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Abstract

The serial coalescent extends traditional coalescent theory to include genealogies in which not all individuals were sampled at
the same time. Inference in this framework is powerful because population size and evolutionary rate may be estimated inde-
pendently. However, when the sequences in question are affected by selection acting at many sites, the genealogiesmay differ
significantly from their neutral expectation,and inference of demographic parametersmay become inaccurate. I demonstrate
that this inaccuracy is severe when themutation rate and strength of selection are jointly large, and I develop a new likelihood
calculation that, while approximate, improves the accuracy of population size estimates.When used in a Bayesian parameter
estimation context, the new calculation allows for estimation of the shape of the pairwise coalescent rate function and can
be used to detect the presence of selection acting at many sites in a sequence. Using the new method, I investigate two sets
of dengue virus sequences from Puerto Rico and Thailand, and show that both genealogies are likely to have been distorted
by selection.

Key words: coalescent, serial samples, interference, selection, dengue.

Research
article

Introduction
Inferring population history from genetic data is a central
focus of modern population genetics. The increasing avail-
ability of genetic data sampled frompopulations atmultiple
time points has facilitated this goal by allowing independent
estimation of demographic and substitution rate parame-
ters via the serial coalescent (Rodrigo and Felsenstein 1999;
Drummond and Rodrigo 2000; Drummond et al. 2002).
Although the serial coalescent and coalescent theory in gen-
eral provide a powerful framework for inference of popu-
lation parameters, they generally assume that the loci in
question are evolving neutrally. However, recent research
has suggested that selection may cause gene genealogies to
differ from their neutral expectation (Barton and Navarro
2002; Williamson and Orive 2002; Barton and Etheridge
2004; O’Fallon et al. 2010; Seger et al. 2010), and this dis-
tortion may lead to biases in the inference of population
parameters if not incorporated into the model. Despite
growing awareness of the distorting effects of selection, the
degree of inaccuracy that selection induces on demographic
inference with the serial coalescent has not been examined,
and few likelihood models explicitly include the effects of
selection.

Appreciation of the effects of selection on genealogical
structure has come relatively recently, with most earlier
studies suggesting that selection has little effect. Although
initial studies of strong “background” selection established
that the time to most recent common ancestor (TMRCA)
of a sample may be shortened considerably (Charlesworth
et al. 1993), subsequent work using the Ancestral Selection
Graph (Neuhauser and Krone 1997; Przeworski et al. 1999)

indicated that selection did not greatly alter the shapes of
genealogies. This belief was reinforced by the subsequent
studies of Williamson and Orive (2002) and Barton and
Etheridge (2004), who employed simulations and analytic
studies, respectively, and also found that selection had little
effect on genealogical structure. Investigating conditional
genealogies in which samples could be assigned to allelic
states,Wakeley (2008) found that strong negative selection
also had no effect on genealogies, provided multiple delete-
rious types were not present in the sample.

More recently, however, studies have established that
some selective conditions may cause genealogies to differ
significantly from neutral expectations. In particular, puri-
fying selection at many closely linked sites may produce
a characteristic distortion of genealogies that affects both
branch lengths and tree topology (Maia et al. 2004; O’Fallon
et al. 2010; Seger et al. 2010). The distortions found in
these models are due in part to alterations in the rate at
which lineages coalesce, which is an increasing function of
(backwards) time. The rate increase follows from the fact
that selection is less effective at purging deleterious muta-
tions from the population in the absence of recombination,
an effect known as Hill–Robertson interference (Hill and
Robertson 1966; Felsenstein 1974; Comeron et al. 2008). The
preponderance of segregating polymorphisms that arises in
this situation generates variability in heritable fitness, and
lineages sampled under these conditions perform a random
walk in backward time over fitness states (e.g., Rouzine and
Coffin 2006; Seger et al. 2010). The random walk is biased
toward high fitness states, and when multiple lineages “ar-
rive” at such states, the chance that they coalesce may be
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significantly higher than the neutral expectation. The ap-
proach to this level may be slow, however, and the coales-
cent rate is a function of time that increases fromtheneutral
expectation (often the reciprocal of the effective size) near
the tips to a higher rate near the root. The magnitude of
the distortion is maximized at intermediate selection coef-
ficients because very strong selection reduces population-
wide fitness variability, and the coalescent rate becomes
similar to that expected under neutrality. The amount of
selection that maximizes coalescent rate is an increasing
function of the mutation rate, such that if mutation and
selection are jointly large, coalescent rate may be greatly
increased.

