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ABSTRACT The analysis of the tempo and mode of evo-
lution has a strong tradition in paleontology. Recent advances
in molecular phylogenetic reconstruction make it possible to
complement this work by using data from extant species.

Cladogenesis is the division of one evolutionary lineage into
two. How often do lineages undergo cladogenesis to give
daughter lineages that will survive for long periods of evo-
lutionary time? And what characteristics of species deter-
mine rates of successful cladogenesis? Such questions are
tackled traditionally by using the fossil record (1-8), the
quality of which limits the accuracy of the answers obtained
(9). However, paleontological data could be usefully com-
plemented with information from extant species if the dates
when pairs of species last shared a common ancestor were
known (10). The advent of more complete molecular phy-
logenies for many extant species, together with the existence
of molecular clocks, is beginning to provide such data. Here
we analyze Sibley and Ahlquist’s (11) phylogeny of the birds
derived from DNA-DNA hybridization studies, to show what
molecular phylogenies can tell us about macroevolution. We
use those data because they are the most extensive yet
available, and we caution that the validity of the results we
report is limited, like paleontological analyses, by the quality
of the data used. As molecular phylogenies become more
accurate, so will the strength of the conclusions that can be
drawn from them.

Density-Dependent Cladogenesis in Birds?

Have rates of cladogenesis changed through time and, if so,
why? In this section, we tackle these questions using the
phylogenetic tree and branch lengths that Sibley and Ahlquist
(11) derived by subjecting their DNA-DNA hybridization
data to Sokal and Michener’s (12) UPGMA (unweighted pair
group method using arithmetic averages) clustering proce-
dure. Details of the species sampled, the genetic distance
measure used, and an assessment of the assumptions made in
the phylogenetic reconstruction are given by Sibley and
Ahlquist (11). The analysis is based on hybridization data
from a taxonomically widespread sample of some 1700 of the
ca. 9700 species of living birds (13). We have restricted our
analyses to that portion of the phylogenetic tree embraced by
the earliest node and the 121st node. This portion includes all
lineages whose extant species are separated by 10 or more of
Sibley and Ahlquist’s genetic distance units (species sepa-
rated at their family level differ by between 9 and 11 units).
We did not include more of the tree, because the species data
set is incomplete, so that many of the more recent nodes are
not recorded. Nevertheless, the data set contains represen-
tative species from 171 of the 174 families recognized by
Wetmore (14) and, since we are using only the first 122
lineages, we feel sure that very few (if any) nodes leading to
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extant lineages are missing from the time frame chosen. For
the moment, we assume that, on average, there is a linear
relationship between the genetic distance separating two taxa
and the time when they last shared a common ancestor. The
effect of relaxing this assumption is discussed below.

Molecular data provide information about the effective rate
of cladogenesis, defined as the rate at which lineages that are
still extant gave rise to new lineages that are also extant.
Fossil data provide, in addition, information about lineages
with no contemporary descendants, highlighting the comple-
mentarity of the two approaches to the study of the tempo and
mode of evolution. The effective rate of cladogenesis has a
simple qualitative relationship to the instantaneous rate of
cladogenesis, defined as the lineage birth rate minus the death
rate, which is a natural statistic for paleontological data.
Suppose, for illustration, that birth and death rates were
constant. Then the effective rate of cladogenesis would
appear to increase close to the present because lineages that
arose more recently are less likely to have gone extinct. So
aconstant or decreasing rate of effective cladogenesis implies
a decreasing instantaneous rate.

Fig. 1 line A is a semilogarithmic plot of the number of
lineages against time since the first bifurcation. As there is
uncertainty about the calibration of the molecular clock
pertaining to these data (15, 16), we measure time in arbitrary
units since the time of the first bifurcation. The slope of this
curve reflects the per-lineage rate of effective cladogenesis
and, so, would appear to be a straight line, with stochastic
wiggling, if the rate were constant through time. Instead, the
rate appears to decrease quite smoothly over time. As the
legend of Fig. 1 describes, the data are incompatible with a
constant-rate model.

