than the previous best, that P⃗

G,C is set as the new 

best P⃗
MF (here MF stands for “most fit”).

Regardless if a new best P⃗
MF is found or not, modification of the population for the next 

generation is accomplished as follows. P⃗
MF is kept separate during the mutation and 

crossover to ensure the best solution is always in the population pool (known as the 

“Genghis Khan” approach). A mutation step occurs by taking P⃗
G,C with the lowest ΩG,C, 

designated P⃗
G,CMF in the current population and differential mixing of two other population 

members chosen at random are added to the parameter vector modulated by a mutation 

constant Kmut. In vector form this is simply

(10)

where A and B are two random integers in the range from 1 to psize with conditions A ≠ B ≠ 

CMF. Following the mutation step, a crossover step is implemented going through all NParam 

elements of each P⃗
G,C vector in the population with C ≠ CMF (i.e. C = [1, psize]) and the 

criterion rand([0,1]) < Kcro is used to determine if the jth parameter of P⃗
G,C should be 

swapped with the jth parameter of P⃗
G,CMF. This is analogous to biological meiosis56. In the 

studies presented Kmut = 0.1 and Kcro = 0.4 based on optimization runs described below. 

Following the mutation and crossover steps, the new population P⃗
G+1,C is generated and the 

algorithm continues using this new population.

To optimize the DE crossover and mutation parameters, a scan of runs using Kmut ∈ 
[0.1,2.0] and Kcro ∈ [0.1,1.0] both in steps of 0.1 were performed for a given structure. The 

goodness of fit Ξ and acceptance fraction fAcc were both calculated for all combinations of 

Kmut and Kcro examined after NGen =1000 generations. Plots of Ξ and fAcc against the 

varied parameters are shown in Fig. 8. As seen in the figure, Ξ was minimized around Kmut 

≅ 0.1 and Kcro ≅ 0.4 and fAcc was maximal around Kmut ≅ 0.1 and Kcro ≅ 0.5. Unlike the 

MCMC, fAcc represents only situations where the global goodness of fit decreased since the 

DE is a true search algorithm and not a stochastic sampler. Thus, the parameters that yield 

the minimum Ξ values should be expected to correlate well with the values that yield the 

maximal fAcc which they appear to do. Since the lowest Ξ are desired in the algorithm runs, 

the combination of parameters Kmut ≅ 0.1 and Kcro ≅ 0.4 were chosen for further runs.
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A.3 CMAES Algorithm Description

The CMAES algorithm41–43 starts analogously to the DE algorithm with a population set of 

size psize of P⃗
G,C being initiated. The algorithm progresses by calculating a mean weighted 

parameter vector P⃗
G,Mean for each generation that is weighted from the top λmix best 

individuals in the population with respect to their Ω values. As in the DE algorithm, the 

indices G and C here again represent the current generation of the population and individual 

member index label, respectively. Again and analogous to the DE algorithm, each P ⃗
G,C has a 

corresponding ΩG,C calculated after intensity simulations are performed with all members in 

the current generation population having their ΩG,C compared against each other and the 

best value of Ω found thus far. If any individual P⃗
G,C yields an ΩG,C value better than the 

previous best, that P⃗
G,C is set as the new best P⃗

MF. Detailed below are all the equations that 

go into determining the covariance matrix V and mixing equations for the CMAES.

NParam is defined as the number of parameters used in the model that are to be optimized to 

best fit the data. psize is the population size of parameter sets. pOpt is the lower bound 

optimal psize needed to get convergence of the CMAES algorithm within 

generations such that

(11)

Using large psize can enhance convergence for a given algorithm run (i.e. lower GOpt) but at 

the cost of computational time. For consistency between the DE and CMAES algorithms, in 

this study psize was fixed to 96 for both algorithms which is well above pOpt for any 

parameter set considered (the largest NParam explored was NParam = 13 → pOpt = 11, much 

smaller than 96).