Less well understood is the structure of gene genealogies
under selection when samples are taken at different times.
Because the coalescent rate of lineages increases with time
prior to the time at which lineages are sampled, the lineages
present at a particular depth may have different propen-
sities to coalesce. Although overall coalescent rate will in-
crease with genealogical depth, the rate may fluctuate in a
complex manner depending on the strength of selection as
well as the times at which samples were taken. These fluc-
tuations are likely to obscure traditional methods of popu-
lation size estimation, which often assume that coalescent
rate is affected only by population size. In particular, by in-
creasing coalescent rate, selectionmay cause reconstruction
methods to infer population sizes that are much lower than
the true size. If all sequences are sampled at the same time,
the populationmay appear to be growing, since coalescent
rate increases with backward time. However, when samples
are taken at different times, selection is likely to induce dis-
tortions that are distinct from population growth because
coalescent rate may decrease as well as increase depending
on the the times at which samples were taken.

In this work, I develop an approximate method for cal-
culating the likelihood of observing a genealogy with non-
contemporaneous samples given arbitrary population size
and a model that describes how coalescent rate is affected
by selection at many sites. The new likelihood calculation
is used in a Bayesian Markov chain Monte Carlo (MCMC)
inference context to estimate the posterior distributions of
model parameters such as population size. Initially, I exam-
ine how current methods of demographic inference using
the serial coalescent performwhen the sequences are under
selection, and then demonstrate that the new method cor-
rects for the observed biases while allowing for an estimate
of a selection-induced distortion parameter. Two important
approximationsare involved. First, I assume that coalescent
propensity of a branch increases in a simple linear fashion
with the distance to the tips of the genealogy. Second, all
lineages with equal distances to the tips are assumed to be
exchangeable with respect to coalescent rate, regardless of
the number of coalescent events in which they have partic-
ipated. Both approximationsare investigated using forward
simulation.

To demonstrate the method on empirical data, I re-
examine two serially sampled data sets of dengue virus
(DENV), a single-stranded positive sense RNA virus trans-

mitted by the mosquito vector Aedes aegypti. Dengue virus
is the etiologic agent of dengue fever and the more se-
vere conditions dengue hemorrhagic fever and dengue
shock syndrome, illnesseswhich affect an estimated 50–100
million people globally each year. Several recent studies
have examined selective pressures in DENV, and instances
of both positive and purifying selection have been detected
(Bennett et al. 2003, 2006; Zhang et al. 2006). The rela-
tively high substitution rate of the virus (5 × 10−4 to 10−3

substitutions/year; Twiddy et al. 2003) and compact, non-
segmented genome make DENV a likely candidate for
selection-relatedgenealogical distortion.

Methods
I begin by demonstrating that current methods of esti-
mating population size using the serial coalescent become
significantly biased if the sequences are linked to multi-
ple sites experiencing selection. I then investigate the man-
ner in which selection distorts the distribution of pairwise
coalescent times when sequences are sampled at different
times. Finally, I introduce modifications to the serial coales-
cent likelihood calculation that correct for the population
size bias and allow for estimation of parameters affecting
pairwise coalescent rate. The goal is not to infer the actual
magnitude of the selection coefficients or the properties
of the distribution of coefficients, but instead to detect se-
lection indirectly, through the genealogical distortions it is
predicted to induce.

Bias of Current Methods in the Presence of Selection
To investigate the effect of selection at multiple linked sites
on population size estimates, the Bayesian genealogy sam-
pler BEAST (Drummond and Rambaut 2007) was used with
serially sampled data simulated from populations of known
size. Data were generated using the forward simulator
TreesimJ (O’Fallon 2010a), which assumes a haploid popu-
lation of size N evolving via discrete nonoverlapping gen-
erations, where N ranged from 200 to 8,000. The source
code was modified to allow for arbitrary serial-sampling
strategies. The Kimura 2-parameter mutation model was
employed with a selection model in which 1,000 neutral
sites were completely linked to 1,000 sites with selection
coefficient s . In this model, each site mutates with inde-
pendent probability μ each generation, and when in the
mutated state selected sites independently reduce fitness by
fraction 1 − e−s . Fitness effects multiply across sites, such
that the absolute fitness of an individual with n mutated
sites is e−ns . Mutation is independent of selection and mu-
tational state, hence back mutations are possible and lin-
eages may increase in fitness in forward time. Genealogies
were sampled from this populationby sampling ten individ-
uals every N/2 generations for five total sampling periods.
This scheme creates trees with 50 tips with sampling periods
spanning2.5N total generations.

Population parameters were estimated using only the
1,000 neutral sites as input data. Including selected sites
in the analysis may bias tree reconstruction and lead to
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FIG. 1. Pairwise coalescent rate inferred from forward simulation. (a ) Pairs where individuals were sampled “d” generations apart. In all curves,
N = 250,Θ = 0.1, Ns = 2.5, and 1,000 sites experienced selection. (b ) Two sets of curves in which population size was varied butΘ and Ns were
held constant.

inaccuracies that are not a product of genealogical distor-
tion, the phenomenon I investigate here. BEAST runs were
conducted for at least 5× 106 MCMC steps, with the (con-
stant) population size, mutation rate, base frequencies, and
transition to transversion ratio estimated from the data.
Effective sample sizes were over 1,000 for nearly all parame-
ters in all runs.