Following the failure of the one-parameter constant-rate
model, we fitted a two-parameter density-dependent model,
in which the per-lineage rate of cladogenesis is a function of
the form p/N<=, where N is the number of lineages and a is a
constant. The compatibility of this model with the data is
good (Fig. 1), not only because there is an extra parameter to
fit but also because of its qualitative form (the possession of
a positive second derivative). This contrasts with the rela-
tively poor performance of the two-parameter logistic model
of density dependence, p(1 — N/K), which is commonly used
in population biology.

It has been suggested that the degree of molecular diver-
gence between taxa is not related to time since divergence in
a linear fashion, as we have assumed here, but that the
genetic divergence between taxa was more rapid early in the
history of an adaptive radiation (17). If this controversial (18,
19) suggestion is true, the deceleration in cladogenesis was
even more rapid than we have estimated (i.e., a larger a). So
our conclusions are qualitatively robust to this form of
departure from linearity. More recently, Wayne et al. (20)
have looked for departures from linearity by regressing
logarithmically transformed molecular divergence data
against logarithmically transformed fossil-dated temporal di-
vergence data for two groups, primates and carnivores, that
have relatively good fossil records. For the DNA-DNA
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Fi1G. 1. Line plots of the number of lineages against time. Each
point corresponds to a change in the number of lineages. Line A, the
pattern of origination of all 122 lineages; line B, same as A, but
without the Passeri (line C) and the Ciconiiformes (line D). Line B has
been shifted downward to aid visual comparison. For convenience,
time is measured in increments of 1 from time 0, when the first
effective branching of the ancestral lineage occurred, to time 180.
The original genetic distance scale goes from 28 to 10 in increments
of 0.1, and each increment corresponds very approximately to 0.45
million years according to Sibley and Ahlquist (11). The phylogenetic
tree consists entirely of dichotomous branches, so a lineage cannot
give rise to more than one new lineage in one time unit (the single
exception, a trichotomy at time 130, was treated as two dichotomies
with nodes separated by 0 time units). The following statistical
analysis was performed on the full data set of 122 lineages. If N, is
the number of lineages existing at time ¢, then N; — N,-1, denoted as
X,, is the number of lineages born between ¢ and ¢ — 1. Given the
sequence N;, the 180 X, are modeled as independent binomial random
variables with parameters N;—; and p, where p is the per-lineage
probability of effective cladogenesis. The maximum likelihood esti-
mate for a constant p is 0.018268. With this estimate of p, the
variables Z,, where Z, = (X, — X,)/[Var(X,)]'/2, were constructed,
each, by hypothesis, having a mean of 0 and a variance of 1. The
variables Z, are highly skewed, so the sum, = ZZ, which we will
denote as ¢?, is not expected to follow a x2 distribution. The
distribution of ¢? was determined by simulating the hypothesized Z,
5000 times and we reject the hypothesis of a constant probability of
cladogenesis (¢370 = 245.75, P < 0.05). The following analysis
supports the visual impression that the failure of the constant-rate
model is due to a slowdown in the rate of cladogenesis. Consider the
linear model, Z; = a + B(t — 7) + &:. The constant-rate model asserts
that e and B are both 0. The least-squares estimate of B, b, is unbiased
and, to a good approximation (confirmed by simulation), its sampling
distribution is normal with a variance of 1/2(¢t — 7)2. The observed
slope, b = —0.002827, is significantly negative (P < 0.025). Finally,
for each cladogenesis event early in the tree, we can compare the
observed and expected times until the next event using a conven-
tional y2 test. This analysis also excludes the constant probability
model (y}; = 44.16, P < 0.005). The parameters p and a in the p/ N«
model of per-lineage cladogenesis probabilities were also estimated
by the maximum-likelihood method: p = 0.040305 and a = 0.2028.
This model passes all the tests failed by the constant-probability
model: ¢f73 = 200.97, P < 0.2; b = —0.000369, P < 0.4; x2, = 14.15,
P < 0.9. The performance of the constant-probability model on the
reduced data set corresponding to line B is worse, and the perfor-
mance of the density-dependent model is even better. The Passeri
and Ciconiiformes radiations are, as they appear (lines C and D),
quite compatible with a constant-probability model.