λmix is the number of individuals mixed during the CMAES crossover/mutation mixing 

step. λmix is set equal to λOpt such that

(12)

so in this study λmix =48. σ is the parameter coordinate wise standard deviation step size 

used to scale the mixing of parameter sets for the next generation. σ is set to an initial value 

of σ1 = 5 and is updated according to the scheme detailed below. σ is reset to σ1 if it 

surpasses a value σMax which for this study was set as 1020 and the corresponding 

evolutionary parameters reset to avoid numerical overflow.

(13)
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ϕC is the crossover probability weight for an individual C with the individuals in the 

population up to λmix. This is calculated once at the beginning of the algorithm and then 

remains the same throughout when used in calculating PG⃗,Mean.

(14)

λEff is the effective number of individuals mixed in each generation used in calculating 

several of the evolutionary strategy updating parameters.

G is the current generation number which is increased each generation until reaching a 

preset value GMax. When psize = pOpt this maximum value should not be larger than

(15)

assuming the problem is bound correctly. In practice GMax was set to values ≈ 40000 for 

consistency between runs, but because an additional criterion checking if Ω < ΩCrit is used to 

end the algorithm run meaning this GMax is not always reached. During the algorithm, when 

objective function goodness of fit values are compared, the most fit individual GMF is kept 

for reference along with the generation that individual was found GMF and the 

corresponding parameter set P⃗
MF.

The following parameters are used in updating the covariance matrix V and step size σ. They 

are tV, the time constant for the accumulation of V, tσ, the time constant for the 

accumulation of σ, R1, the rate for the update of the 1st rank update of V, Rλmix, the rate for 

the update of the  rank update of V, and δσ, the damping coefficient for the generational 

update of σ which is ≈ 1. These parameters remain the same throughout an entire CMAES 

run.

(16)

(17)
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(18)

(19)

(20)

The following parameters are internal algorithm updating parameters that are updating 

during every generation. They include P⃗
G,V, the parameter evolution path for V, P⃗

G,σ, the 

parameter evolution path for σ, B, the eigenvector matrix of the covariance matrix V 
initialized as an identity matrix of size NParam by NParam, D, the diagonal eigenvalue matrix 

of the covariance matrix V again initialized as an identity matrix, and XN, the expectation 

value constant from of normally distributed random values of length NParam used in the 

generational update of σ. Thus the covariance matrix is given as

(21)

where T is the matrix transpose operator. In updating the parameter evolution paths, the 

inverse square root of the covariance matrix V−1/2 is a useful quantity to calculate during 

each step given as

(22)

XN is given as

(23)

P ⃗
G,Mean is calculated from ϕC and P⃗

G,C where P⃗
G,C is sorted with parameter sets in 

increasing goodness of fit value.
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(24)

The parameter evolution path vectors during each generation are updated as follows:

(25)

(26)

where

(27)

The covariance matrix for the next generation VG+1 is then given as

(28)

where

(29)

and σG+1 for the next generation is given as

(30)
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The population of parameters for the next generation P⃗
G+1,C is then given as

(31)

where η is a vector of size NParam with random numbers drawn from a normal distribution 

with standard deviation 1 and the Undiag(*) function outputs the diagonal values of a square 

matrix as a vector. The values used for B and D in updating P⃗
G+1,C are only updated when 

the following condition is satisfied:

(32)

where GE = 0 to start and GE is set to the current G each time B and D are updated. When 

such an update occurs, the covariance matrix V is updated by the following scheme to ensure 

the matrix is symmetric.

(33)

B and D are then found by solving the eigenvalue problem

(34)

Appendix B: Details of Calculating Intensities from the Trapezoid Model

In the trapezoid model system the base intensity (square of the form factor) is given as

(35)

where
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(36)

with Θ =L or R for left and right, respectively, such that the mth trapezoid is defined by the 

intersection of the four lines

(37–40)

In terms of the model parameters, these slopes and intercept parameters are defined such that

(41)

(42)

and

(43)

A general parameter vector for this model will have the following form:

(44)