The Pairwise Coalescent Rate for Tips Sampled at
Different Times
Kingman (1982a, 1982b) demonstrated that when the size
of a population is substantially larger than the number of
individuals sampled from it (N >> n ), the probability that
more than two lineages coalesce per unit time becomes van-
ishingly small, and the shape of a genealogy is described en-
tirely by the number of samples (n ) and the rate at which
two lineages coalesce, which I refer to as the “pairwise coa-
lescent rate.” In a neutrally evolving haploid populationwith
constant size N , the pairwise coalescent rate is 1/N for all
t . Previous studies have shown that when selection acts at
many closely linked sites, this rate increases gradually with
(backward) time (O’Fallon et al. 2010; Seger et al. 2010), re-
ducing the mean time to coalescence andproducing a char-
acteristic bulge in the distribution of coalescence times. Few
analytic results exist to describe how the rate changes as a
function of time, and advances so far have been obtained us-
ing simulation. Here, I expand onprevious simulation results
to explore how the pairwise coalescent rate function de-
pends not only on time but on the amount of time between
sampling events.

Consider a haploid population of constant effective size
N . When two individuals are sampled from this population

at times t1 and t2, let the probability that they share a com-
mon ancestor t generations in the past, conditional on not
having previously coalesced, be described by the function
φ(t ; t1, t2). As argued above, under neutrality

φ(t ; t1, t2) ≡ 1

N
, (1)

for t > Max(t1, t2). The probability that two individuals
first share a common ancestor at time t is described by the
density

ψ(t ; t1, t2) = φ(t ; t1, t2)e
−∫ t

0
φ(z ;t1 ,t2)dz . (2)

Under neutrality,ψ(t ; t1, t2) is the probability density of
an exponentially distributed random variable withmean N .
However, little theory exists regarding the formofφ(t ; t1, t2)
for sequences under selection, and I turn to simulations to
investigate the shape of the pairwise coalescent rate func-
tion. As above, simulations were performed with TreesimJ
(O’Fallon 2010a), using constant population size, Kimura
2-parameter mutation, 1,000 selected sites with identical
selection coefficients, and several mutation rates and se-
lection coefficients. Investigation of the resulting rate func-
tions demonstrates that, although coalescent rate may be
substantially increased by selection, relatively little change
is brought about by sampling sequences at different times
(fig. 1a). When sequences are sampled d generations apart,
pairwise coalescent rate curves are nearly identical for d =
N/5 and d = N . In general, coalescent rate is increased
moderately for a short period immediately following the
second sampling event, but, as intuition suggests, the maxi-
mal coalescent rate reached is identical to that found when
sequences are sampled at the same time. In addition, the
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FIG. 2. Diagram demonstrating the technique used to assign sampling height to lineages when a lineage is ancestral to tips sampled at multiple
times. See text for explanation.

curves appear to obey expectations from diffusion theory
and are insensitive to changes in population size if Θ and
Ns are held constant (fig. 1b).

A Likelihood Calculation for Serially Sampled
Genealogies under Selection
In this section, I propose a new method of calculating the
likelihood of observing a genealogy with noncontempora-
neous tips, conditional on population size (N) and a single
new parameter ρ that characterizes the increase in pairwise
coalescent rate brought about by selection. The calculation
involves several approximations regarding the manner in
which coalescent rate varies over time and across lineages.
First, it is assumed that the pairwise coalescent rate is un-
affected by the time difference between samples, such that
φ(t ; t1, t2) ≡ φ(t ; tmax, tmax), where tmax = max(t1, t2).

Second, a means of resolving instances in which a lin-
eage is ancestral to samples taken atmultiple different times
is required. For instance, consider the lineage indicated by
the asterisk (�) in figure 2, which is ancestral to two sam-
ples taken at time t1 and one taken at time t2. To compute
the probability of a coalescent event between � and the lin-
eages sampled at time t3, I assume that there is a function
g(t1, t2) that depends only on thedepths of lineages that co-
alesced to create the lineage in question. That is, no account
is made of the fact that there are two t1 lineages and one t2
lineage; only the times associated with the two coalescing
lineages are examined. Intuitively, g(t1, t2) should return a
result between t1 and t2, and the following reasoning sug-
gests that the value should be closer to min(t1, t2) (where
smaller times correspond tomore tipward values). As men-
tioned above, the high coalescence rates associated with
selection are due to the fact that, when traced backward
in time, lineages occupy progressively higher fitness states.
Two lineages are more likely to share a parent when they
have similar fitnesses and when their fitness is high. There-