hybridization data, the primate slope of 1.19 did not differ
significantly from 1.0, the expected value if rates of evolution
do not change with divergence time. The carnivores, with a
slope of 0.68, show rates of molecular divergence that appear
to decrease the longer that lineages have been separated. Our
conclusions for the bird data would not be qualitatively
robust to this form of departure from linearity. However,
Wayne et al.’s use of model 1 regression was inappropriate
for the carnivore data, which had a relatively low correlation
coefficient and an independent variable, fossil-dated diver-
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gence time, which is subject to nontrivial error variance (21):
the apparent carnivore slowdown may be artifactual (indeed,
the rate of primate divergence may have sped up). For
example, if the error variance in the carnivore relationship is
attributed to fossil dating rather than molecular divergence,
the slope of the double logarithmic plot is 0.94, which, for this
data set, is statistically indistinguishable from 1.0. Clearly,
the true estimate lies somewhere between 0.68 and 0.94, but
whether the estimate differs significantly from 1.0 depends
critically on the actual estimate that is used. The work of
Wayne et al. is a very important beginning, and we await
further developments before drawing firm conclusions.

Sibley and Ahlquist (11) suggest that rates of genetic
divergence are more highly correlated with generation time
than with real time. If they are correct, it is conceivable that
the decrease in apparent rates of effective cladogenesis
results from a (previously unsuspected) shortening of gener-
ation time, rather than a decrease in effective cladogenesis
over the time frame examined. Either way, the pattern is of
intrinsic biological interest.

Paleontologists have observed that instantaneous rates of
cladogenesis are higher in the early history of adaptive
radiations (22, 23), and it has been suggested that this
slowdown is a result of niche filling (5, 23). As we have seen
for the avian radiation, the effective rate of cladogenesis is
higher earlier on as well. What is, perhaps, surprising is the
way in which the effective rate decreases: in contrast to the
logistic model, deceleration of the form 1/N< implies an
initially rapid slowdown and then a leveling off, as opposed
to, for example, a constant rate early on, generating expo-
nential growth, and then a subsequent slowdown.

What could account for such a pattern? It is natural to think
in terms of models such as those of Valentine (8), in which
speciation and extinction occur in an ecological niche space.
One may conjecture that instantaneous cladogenesis reflects
two distinct processes: evolutionary processes such as sexual
selection producing, from a coarse view, ecological equiva-
lents, and ecological processes producing diversification into
an adaptive landscape of distinct ecological niches or ways of
life. A lineage that invades an empty niche, coarsely defined,
may be assured of leaving descendants in the distant future,
barring calamities such as comet impacts or niche usurpation
by a quite different sort of beast. However, the subsequent
history of cladogenesis within the coarsely defined niche may
be well described by random speciation and extinction mod-
els in which the overall number of lineages is roughly
constant (24). The form of density-dependent effective cla-
dogenesis that we have presented can be interpreted in the
light of such a niche-filling model. Perhaps, early in the
adaptive radiation of the birds, there were a number of
preexisting vacant niches waiting to be filled (such as ‘‘aerial
predator of flying insects’’) and, as the diversification of the
birds proceeded, new niches were then created (such as
‘‘aerial predator of birds’’).

Radiations Versus Background Cladogenesis

The previous section showed how Sibley and Ahlquist’s
phylogeny is compatible with a model in which, at a given
point in time, all lineages have the same probability of
cladogenesis per unit time, at least to the degree of discrim-
ination of the statistical tests described in Fig. 1. To look for
radiations, defined as clades that expanded to leave extant
representatives at exceptionally high rates, we performed the
following analysis. Considering the lineages in existence at
time 80, what is the distribution of their progeny number by
time 130, and what is the distribution of their progeny number
by time 180? The analysis, described in Fig. 2, which seeks
outliers from the expected geometric distributions, identifies
the Passeri (the oscines or songbirds) and Ciconiiformes