This form would yield 6M+3 independent parameters, but usually this number is reduced by 

additional constraints placed on a given model for a system. For a single trapezoid, the 

corner position is generally assumed to be that of the origin (x1, z1)=(0,0) and the SLD 
usually is assumed to have a fixed value making a single trapezoid model only have 6 

independent parameters (3 geometric parameters with 3 intensity scaling parameters). For a 

column of M trapezoids stacked on top of each other, each trapezoid in the middle of the 

stack shares widths with the trapezoids above and below them with their positions being 

fixed by those adjoining trapezoid widths, making the total number of parameters for such a 

system assuming the SLD to be the same for each trapezoid be NParam = 2M + 4 as there are 

M + 1 independent widths, M independent heights, and 3 intensity scaling parameters. For a 

periodic array of c columns of M trapezoids with each column independent of the adjoining 

column and fixed column widths, the only additional parameter needed to specify each 

column beyond the first is the position of the lower left corner of the column, giving
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(45)

More complicated models with various constraints can be made based on these ideas, but for 

the current manuscript only the kinds mentioned here are investigated.

Appendix C: Parameters and Bounds for the Different Structures

Table 4 through Table 9 list all the simulated structure parameters and the corresponding 

upper and lower bounds imposed on them during the inverse algorithm runs. Additionally, 

the expected parameters from the previous experimental study with the bounds used for 

those runs are listed in Table 10. For Table 10, the lower bounds for the heights were set 

slightly above 0 to disallow M = 2 or 1 trapezoid solutions (i.e. where a given H would go to 

0) but also allow approach of such solutions to be possible in case such solutions were along 

path trajectories towards the best solutions. The parameter IExp and IBk were calculated 

based as effective values as the previous study used an additional set of data with qz ≅ 0 

nm−1 for a range of qx from near 0 nm−1 to just over 1 nm−1 that was used to rescale the 

peak intensities during fitting (thus the input values in that study were different, so the 

values presented here are after rescaling). As a reminder from the main text, SC stands for 

single column and DC for double column. The width and height parameters generally had a 

large bound range to ensure decent parameter space coverage with a tighter bound range 

being imposed on DW and the intensity scaling parameters IExp (IS = 10IExp) and IBk. IBk 

always had a minimum bound of 0.01 to ensure that the intensities were always greater than 

0 so that Ξ did not have singularities (i.e. Ξ → ∞ as ISim → 0).

In addition to the tables showing the parameters and bounds for the different target structure 

sets, Fig. 9 through Fig. 13 show schematic diagrams of the target structure shape profiles, 

the calculated target intensity profile ITar(q⃗) as a function of q⃗ = [qx, qz], and the slices from 

the profiles with Poisson noise added with constant qx values used for parameter 

optimization by the different algorithms. Poisson noise is a random value proportional to the 

square root of the number of observed counts, thus the noise added was developed as

(46)

where ICount is the intensity contribution from a single photon scattering event. Since the 

simulated data is produced at a continuum approximation for the scattering with an 

analytical Fourier Transform, ICount must be selected independent of the intensity 

calculation. ICount should be larger than IBk assuming a decent signal-to-noise. Based on the 

observed experimental values of noise, ICount for the simulated data was chosen to be ICount 

= 6IBk to get similar noise levels with those observed in experiment. For each simulated 

intensity, a fixed noise profile was produced for that intensity and used in all runs for that 

target structure. These figures only show the simulated target structures. For the 
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experimental data, the constant value qx slices were already extracted from the integrated 

intensity data and their plots can be seen in Fig. 14 where the black curves are the 

experimental data. An example fit (green) using the CMAES algorithm with the 

corresponding residuals using M = 3 trapezoids is shown in Fig. 14 as well.

Appendix D: Compiled Results of Different Target Structure Studies

D.1 Simulated Target Structures

Fig. 15 shows plots for all NRun runs of the SC M = 1 trapezoid target structure goodness of 

fit values versus normalized time for all three objective functions and three algorithms. Fig. 