fore, when two lineages coalesce, the probability that both
were in a relatively high fitness state is much greater than
the probability that they were both close to the mean pop-
ulation fitness. Thus, immediately rootward of a coalescence
event, a lineage in question is likely to have a relatively high
fitness, a state which is also induced by relatively long times
since the sampling event. Without a more rigorous theory
to guide the choice, I assume that g(t1, t2) ≡ min(t1, t2).
Using this strategy, a “sampling height” can be assigned to
each branch in the tree by starting from the tips and assign-
ing heights as one progresses toward the root of the tree,
always favoring theminimumheight encounteredwhen co-
alescent events occur.

Finally, to describe the effects of selectionon the pairwise
coalescent rate, I introduce amodification to the coalescent
rate function as follows:

φ(t ;N , ρ, h ) ≡ 1

N
(1+ ρ(t − h )), (3)

where h is the sampling height of the lineage in question.
This new function depends on the sampling times t1 and
t2 only through their effects on the sampling height h , and
assumes that coalescent rate increases linearly in sampling
height with slope ρ. At first, such a function may seem im-
plausible since it implies that the coalescent rate increases
without bound in t . Additionally, it is a poor fit for the pair-
wise rate functions observed from simulation data, which
appear to approach an asymptote with large t (fig. 3). How-
ever, the linear function enjoys distinct advantages that
form a compelling argument for its use. First, it introduces
only a single additional parameter, ρ. Previous work with
more complicated functions involving several parameters
yielded biased and imprecise results. Although part of the
inaccuracy is likely due to the greater number of parame-
ters estimated, investigations revealed that most coalescent
events occur at very low sampling heights, where the rate
function is approximately linear (fig. 1). Hence, at least for
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FIG. 3. Diagram comparing the assumed rate function to an arbitrary
simulated pairwise coalescent rate. See text for explanation.

the sampling schemes investigated here, little power may
exist to infer higher-order components of the rate func-
tion. An additional advantage of the linear function is that
its integral may be evaluated analytically and expressed
without transcendental functions, aiding computational
performance.

In a manner similar to the neutral case, I compute the
likelihood of a genealogy given N and ρ independently for
each coalescent interval, where intervals are bounded by
either sampling or coalescent events. Consider an interval
bounded by tipward time ta and rootward time tb , with
m total lineages categorized by their sampling height into
i groups, where all ni members of group i share sampling
height hi . Calculate first the probability that no coales-
cences occur between groups or within any group between
the times ta and tb . Within group i , the pairwise coales-
cent rate isφ(t ;N , ρ, hi ) and there are

(
ni
2

)
possible pairings.

The probability that no coalescent event occurred is then
Exp[−(ni2

) ∫ tb
ta
φ(z ;N , ρ, hi )dz ]. For pairs in which individ-

uals are taken from different groups, say group j and group
k , the sampling heights will differ. In this case, the maxi-
mum sampling height, here denoted hj ,k , is used to modify
t . Since there are nj individuals in group j and nk individ-
uals in k , there are njnk possible pairings involving one in-
dividual from j and one from k . The probability that there
is no coalescent event between j and k individuals is then
Exp[−nj nk

∫ tb
ta
φ(z ;N , ρ,hj ,k )dz ]. Multiplying these proba-

bilities within each group and then between each pair of
groups then yields the probability that no coalescent event
occurred between the times ta and tb .

If the interval in question ends with a sampling event,
there is nothing more to compute. However, if the inter-
val ends in a coalescent event, the probability that a coa-
lescence of the observed type occurred must be included.
This term is the instantaneous rate of coalescence of lin-
eages of the type that was observed to coalesce, either(
ni
2

)
φ(t ;N , ρ,hi ) if the coalescent event involved two indi-

viduals in group i , or nj nkφ(t ;N , ρ, hj ,k ) if two individuals
from groups j and k coalesced.

Table 1. Correlation Coefficients for Adjacent Interval Lengths from
Genealogies Simulated Under Selection.

Θ Ns ρ (min, max)

0.025 5 −0.015 (−0.22, 0.28)
0.025 20 −0.008 (−0.21, 0.22)
0.025 50 −0.002 (−0.23, 0.35)
0.25 5 −0.05 (−0.32, 0.25)
0.25 25 −0.01 (−0.31, 0.45)
0.25 50 −0.012 (−0.34, 0.44)
ρ, mean coefficient across all intervals for 50 genealogies. Min and max,
extrema for intervals computed across all genealogies.

All computations are performed using time scaled in
units of population size (the current population size value
in the MCMC chain). Therefore, the inferred posterior dis-
tributions do not depend explicitly on population size, only
the compound parametersΘ and σ = Ns .