8324 Evolution: Nee and Harvey

10

‘N
TN\

Number of Cases

1 ~ [

1 2 3 4 5 6
Subtaxa per Taxon
40 -
b
T\
20-

Number of Cases

v ——1
[ 2 3 4 5 6 7
Subtaxa per Taxon

FiG. 2. Inspection of Fig. 1 suggests that over each time interval
of 50 units, from 80 to 130 and from 130 to 180, we can treat the
per-lineage cladogenesis rate as roughly a constant. As an excellent
approximation for the following analysis, we treat effective cladogen-
esis as a birth process in continuous time over these intervals, in spite
of the discrete time nature of the data being analyzed. As before, we
suppose that each lineage has the same probability per unit time of
giving rise to a new lineage. Under this hypothesis, the progeny
distributions are expected to be geometric with parameter g (Eq. 1).
q is related to p, the branching probability per time unit, by the
formula q = e~5%. For each time window, the inverse of the average
number of progeny lineages is the maximum-likelihood estimate of ¢
(note that a lineage which does not give rise to any new lineages over
the time period is considered to give rise to one progeny lineage—
itself). For the time window from 80 to 130 (a), the fit to the geometric
distribution is excellent (x3 = 0.1376, not significant). For the time
period from 130 to 180, the probability of finding any lineage giving
rise to more than 14 lineages is less than 0.005 (see below). This
means that the Passeri and Ciconiiformes, with 15 and 19 subtaxa
respectively, are anomalous. When we remove these taxa (b), this
time window is also well described by the geometric series (x3 = 2.67,
not significant). The fitted parameters are as follows: 80 to 130, g =
0.429 (p = 0.017); 130 to 180 (Passeri and Ciconiiformes removed),
q = 0.593 (p = 0.010); 130 to 180 (Passeri and Ciconiiformes
included), g = 0.448 (p = 0.016). As expected from Fig. 1, q is greater
for the second than the first time period, whereas p is less. The
statistical identification of the Passeri and Ciconiiformes as outliers
in the geometric distribution is based on the fact that if progeny
numbers are geometrically distributed, then all vectors of progeny
number are equally probable, as long as the elements sum to the
observed total number of progeny. So, in this case, the statistics of
progeny number distribution can be determined by randomly break-
ing a stick 125 units long into 56 fragments (where 125 is the total
number of progeny and 56 is the number of ancestral lineages) and
allowing breakages to occur only at unit boundaries. The lengths of
the fragments correspond to progeny numbers and each broken stick
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(including the sandgrouse, plovers, gulls, herons, flamingos,
ibises, New World vultures, and storks) as radiations. As can
be seen in Fig. 1, the Passeri radiation occurred at about the
same rate as the original radiation of the birds, whereas the
ciconiiform radiation exhibited a much higher rate. It will
be interesting to see whether these radiations also exhibit
the same pattern of deceleration as the total data set when
the analysis can be reliably extended further toward the
present.

The analysis of cladogenesis within specified time frames
provides an alternative approach to the well-established
problem of defining the distribution of subtaxa per taxon
(species per genus or families per order, for example). In the
first half of the century there was considerable interest in the
fact that the distributions of many phenomena can be de-
scribed by power laws—i.e., relationships of the form Y =
AX~4. Examples include the numbers of species in genera
(26, 27), the population sizes of cities, incomes, and word use
[Kendall (28) provides a general discussion]. Interest in
power laws appears to be reviving partly because the expo-
nent of the power law can be called a ‘“‘fractal dimension.”
Recently, Burlando (29) presented a large amount of evidence
from many taxa that the number of species in genera follows
a power law—that is, a relationship of the form G = AN—¢,
where G is the number of genera with N species (see also ref.
30). The exponent d is usually between 1 and 2, so most
genera have very few species, but some genera have a large
number of species: the taxonomic ‘‘diversity’’ is dominated
by a small number of genera (31). Plots of log G against log
N typically look like Fig. 3.

The question to be put to such observations is whether we
can infer anything from the exponent d about the evolution-
ary process that produced the contemporary taxa. To decide
this, we need a model of how power laws arise. Over the
century, several people have generated power-law distribu-
tions from birth-death stochastic processes (27, 32-34).
These models are particular cases of the simple and general
model we shall now derive. We can summarise the following
by saying that multiplicative growth processes give rise to the
one-parameter geometric distribution, and if this parameter is
a variable, rather than a constant, the result is a power-
law distribution. To make the presentation concrete, we will
refer to the thing undergoing multiplicative growth as a
(tlincage.”