16 shows plots for all NRun runs of the SC M = 2,3, and 4 structures as well as the DC M = 1 

and 2 structures for the Ξ objective function for all three algorithms. In both figures, there 

are inset images of the target structure. In general, green curves are used for the CMAES, 

blue curves for DE, and red curves for MCMC. The general trend seen in all cases is that 

CMAES takes on average about an order of magnitude less time than the DE or MCMC to 

start rapidly converging towards a minimum goodness of fit value. In terms of actual 

convergence percentage rate, the CMAES almost always converges within the number of 

generations tested while DE converges most of the time and MCMC converges more poorly 

with increasing NParam. Normalized times were chosen for comparison rather than absolute 

times because different CPU loading conditions affected the absolute times. Thus the 

normalized times can be compared whatever the speed of the internal CPU clock.

D.2 Experimental Target Structure

Table 11 shows a comparison between the model parameter set solution found in a previous 

seeded MCMC study with simulations varying the number of trapezoids in the stack model 

where the CMAES algorithm was used with the Ξ objective function. This is an extended 

version of Table 2 from the main text. Where no parameter is comparable (because of the 

number of trapezoids being different) NC is placed in the table for not comparable. In the 

previous study, one nuance difference to account for when comparing the parameters found 

in that study is that a fit to a qz ≅ 0 slice of data as a function qx was also used in 

conjunction with the constant qx peak slices to fit the data requiring the intensities to be 

rescaled to the maximum peak intensities found. This simply means that the background 

intensity parameter IBk and scaling exponent IExp cannot be directly compared between the 

studies, but all geometric shape parameters and the Debye-Waller factor are still directly 

comparable. The values for the previous study in the table are instead effective parameters 

found by taking the fit data from the previous study and rescaling the data with the same 

number of data points.

To explore how well the different algorithm and objective function combinations converged 

to appropriate parameter set solutions for the experimental data set, plots of the goodness of 

fit values versus t/τGen were made. These plots are shown in Fig. 17 with green curves for 

the CMAES, blue curves for DE, and red curves for MCMC. These results are from NRun = 

11 for the CMAES and DE algorithms and NRun = 5 for the MCMC. Similar trends are seen 
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here that were seen for the simulated target structure data for the trends of when the 

algorithms start to converge with the CMAES being the best followed by DE and MCMC.

Appendix E: List of Abbreviations and Symbols

CDSAXS Critical dimension small angle X-ray scattering

OCD Optical critical dimension

MCMC Markov chain Monte Carlo

DE Differential evolution

CMAES Covariance matrix adaptation evolutionary strategy

SC Single column

DC Double column

SLD or ρ Scattering length density

r⃗ Position vector in real space with coordinates x and z

NShape Number of independent parameters describing the shape 

profile in the models

NParam Number of independent parameters (includes NShape and 3 

intensity scaling parameters)

G Iteration (MCMC) or generation index (DE/CMAES)

C Chain number (MCMC) or population individual index 

(DE/CMAES)

P⃗ Parameter vector of size NParam for the set of parameters

κ Parameter index

q⃗ Reciprocal space vector with coordinates qx and qz

I General intensity variable (subscript distinguishes type)

ISim Simulated scattered intensity corresponding to a model 

parameter set

ITar Experimental scattered intensity or target simulated 

scattered intensity

Ω General goodness of fit value

ΩCrit Value used as one deciding factor in exiting an inverse 

algorithm
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P⃗
MF “Most fit” parameter set (i.e. model parameter set that 

gives the lowest Ω found)

I0 Absolute square of the form factor (unscaled simulated 

intensity)

IS Multiplicative scaling intensity parameter

IExp Logarithm of IS in base 10

DW Debye-Waller factor (~interfacial thickness between 

materials in shape model)

IBk Background intensity shifting parameter

F General function

M Total number of trapezoids used in shape profile model

m Index label for a given trapezoid in shape profile model

WB Bottom width of a given trapezoid

WT Top width of a given trapezoid

H Height of a given trapezoid

Nq Number of data points used in calculating goodness of fit 

values (i.e. number of qx and qz coordinates used)