The approach described above makes an important as-
sumption regarding the exchangeability of lineages under
selection. In particular, the method ignores the fact that co-
alescences alter the expected fitness of a lineage, and hence
the propensity of that lineage to coalesce further. The fact
that a lineage’s coalescent rate may be altered by factors
other than the sampling height of the lineage implies that
lineages with equal sampling heights are not exchangeable,
and a more exact treatment would take into account two
additional effects. First, because lineages that coalesce at a
certain point are more likely to participate in additional co-
alescences, tree topologies are more likely to be unbalanced
or skewed than under neutrality (Maia et al. 2004; Seger et al.
2010). By ignoring this factor, the new calculation produces
trees that aremore balanced than expected under selection,
an effect likely to bemost prominent in cases where the data
are relatively uninformative.

Second, because interval length is influenced by the fit-
ness of the lineages in the interval, the lengths of adjacent
intervals are likely to covary to an extent that depends on
the rate at which lineages change fitness over time. If lin-
eages traverse fitness states relatively slowly, then a short in-
terval predicts that adjacent intervals are likely to be short
since the lineages involved would have a high fitness and,
therefore, high coalescent rate. Such covariation could gen-
erate misleading estimates of parameters since successive
short (or long) intervals are regarded as very unlikely by the
method unless selection is very strong (or very weak). To
investigate the accuracy of the independence assumption,
I collected all coalescent interval lengths for groups of ge-
nealogies simulated under several combinations of Θ and
Ns (table 1). For each parameter combination, I calculated
Pearson correlation coefficients between interval lengths of
adjacent intervals for all genealogies. While the correlation
coefficient varied considerably over intervals, the mean co-
efficient across intervals was close to zero for all param-
eter combinations assessed. Additionally, no trend in the
amount of correlation, either with genealogical depth or in-
creasing selection coefficient, was apparent. Thus, the inde-
pendence approximationappears to be justified, at least for
the parameter combinations examined in this study.
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Analysis of Dengue Virus Isolates from Puerto Rico and
Thailand
The virus is a single-strandedpositive sense RNA virus in the
family Flaviviridae, with a genome approximately 11kb in
length encoding ten proteins. DENV exists as four distinct
serotypes labeled DENV-1 to DENV-4.

To assess the performance of the new likelihood calcu-
lation on empirical data, I examine two serially sampled
data sets of dengue virus. The first is a series of dengue
virus type 4 (DENV-4) isolates sampled from 1981 to 1998
in Puerto Rico. Subsequent to the re-introduction of the
mosquito vector in the 1970s, all four types of dengue virus
have appeared in Puerto Rico, with type 4 first noted in 1981
(Gubler 1998). In 1982, type 4 accounted for nearly 90% of
all cases, but since has maintained a frequency of 10–40%
(Bennett et al. 2010), despite substantial year-to-year fluc-
tuations in the total number of reported infections. The
data comprised of 82 isolates, each consisting of 2,552 base
pairs of the DENV-4 polyprotein precursor, encompassing
the coding region for the Core (C), Matrix (M), and Enve-
lope (E) proteins. Isolates were sampled and sequenced as
described in Bennett et al. (2010). Because previous studies
have suggested that inclusion of selected sites in data used
to reconstruct genealogiesmaybias branch lengthestimates
(O’Fallon 2010b), the analysis included only sites in the third
codon position.

The second data set consists of 95 DENV-2 isolates sam-
pled from Thailand between 1974 and 2001, as previously
described in Zhang et al. (2006). The sequences used were
from E gene only, and as above only sites in the third codon
positionwere used. As in theDENV-4 case, a generation time
of 2 weeks was assumed.

The data sets were analyzed using both the new like-
lihood calculation as well as the neutral coalescent likeli-
hood model that is the default implementation in BEAST.
All runs were conducted with an Hasegawa–Kishino–Yano
(HKY)+Γ4 model of nucleotide evolution, with N , μ, the
gamma shape parameter α, base frequencies, transition to
transversion ratio, and the new model parameter ρ es-
timated from the data. The MCMC chain was run for
10,000,000 steps, which was sufficient to achieve effective
sample sizes of greater than 1,000 for most parameters. As
for the simulation cases, an exponential prior withmean 10
was used for the distortion parameter ρ, and uniform pri-
ors were used for all parameters except the transition to
transversion ratio, where a Jeffreys prior was employed.