Consider a single lineage at time 0 that has a constant
probability per unit time of either giving birth to a new lineage
or dying. Each of its progeny lineages has the same param-
eters. Given that the lineage has some descendants at time ¢,
the probability distribution of the number of daughter lin-
eages, N, at time ¢ is geometric (32); that is,

P(N=n)=q(1-g)"". (1]

The geometric distribution arises not only from multiplicative
processes, as discussed here, but also from divisional pro-
cesses, such as the branch diameter reduction in successive
‘‘generations’’ of tree branching, for example.

The parameter q (0 < g < 1) is a function of ¢ and the birth
and death probabilities. Now suppose that q is itself a random
variable with the two-parameter Beta density

corresponds to an equiprobable vector of progeny numbers. It is
straightforward to repeatedly break sticks on a computer and so
determine whatever statistics are of interest. We note that Slowinski
and Guyer (25) derived a special case of the result that, for a random
birth-death process, all vectors of progeny number are equally
probable, the special case being two ancestral lineages. The general
result, for an arbitrary number of ancestral lineages, arises immedi-
ately as a property of the geometric distribution.
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FiG.3. Power-law simulation of the number of genera consisting
of 1,2,3,. .. species. Each genus out of a total of 500 was assigned
a number of species drawn at random from the Yule distribution,
B(n + 2, 2.5). This plot shows the usual features of real data [e.g.,
Burlando (29)], such as the long tail and the slight curvature.
Following Burlando’s procedure of fitting a model 1 regression line
through only the square symbols (more than two genera) yields an
exponent of —1.5.

flg) = ¢ 11-q9%7, 21

B(a, b)

where B is the Beta function. [The Beta density is a very
flexible density on (0,1), so this choice underpins our claims
to generality.] Then the distribution of N becomes

PIN=nxBn+a-—1,b+1). [3]

Simon (33) derived distribution (3) from a pure birth process
for the special case of a = 1 and named it the Yule distribu-
tion. We will use this name for the more general distribution
(3) as well.

The Yule distribution exhibits power-law behavior (e.g.,
Fig. 3). Forlarge n, B(n + a — 1, b + 1) = 1/n%*1, We cannot
fully discuss the behavior of stochastic realizations of the
Yule distribution here, but, as a rule of thumb, the observed
exponent, d, determined, for example, by regression, is
typically smaller than b + 1. Depending on how rapidly
convergence to the asymptotic exponent of b + 1 occurs, and
on whether or not the data are sufficiently numerous for large
values of n to be frequently seen, this may sometimes give the
appearance of curvature to the double logarithmic plots.

Once the parameters a and b have been fitted by an
appropriate procedure, such as maximum likelihood, the
question arises as to what the implied distribution of g
actually means. As far as phylogenies are concerned, the
main question to be addressed about g is the extent to which
the distribution reflects variation in ¢ (i.e., how long ago the
lineages giving rise to distinct taxonomic groups arose)
versus variation in the birth and death rates among lineages
that arose at the same time. The difficulty of answering this
question may limit the usefulness of this sort of analysis of
taxonomic structure. Furthermore, studies of nonmolecular
taxonomies must also contend with the fact that these tax-
onomies capture an interaction of taxonomist psychology
and evolutionary history.

Species Selection

Smaller-bodied taxa often contain more species than their
larger-bodied relatives (35-41). Does this mean that small
body size promotes successful cladogenesis? We calculated
representative body weight values for 135 of Sibley and
Ahlquist’s bird families, using procedures described else-
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where that do not lead to bias from speciose subtaxa (21, 42),
and there is a highly significant negative correlation between
body weight and the number of species in a family (Spearman
rank correlation coefficient = —0.374, P = 0.0001, N = 135;
see also ref. 41). If this pattern results from clades of lighter
birds having higher rates of effective cladogenesis, those
clades should be found on shorter branches of the phyloge-
netic tree. Ancestral estimates for body weight were assigned
to nodes above the family level of the Sibley and Ahlquist tree
by calculating the mean of the daughter nodes, weighted by
branch lengths [following Felsenstein (43)]. We tested
whether the shorter daughter branch derived from each node
ended in the lighter or heavier daughter clade. This method
yielded 124 independent comparisons. The shorter daughter
branch was as likely to end in the lighter daughter clade as in
the heavier daughter clade, comparing all nodes (62 lighter/62
heavier) or specified subsets (Passeriformes, 17/21; Passeri,
15/14; Ciconiiformes, 16/11; 62 nodes nearest root, 27:35;
none of the subsets differed from the null expectation of
random allocation of the shorter daughter branch to the
lighter versus the heavier daughter clade).