χ2 Chi squared objective function

Ξ Mean absolute error log objective function

ψ Mean absolute error objective function

α Index for algorithm type (MCMC, DE, or CMAES)

tConv Time needed for a given algorithm to converge to within a 

given goodness of fit value

t General time variable

τGen Time needed for a single generation or iteration to finish

GConv Number of generations needed for a given algorithm to 

converge within a given goodness of fit value

τα Time constant for the average time for a single generation 

step for a given algorithm α

ΩTar Goodness of fit value that needs to be reached to have a 

solution within desired accuracy
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ΩConv Theoretical best Ω value possible if exact parameter 

solution is found

psize Number of individual parameter sets used in a given 

genetic algorithm run (population size in CMAES/DE or 

number of chains in MCMC)

NRuns Number of times an algorithm was used with different 

initial conditions for the same input data (simulated or 

experiment)

WFWHM Full width at half maximum height for a column of 

trapezoids. Used in comparing the widths of trapezoid 

stacks of varying number modeling the same data set.

Best Subscript notation indicating a solution has the lowest 

found goodness of fit

RI Residual of the target and simulated intensities

NChains Number of chains in MCMC

rand([n1, n2]) Function whose output is a random number drawn from a 

uniform distribution with minimum n1 and maximum n2

ΩMF Lowest global goodness of fit value found during an 

inverse algorithm run

V⃗
move Parameter move vector in MCMC

B⃗
Upper Upper bound parameter vector

B⃗
Lower Lower bound parameter vector

R⃗ Random contribution to V⃗
move

σStep Step size in MCMC, the parameter move size is inversely 

proportional to this factor

fAcc Fraction of moves that are accepted during an algorithm 

run under a given criterion

ΩNorm or ΞNorm Fidelity value used to normalize goodness of fit value such 

that it scales with fAcc

Kmut Mutation constant in DE

A and B Random population index integers in DE mixing scheme

Kcro Crossover constant in DE

λmix Number of individuals used in mixing in CMAES for 

making mean parameter set
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P⃗
G,Mean Average parameter vector in CMAES from λmix best 

parameter sets

V Covariance matrix used in CMAES

pOpt Lower bound optimal population size necessary for 

CMAES to converge well

GOpt Optimal number of generations needed for CMAES to 

converge to an acceptable solution when pOpt is used

λOpt Optimal mixing size for CMAES algorithm

σ Coordinate wise standard deviation step size used in 

CMAES mixing scheme; Also the shape parameter for the 

log-normal distribution

σ1 Initial value of σ in CMAES algorithm

σMax Maximum value of σ allowed in CMAES algorithm to 

avoid numerical overflow

ϕ Crossover probability weight (i.e. how much weight a 

parameter set gives to the mean parameter set) in the 

CMAES algorithm

λEff The effective number of individual parameter sets used in 

the CMAES mixing scheme based on the values of ϕ

GMax Maximum number of generations allowed before algorithm 

terminates

MF Subscript for “most fit” parameter set found within a given 

inverse algorithm run

tV the time constant for the accumulation of V

tσ the time constant for the accumulation of σ

R1 the rate for the update of the 1st rank update of V

Rλmix the rate for the update of the  rank update of V

δσ the damping coefficient for the generational update of σ

P⃗
G,V the parameter evolution path for V

P⃗
G,σ the parameter evolution path for σ

B the eigenvector matrix of the covariance matrix V

D the diagonal eigenvalue matrix of the covariance matrix V

XN the expectation value constant
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T is the matrix transpose operator

hσ Constant used in calculating the parameter evolution path 

vectors

W Matrix used in calculating the covariance matrix

η Random vector of normally distributed numbers

Undiag(*) Function that takes in a square matrix and outputs the 

diagonal values

GE Generation index used in determining if an update to the 

covariance matrix should be performed

Θ Index used for distinguishing the right R and left L sides of 

a given trapezoid

BΘ,m Exponential phase factor used in calculating the scattering 

of a given trapezoid

CΘ,m Exponential difference factor used in calculating the 

scattering of a given trapezoid

SΘ,m Slope of a given trapezoid side

bΘ,m Intercept of a given trapezoid side

c Number of columns used in trapezoid stack model

μ Mean for the log-normal distribution

PDFΞ Log-normal probability distribution function

SF Scaling factor for scaling log-normal probability 

distribution function

PDFΞSF Rescaled log-normal probability distribution function

μI Arithmetic mean of the simulated intensity

σI Arithmetic standard deviation of the simulated intensity

ξ Poisson distributed background noise added to simulated 

data

ICount Intensity amount contributed by a single photon count in 

the simulated data
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Fig. 1. 
Diagram outlining the major steps in our approach. This format is general for different 

objective functions and different parameter set updating algorithms (CMAES, DE, or 