Results

Bias in Population Size Estimates Using Current Methods
Using Bayesian genealogy sampler BEAST (Drummond and
Rambaut 2007), I estimated the posterior distributions of
population size for data sets with several different selection
coefficients. In all cases, the true population size was 1,000
individuals and themutation rate was 10−4 per site per gen-
eration. All posteriors shown are the averages over at least
30 independent data sets. As mentioned above, the simu-
lated “genome” consisted of 1,000 sites at which mutations

had no selective effect completely linked to 1,000 selected
sites, and only the neutral sites were used as input. In gen-
eral, inference of population size requires knowing the gen-
eration time. In this analysis, I ignore this potential source
of error and assume that the generation time is known
exactly.

In the neutral case, the default BEAST method recovers
the correct population size admirably, with a mean pos-
terior value across data sets of 1057.6 (fig. 3a). However,
as the intensity of selection increases, population size esti-
mates decrease substantially. When the selection intensity
Ns=5, the mean inferred population size is 511, a 2-fold de-
crease from the true value. Similarly, at Ns = 25, the mean
is 284. This bias is not accompanied by an increase in con-
fidence intervals. Instead, apparent precision increases with
the strength of selection, potentially creating a misleading
impression of confidence.

When the mutation rate and strength of selection are
held constant, increasing the population size results in an
increasing degree of downward bias in the inferred popu-
lation size (fig. 3b ). At larger sizes, the amount of bias may
be significant. For instance, when N = 8,000, the mean es-
timated population size is 1,481 and the standard deviation
274, thus the inferred value is some 23 standard deviations
less than the true value.

This bias is consistent with the genealogy-distorting
effects of selection, which increases coalescent rate and
therefore decrease tree depth. Current models include only
a single parameter that influences coalescent rate, popu-
lation size, and therefore an increased rate can only be
interpreted as evidence for a reduced size. Whereas the bi-
ases identified here are considerable, some evidence sug-
gests that theymay be evenmore severe in populationswith
very large size, such thatΘ andNs are both large. Seger et al.
(2010) found instances in which the coalescent rate was in-
creased by a factor of 30 or more from the neutral expec-
tation (at N ≈ 65, 000, μ = 10−6, s ≈ 0.001 with 2048
selected sites), suggesting that effective size estimates may
be more than an order of magnitude below their true value
in when inferred from data sets with similar parameters.

Likelihood Inference Using a Time-dependent Pairwise
Coalescent Rate
The new likelihood calculation, implemented in BEAST, al-
lows for estimation of population size and a new parame-
ter that affects the shape of the coalescent rate function,
ρ. Values of ρ near zero indicate neutrality, whereas values
greater than zero suggest that the coalescent rate has in-
creased with the sampling height of lineages (not the to-
tal depth of the tree), in a manner consistentwith purifying
selection at linked sites among the sequences.

To assess the accuracy of the newmethod, data were gen-
erated using forward simulation in the manner described
above. Briefly, population size was held constant in all cases,
and individual genomes consisted of 1,000 selected sites
which all shared the same selection coefficient s . Serial sam-
ples were collected every N/2 generations, and in all cases
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FIG. 4. Posterior distributions of population size estimated using
BEAST, for several intensities of selection. (a ) The true population size
is 1,000 individuals, μ = 10−4, 1,000 sites under selection, selection
intensity as shown. (b ) μ = 10−4, s = 0.0025, 1,000 sites under se-
lection, true population size as shown.

ten individuals were sampled over five total sampling peri-
ods to yield trees with 50 total tips. These “true” genealo-
gies were used directly as input to BEAST, thus the results
reported in this section do not incorporate error in estima-
tion of the genealogy.

A uniform prior was used for the population size param-
eter N , but experimentation indicated that accuracy of the
procedure improved when an exponential prior was used
for the distortion parameter ρ. Such a prior discounts very
large values of ρ, which can lead to poorMCMCmixing and
estimates of population size that are biased upward. The
exponential prior also favors small values ofρ, therefore pro-
ducing “conservative” estimates of distortionand improving
performance when the true value of ρ is zero.

The new likelihood calculation allows for significantly
more accurate estimation of population sizes when selec-
tion is influencing the genealogy (fig. 5). However, the new
method is less precise, yielding confidence intervals some-
what larger than those produced by the old method, possi-
bly due to the additional parameter that must be estimated
from the data. In addition, the posterior distributions ex-
hibit some rightward skew that caused the mean to over-
estimate the true value in some cases. The upward biasing
results in part from the chosen parameterization. Under
neutrality, the true value of ρ is equal to its lower bound
(0), hence any error in estimation leads to an overestimateρ
and therefore inflated population size estimates. In general,
the region of highest posterior probability (the maximum a

FIG. 5. Inferred posterior densities of population size using the new
likelihood calculation for several different strengths of selection. (a )
N = 1, 000 and Θ = 0.01. (b ) Population size as shown,Θ = 0.01,
Ns = 10. 1,000 selected sites in all cases.

posteriori region) is closer to the true value than the mean
of the posterior.