We also examined the quantitative differences between the
lengths of sister branches leading to the lighter and heavier
daughter clades. Given a random model of branch produc-
tion, we transformed and standardized the differences so that
they became samples drawn from a normal distribution with
mean 0 and standard deviation 1. If we assume that, to a good
approximation, the branch lengths to the lighter and heavier
clades are drawn from an exponential distribution, then the
variance of the logarithmically transformed branch lengths is
¥®Q) (= 72/6), where YV is the trigamma function (44). (The
assumption of an exponential distribution requires the ancil-
lary assumption that the rate of effective cladogenesis does
not change very much over the relevant time scale.) Under
the null hypothesis that the branch lengths leading to the
lighter and heavier daughter clades have the same expecta-
tion, the difference in the logarithmically transformed lengths
has an expectation of 0 and a variance of 2¢#Y(1). The sum of
N such differences, where N is large, is approximately
normally distributed with an expectation of 0 and variance of
2NyM(1). Transformation now allows a Z test to be per-
formed. Notice that the null hypothesis does not assume that
the expected branch lengths are the same all over the tree,
merely the same for the two branches derived from each
node. For all nodes and for a number of subsets, there were
no significant differences between the lengths of branches
leading to lighter and heavier daughter clades (all N = 124, Z
= (.48; Passeriformes, N = 38, Z = —0.83; Passeri, N = 29,
Z = 0.15; Ciconiiformes, N = 27, Z = 1.14; 62 nodes nearest
root, N = 62, Z = —1.80).

The original strong negative relationship that we described
among families is, in fact, a result of taxonomic nonindepen-
dence. The pattern results from two monophyletic taxa—the
five species-poor, generally large-bodied families of Eoaves
(ostriches, rheas, cassowaries and emus, kiwis, and
tinamous) and the 40 species-rich, small-bodied families of
Passeriformes (or passerines, an order containing the subos-
cines and the oscines). When the Eoaves and the passerines
are removed from the analysis, the relationship between body
size and number of species in a family is nonsignificant
(Spearman rank correlation coefficient = —0.19, P = 0.08, N
= 90). Body mass alone therefore does not seem to be a
general correlate of effective cladogenesis within and among
bird families.

There has been discussion about whether small body size
was in some way responsible for the radiation of the passe-
rines (41, 45-48). No resolution was possible, in part because
analytical procedures were not available to cope with ‘‘the
nonindependence of data points drawn from a hierarchically
structured system’’ (p. 68 of ref. 41). The tests were per-
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formed above, which were designed to deal with the problem
of taxonomic nonindependence, reveal no correlation be-
tween rates of effective cladogenesis and body size. Those
same tests can, however, be used to investigate which
factors, if any, do correlate with rates of cladogenesis.

As more accurate molecular phylogenies become available
(and they are getting better all the time), it should be possible
to identify the causes of the different components of evolu-
tionary success outlined in this article. The links that are
being forged between paleontologists and molecular biolo-
gists promise a synergistic response that will not only provide
answers to old questions in evolutionary biology but will also
allow us to pose new questions for the future.

A. Purvis helped with data analysis for the section on species
selection. We are grateful to Prof. J. Felsenstein, Prof. J. R. Krebs,
Prof. R. M. May, Prof. J. Maynard Smith, Prof. C. G. Sibley, Dr. A.
Grafen, and Dr. A. F. Read for help, advice, and criticism. This work
was funded in part by European Economic Community Contract
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