MCMC).
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Fig. 2. 
Example trapezoid model based shape profiles used in calculating the SLD for the target 

intensities. The two main types of model parameter sets explored are those of a single 

column of periodic trapezoid features shown on the left (SC) and those of double columns of 

periodic features shown on the right (DC). Geometric model parameters are denoted in the 

figure.
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Fig. 3. 
Schematic diagram of how known solution intensities were produced. (a) Set of independent 

parameters is defined for the real space structure with various geometric parameters and 

intensity scaling parameters. In this case three geometric parameters are required to define 

the bottom width WB, top width WT, and height H of a single symmetric trapezoid plus the 

three intensity scaling parameters DW, IS, and IBk. (b) Schematic diagram of the shape 

profile of the single trapezoid target structure. (c) Simulated intensity over the range of qx 

and qz values varying from ≈ −1 nm−1 to 1 nm−1. Intensity is plotted on a log scale for better 

contrast. Lighter blue regions are higher intensity and darker blue to black regions are low 

intensities. The five colored lines are the five intensity qz slices chosen for the inverse 

algorithm to use to solve for the structure. (d) Plots of the five intensity slices used in the 

inverse algorithm with the same coloring as from (c) with the respective qx values colored 

appropriately. Scaling of the intensity values is arbitrary to get all five curves onto one plot 

without overlapping.
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Fig. 4. 
Comparison of plots of the intensity fits found by the CMAES algorithm with Ξ function for 

the DC M = 2 target structure. Top left shows the entire simulated intensity profile with the 

green lines being where the qz slices were taken. The rest of the figure shows the simulated 

data ITar with Poisson noise plotted in black, a fit curve ISim plotted in green, and the 

residuals RI = ITar − ISim between the fit and simulated data with noise plotted in magenta 

(q1) Slice 1 qx = 0.31 nm−1. (q2) Slice 2 qx = 0.41 nm−1. (q3) Slice 3 qx = 0.52 nm−1. (q4) 

Slice 4 qx = 0.73 nm−1. (q5) Slice 5 qx = 0.94 nm−1.
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Fig. 5. 
Plots of the best (lowest goodness of fit found from up to 10 runs) run goodness of fit values 

versus normalized time for different number of parameter structures using the three different 

algorithms (CMAES in green dash dotted lines, DE in blue solid lines, and MCMC in red 

dotted lines). Plots are log scale. ΩTar thresholds are shown as a black dashed line. Target 

shape profiles (black dashed lines) and solution shape profiles (CMAES in green, DE in 

cyan, and MCMC in magenta) are shown to the right of each corresponding Ω versus t/τGen 

plot. (a–c) NParam =6 SC M = 1. (a) Ω → χ2 (b) Ω → ψ (c) Ω → Ξ (d–h) Ω → Ξ (d) 

NParam = 8 SC M = 2. (e) NParam = 10 SC M = 3. (f) NParam = 12 SC M = 4. (g) NParam = 9 

DC M = 1. (h) NParam = 13 DC M =2.
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Fig. 6. 
(a–c) Goodness of fit versus t/τGen results with M = 3 for the experimental data structure 

between the three algorithms (CMAES in green dash dotted lines, DE in blue solid lines, and 