Results for additional combinations of N , μ, and s are
presented in table 2. Reported values are means of 50 ge-
nealogies for each combination of N , μ, and s . Maximum a
posteriori estimates ofN demonstrate that the newmethod
yields more accurate results in a variety of cases.When both
θ and s are large, estimates of N are biased toward smaller
values, but less so when using the new method than in the
default BEAST implementation. In addition, the fraction of
runs in which the 95% central posterior density (CPD) con-
tained the true value was tabulated. Under neutrality, both
methodsperformwell by thismetric, with the 95%CPDcon-
taining the true value in approximately 95% of all cases in
the default BEAST method, and in 87% of cases under the
newmethod. When selection influences genealogical shape,
however, the defaultmethodperforms very poorly, with few
or no runs containingthe true value in the 95%CPD. In con-
trast, the newmethod performswell, with 95% CPD interval
containing the true value in a high proportion of runs in all
cases.

An additional feature of the method is that it permits a
visualization of the inferred pairwise coalescent rate func-
tionφ(t ; N , ρ) andhence a way to validate the newmethod
by comparing MCMC output to pairwise rate functions es-
timated directly from simulations (fig. 6). Because a rate
function is determined entirely by N and ρ , multiple rate
functions may be constructed by collectingN , ρ pairs from
MCMC output, and investigating the density of many such
functions. In figure 6, densitieswere computedandaveraged
over 50MCMC runs for each strengthof selection (Ns = 20,
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Table 2. Performance of Old and New Likelihood Calculations for Several Combinations of N , μ, and s .

Default method Newmethod

Population θ Ns MPE Fraction containing MPE Fraction containing
size (N ) true value true value

500 0.01 0 470 (93) 0.98 537 (185) 0.87
500 0.01 10 317 (65) 0.14 475 (192) 0.96
500 0.05 20 187 (38) 0.0 387 (116) 0.94
1,000 0.01 0 980 (233) 0.95 1088 (343) 0.87
1,000 0.01 10 647 (137) 0.2 1019 (356) 0.97
1,000 0.025 20 486 (104) 0.0 922 (280) 0.95
1,000 0.05 25 365 (68) 0.0 804 (225) 0.9
2500 0.025 0 2578 (515) 0.95 2880 (830) 0.87
2,500 0.025 10 1270 (283) 0.0 2443 (884) 0.96
2,500 0.025 25 1315 (243) 0.0 1902 (701) 1
5,000 0.05 10 2635 (557) 0.0 5055 (1711) 0.97
5,000 0.025 25 2467 (501) 0.0 4221 (1481) 0.98

MPE, Maximum a posteriori estimate. Fraction containing true value indicates the fraction of data sets in which the 95% CPD contained the true population size.

Ns = 2, and Ns = 0). The resulting plots demonstrated
close correspondence between the functions inferred from
MCMC and the rate function computed directly from

simulations, suggesting that the rate functions inferred us-
ing the new method are, on average, accurate reconstruc-
tions of the underlying distortion process.

FIG. 6. Comparison of pairwise coalescent rate function (φ(t ;N , ρ)) inferred fromMCMC output to rate functions computed directly from simu-
lation data (black lines, for Ns = 0 the analytic expectation was used) for several strengths of selection. Lighter regions indicate greater posterior
density. Top: Ns = 20, middle: Ns = 2, bottomNs = 0. N = 1, 000 and μ = 2.5× 10−5 in all cases.
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FIG. 7. (a,b ) Posterior distributions of effective number of infections using both the standard and the new likelihood calculation, for Puerto
Rico and Thailand data sets, respectively (c,d ) Posterior distribution of genealogical distortion parameter ρ for the Puerto Rico and Thailand
data sets.

Analysis of Dengue Virus Samples
When genetic data are sampled from obligate pathogens
collected across hosts reconstruction of the genealogies
reflects the transmission network of the pathogens, and
therefore estimates of effective population size are in fact es-
timates of the “effective”number of infected hosts (Grenfell
et al. 2004). Similarly, assessments of selection parameters
based on genealogical structure, such as the ρ parameter
introduced here, reflect the between-host process of trans-
mission and infection andnot, for instance, antigenic escape
within hosts. In terms of the model introduced here, selec-
tion is defined as heritable variation in reproductive suc-
cess, and at the between-host level this implies heritable
differences in the number of new infections produced by a
particular lineage.

Analysis using the default BEAST implementation (as-
suming a constant population size) suggests that the two
dengue serotypes share similar demographic properties. As-
suming a generation time of 2 weeks, the effective num-
ber of infections among the DENV-4 samples from Puerto
Rico was approximately 18 compared with 21 in the DENV-
2 samples from Thailand. The long-term effective size
estimatesappear roughly compatible with the demographic
inference performed in Bennett et al. (2010), which found
that the infection size varied from< 10 to nearly 100 among
the Puerto Rico samples.

Performing the same analysis with the new method
yielded a strong signal of selection-induced genealogical dis-
tortion and substantially higher infection size estimates for
both data sets (figure 7). The mean effective number of

infections was nearly identical for both data sets, roughly
36 and 37 for the Puerto Rico and Thailand data sets, re-
spectively; 95% CPD intervals were also very similar, about
20–54 in both cases. Despite the difference in effective in-
fection size produced by the new method, other model
parameter estimates appear very similar. For instance, the
TMRCA among the Puerto Rico samples for the default and
new models is 38.3 (95% CPD 35.75–41.41) and 40 (95%
CPD 36.6–43.0) years, respectively. Similarly, TMRCAs for
the Thailand samples were 116.25 (96.3–137) and 113.75
(95.3–133.91) years for the default and new models.

Discussion
The analysis presented here demonstrates that selection of
moderate strength atmany linked sites can significantly bias
common genealogy-basedmethods of inferring population
size, and a modified likelihood calculation that corrects for
the bias while allowing for estimation of a new parameter
describing the degree of selection-induced distortion is pre-
sented. The new likelihood calculation assumes that selec-
tion at many sites affects genealogical structure primarily
through a time-dependent alteration of the pairwise rate
of coalescence and ignores the nonexchangeability of lin-
eages with the same sampling height. Despite these simpli-
fying assumptions, the new calculation yields significantly
more accurate estimates of population size, and coales-
cent rate functions inferred from MCMC output appear
to closely match the pattern of rate increase observed in
simulations (fig. 6). Estimation of population size is made
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possible by use of the serial coalescent framework, in which
demographic and mutation rate parameters are separable
(Rodrigo and Felsenstein 1999; Drummond and Rodrigo
2000; Drummond et al. 2002).

The analysis is consistentwith previous work document-
ing insensitivity of mitochondrial diversity with population
size (Bazin et al. 2006), and calls into question studies that
seek to infer population size from genetic data linked to se-
lected sites. Inferences made using mitochondrial data are
particularly concerning since recombination is absent or
very infrequent, andmitochondria mutate rapidly and have
many selected sites. If the degree of selective constraint and
the mutation rate of mitochondria are similar across pop-
ulations and species, then inferred sizes and measures of
diversity may display little sensitivity to population size dif-
ferences (fig. 4b). When selected sites are included in the
data set, distortions are likely to be exaggerated even be-
yond those demonstrated in figure 4 because inferred basal
branch lengths will be shorter than the true branch lengths
(O’Fallon 2010b).

The two dengue virus data sets examined reveal very sim-
ilar stories of selection at the between-host level. When the
long-term effective number of infections is estimated us-
ing standard techniques, both populations yield values of
approximately 20. However, when the new likelihood cal-
culation is employed, infection size estimates are increased
nearly 100%, to near 36. In addition, the new likelihood cal-
culation yields estimates of the distortion parameter ρ sug-
gestive of selection, with posterior means of 9.2 and 18.4
for the Thailand and Puerto Rico populations, respectively.
Together, these results suggest that Dengue virus exhibits
moderate heritable variation in transmission and infection
success, and that these factors should be included when re-
constructing the demographic history of the virus.

The approach described here differs from other exam-
inations of the effect of selection on genealogies in that
no specific description of the selection model is proposed.
Other studies have, for instance, examined inferenceproce-
dures in a one-locus two-allele framework (e.g., Coop and
Griffiths 2004; Slatkin et al. 2008), with precise descriptions
of forward and backward mutation rates, selection intensi-
ties, etc. However, models that seek to describe selection co-
efficients and mutation rates for empirical DNA sequences
are likely to be intractable analytically.As an alternative, the
procedure described here searches for the particular distor-
tions to the coalescent rate that are believed to be the prod-
ucts of selection at many linked sites. Both approaches have
advantages and disadvantages; the method presented here
is best applied to loci with multiple segregating mutations
affectingfitness, asmay be the case with the mitochondrion
or RNA viruses with relatively highmutation rates. However,
if mutation rates are low andpopulation sizesmodest,mod-
els that assume only a small number of segregating alleles
(such as two) are likely to be more appropriate.

Although this work has not addressed the possibility of
inferring complex population size changes simultaneously
with genealogical distortion, such calculations would be fea-
sible using the framework described here. However, in the

absence of informative priors regarding population size, lit-
tle power may exist to discriminate fluctuations in size and
selection-induced rate variation since both may produce
similar effects. In addition, computation of the likelihoods
would likely require repeated numerical integration of the
coalescent rate function (of the form φ(t ; N , ρ)/Ne(t)),
and therefore efficient computation may be a significant
challenge.
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