MCMC in red dotted lines). Data is plotted on a log base 10 scale. Plots are best (lowest 

goodness of fit) data sets from 10 runs. (a) χ2 objective function was used. (b) ψ objective 

function was used. (c) Ξ objective function was used. (d) Geometric structure shape profiles 

for the best parameter set solutions found using the different objective functions (rows top to 

bottom are χ2, ψ, and Ξ) and algorithms (columns left to right are green for the CMAES, 

cyan for DE, and magenta for MCMC) for the M = 3 experimental data structure. Scale is 

inset on the right of the figure. The overlaid dotted black line structure is the solution found 

from the previous MCMC study for comparison.
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Fig. 7. 
Plot of the acceptance fraction fAcc (green) and average minimum goodness of fit value 

converged towards with standard uncertainty (black) for several MCMC algorithm runs at 

different σStep sizes. Uncertainty bars are standard uncertainty for 96 chains. The minimum 

goodness of fit value converged towards occurred around σStep ≅ 32. Here the objective 

function Ξ was used and normalized by the number ΞNorm to get the data comparable with 

the acceptance fractions (i.e. ΞNorm converts the goodness of fit value to arbitrary scaled 

units; a value of ΞNorm =3578 was used). At large σStep, the algorithm accepts many 

parameter set moves and thus works poorly. Conversely, at small σStep, the parameter set 

moves result in almost no acceptance events and the algorithm also works poorly. Thus the 

medium value of σStep = 32 where Ξ was minimized was used in further MCMC runs.
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Fig. 8. 
Plots of the minimum goodness of fit values Ξ converged towards and the acceptance 

fraction fAcc for several DE algorithm runs at different Kmut and Kcro values. (a) 2D plot of 

Ξ versus Kmut and Kcro with bluer colors being lower and redder colors being higher. (b) 2D 

plot of fAcc versus Kmut and Kcro with bluer colors being lower and redder colors being 

higher. (c) 3D surface plot of data shown in (a). (d) 3D surface plot of data shown in (b).
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Fig. 9. 
Figure analogous to Figure 3 in the main text for target structure with SC M = 2. Period is 

fixed as 50 nm. (a) Independent parameters defined for the SC M = 2 structure. (b) 

Schematic diagram of the shape profile for the SC M = 2 structure. (c) The simulated target 

structure intensity profile in qz versus qx for a range of [−1:1] nm−1. Intensity is plotted on a 

log scale with scale shown. Colored lines are constant qx cuts used for parameter 

optimization with the algorithms corresponding to the intensities shown in (d). (d) Log of 

target structure intensity slices used for fitting. Scale is arbitrary so the curves all fit on the 

same plot.
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Fig. 10. 
Figure analogous to Figure 3 in the main text for target structure with SC M = 3. Period is 

fixed as 50 nm. (a) Independent parameters defined for the SC M = 3 structure. (b) 

Schematic diagram of the shape profile for the SC M = 3 structure. (c) The simulated target 

structure intensity profile in qz versus qx for a range of [−1:1] nm−1. Intensity is plotted on a 

log scale with scale shown. Colored lines are constant qx cuts used for parameter 

optimization with the algorithms corresponding to the intensities shown in (d). (d) Log of 

target structure intensity slices used for fitting. Scale is arbitrary so the curves all fit on the 

same plot.
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Fig. 11. 
Figure analogous to Figure 3 in the main text for target structure with SC M = 4. Period is 

fixed as 50 nm. (a) Independent parameters defined for the SC M = 4 structure. (b) 

Schematic diagram of the shape profile for the SC M = 4 structure. (c) The simulated target 

structure intensity profile in qz versus qx for a range of [−1:1] nm−1. Intensity is plotted on a 

log scale with scale shown. Colored lines are constant qx cuts used for parameter 

optimization with the algorithms corresponding to the intensities shown in (d). (d) Log of 

target structure intensity slices used for fitting. Scale is arbitrary so the curves all fit on the 

same plot.
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Fig. 12. 
Figure analogous to Figure 3 in the main text for target structure with DC M = 1. Period is 

fixed as 80 nm. (a) Independent parameters defined for the DC M = 1 structure. (b) 

Schematic diagram of the shape profile for the DC M = 1 structure. (c) The simulated target 

structure intensity profile in qz versus qx for a range of [−1:1] nm−1. Intensity is plotted on a 

log scale with scale shown. Colored lines are constant qx cuts used for parameter 

optimization with the algorithms corresponding to the intensities shown in (d). (d) Log of 

target structure intensity slices used for fitting. Scale is arbitrary so the curves all fit on the 

same plot.
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Fig. 13. 
Figure analogous to Figure 3 in the main text for target structure with DC M = 2. Period is 

fixed as 40 nm. (a) Independent parameters defined for the DC M = 2 structure. (b) 

Schematic diagram of the shape profile for the DC M = 2 structure. (c) The simulated target 

structure intensity profile in qz versus qx for a range of [−1:1] nm−1. Intensity is plotted on a 

log scale with scale shown. Colored lines are constant qx cuts used for parameter 

optimization with the algorithms corresponding to the intensities shown in (d). (d) Log of 

target structure intensity slices used for fitting. Scale is arbitrary so the curves all fit on the 

same plot.
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Fig. 14. 
Comparison of plots of the intensity fits found by the CMAES algorithm with Ξ function for 

the experimental target structure data. The figure shows the experimental data ITar plotted in 

black, a fit curve ISim plotted in green, and the residuals RI = ITar − ISim between the fit and 

experimental data plotted in magenta. (q1) Slice 1 qx = 0.223 nm−1. (q2) Slice 2 qx = 0.451 

nm−1. (q3) Slice 3 qx =0.677 nm−1. (q4) Slice 4 qx = 0.905 nm−1.
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Fig. 15. 
Plots of the goodness of fit values for all three algorithms versus the normalized time t/τGen 

for the SC M = 1 structure. Plots are on log base 10 scale. Inset is a key for which algorithm 

the colored curves correspond and a schematic of the target structure. The plots have black 

dashed lines showing the ΩTar values. Plots have all NRuns for the three algorithms of the 

goodness of fit values versus t/τGen superimposed with different shades of the algorithm 

distinguishing colors for better clarity. Note there was one case for the DE in (c) that reached 

ΩTar faster than the CMAES, but the final converged value of Ξ was slightly higher. (a) Ω = 

χ2. (b) Ω = ψ. (c) Ω = Ξ.
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Fig. 16. 
Plots of the goodness of fit values for all three algorithms with Ω = Ξ versus the normalized 

time t/τGen for the multiple trapezoid target structures. Plots are on log base 10 scale. Inset is 

a key for which algorithm the colored curves correspond and a schematic of the target 

structure is inset in each corresponding plot. The plots have black dashed lines showing the 

ΩTar values. Plots have all NRuns for the three algorithms of the goodness of fit values versus 

t/τGen superimposed. Note that fewer NRuns were performed for the higher NParam structures 

for the MCMC and DE based on just doing enough to find examples that converged within 

ΩTar as those runs started to take much longer than t/τGen = 105 to converge on average 

(corresponding to a few weeks of simulation time). (a) SC M = 2. (b) SC M = 3. (c) SC M = 

4. (d) DC M = 1. (e) DC M = 2.
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Fig. 17. 
Plots of the goodness of fit values for all three algorithms versus the normalized time t/τGen 

for the M = 3 experimental data set. Plots are on log base 10 scale. Inset is a key for which 

algorithm the colored curves correspond. The black dashed lines indicates the ΩTar values. 

Plots have all NRuns for the three algorithms of the goodness of fit values versus t/τGen 

superimposed. (a) Ω = χ2. (b) Ω = ψ. (c) Ω = Ξ.
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Table 3

The relative fractional percentage each slice contributed to the total goodness of fit for each Ω in its own basis 

using the CMAES algorithm. Values are calculated using the objective function noted at the top of table.

χ2 ψ Ξ

% Slice qj Contributes to Total Ω

q1 (qx =0.223 nm−1) 99.5 % 91.0 % 48.3 %

q2 (qx =0.451 nm−1) 0.3 % 4.5 % 42.2 %

q3 (qx =0.677 nm−1) 0.1 % 2.9 % 4.5 %

q4 (qx =0.905 nm−1) 0.1 % 1.6 % 5.0 %
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