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ABSTRACT
Multiple layers of regulation are required to ensure appropriate patterns of gene expression for
accurate cell differentiation. Interphase chromatin is non-randomly distributed within the nucleus,
with highly compacted, transcriptionally silent heterochromatin enriched at the nuclear and
nucleolar periphery. Whether this spatial organization serves a function in organismal physiology,
rather than simply being a byproduct of chromatin metabolism, is a fundamental question. Recent
work performed in C. elegans embryos characterized the molecular mechanisms that drive the
perinuclear anchoring of heterochromatin. Moreover, for the first time it was shown that
heterochromatin sequestration helps to restrict cell differentiation programs, while sustaining
commitment to a specified fate. Here, we describe and comment on these findings, placing them in
a broader context.
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Heterochromatin and euchromatin

Almost as long light microscopy has existed, imaging
has revealed 2 distinct “types” of chromatin in the
nucleus. Indeed, already in 1928, Emil Heitz described
a carmine acetic acid-stained heterochromatin that per-
sisted in a condensed form throughout interphase and
a euchromatic fraction that would decondense after
mitosis to become invisible to this stain.1 Following
these initial observations, many studies have elaborated
on the key molecular features of these 2 chromatin
types. Heterochromatin is generally transcriptionally
inert and the DNA within it is packed at high density,
whereas euchromatin contains transcriptionally active
genes and appears less condensed.2

Nucleosomes, the fundamental units of chromatin,
harbor histone tails that are subject to post-translational
modifications, some of which correlate specifically with
euchromatin or heterochromatin. For example, on the
N-terminal tail of histone H3, methylation states of
lysines 9 and 27 correlate with heterochromatin, while
the methylation states of lysines 4 and 36 on the same
histone tail, are enriched in euchromatin.3 Strikingly,

not only are euchromatin and heterochromatin func-
tionally distinct, but they also tend to occupy distinct
zones within interphase nuclei, strongly suggesting that
the 3D structure of the nucleus is intimately linked to
its function. The question that has persisted for a very
long time, however, is whether this spatial segregation
of chromatin types contributes to the regulation of the
genome during cell type specification.

Heterochromatin at the nuclear periphery

The spatial segregation of euchromatin and hetero-
chromatin means that active domains generally shift
away from the nucleolus and the nuclear periphery,
where heterochromatin is enriched. Conversely, het-
erochromatic domains, which are rich in repetitive
LINE elements, tend to associate with the nuclear lam-
ina (and not nuclear pores), and are excluded from
open internal zones.4,5,6 The separation of chromatin
types is less prominent in pluripotent embryonic stem
cells, yet as cells differentiate heterochromatin accu-
mulates and is increasingly sequestered at the nuclear
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edge.7, 8 Large-scale reorganization, as well as specific
single gene repositioning, is well-documented in a
number of species.9-14 This can be monitored as a gain
or loss of interaction with the nuclear lamina, given
that the nuclear lamins are one of the few non-diffus-
ing bona fide structural proteins of the nucleus.15,6

This topological organization raises 2 questions: what
drives tissue-specific promoters toward the nuclear
core as they are induced? And what triggers the
anchoring of silent domains at the nuclear periphery?
Recent data obtained in the model organism C. elegans
provide compelling answers to the second question,
and start to link nuclear architecture and cell fate sta-
bility.16 These findings are the topic of this Extraview.

Pathways of heterochromatin sequestration at
the nuclear periphery

In a large and elegant study, Solovei et al.17 probed
perinuclear proteins for their involvement in hetero-
chromatin sequestration at the nuclear rim in mouse.
The authors identified 2 integral components of the
nuclear lamina, Lamin B Receptor (LBR) and lamin
A/C, whose simultaneous loss leads to the accumula-
tion of heterochromatin at the inner nuclear core.
These factors act on 2 distinct pathways, which func-
tion largely in early (LBR) or late (lamin A/C) stages
of differentiation.17 Although these 2 proteins are
clearly implicated in chromatin distribution, it was
unclear which marks on the chromatin were being
recognized by the lamina as heterochromatic marks.
Because selective chromatin recognition could not be
proven in this system, it remained possible that the
loss of LBR and lamin A/C perturbed chromatin dis-
tribution by displacing some other protein that specifi-
cally bridges to chromatin. Although LBR binds the
heterochromatic factors HP1a and HP1g in vitro,18

these 2 proteins were also found associated with geno-
mic regions that were located far from the nuclear
periphery.19 In addition, LBR was reported to recog-
nize another histone mark, histone H4 bearing dime-
thylation on lysine 20 (H4K20me2)20 which
unfortunately is broadly distributed in the genome
with no particular enrichment in heterochromatin.21

Similar doubts persisted for lamin A/C, which can
bind DNA and histone dimers in vitro,22 yet shows no
specific affinity for repressive histone modifications.
Indeed, given that ectopic expression of Lamin A/C
did not restore heterochromatin sequestration in

Lbr¡/¡ Lmna¡/¡ mice,17 Lamin A/C is unlikely
anchor heterochromatin alone. Taken together, these
data argued that unknown additional players were
likely to be involved in the tethering of heterochroma-
tin to the nuclear envelope.

Addressing this genetically, the Gasser laboratory
took an untargeted approach to find factors that are
necessary for the sequestration of heterochromatin at
the nuclear lamina. They performed a genome-wide
RNAi screen in C. elegans, scoring first for heterochro-
matin de-repression, and secondarily for its de-localiza-
tion away from the nuclear periphery. Whereas many
factors were implicated in repression, only the loss of a
pair of closely related enzymes, the SAMS-3/4 S-adeno-
sylmethionine (SAM) synthases, led to heterochroma-
tin release from the nuclear lamina. Since SAM is the
unique methyl-group donor, the authors hypothesized
that histone methylation might be crucial for hetero-
chromatin sequestration, and indeed, the ablation of 2
histone methyl transferases, MET-2 and SET-25, simi-
larly allowed heterochromatin to shift inwards.23 Spe-
cifically, it was shown that the mono-, di- or tri-
methylation of lysine 9 on histone H3, were key signals
for the perinuclear anchoring of chromatin.

Anchoring H3K9 methylated chromatin at the
nuclear envelope: CEC-4

How does H3K9 methylation promote perinuclear
sequestration? The simplest hypothesis is that this sig-
nal can be specifically recognized by factor(s) that are
at the same time capable of binding the nuclear enve-
lope. In order to identify these, Gonzalez-Sandoval
et al.16 performed a targeted RNAi screen in C. elegans
embryos knocking down all validated and putative
histone modification readers, one-by-one. Out of 65
Tudor-, chromo-, MBT (Malignant Brain Tumor)-
and PHD (Plant HomeoDomain)-domain-containing
proteins in worms, the loss of a single uncharacterized
gene called cec-4, mimicked the effects of loss of H3K9
methylation: down-regulation of CEC-4 alone led to
the displacement of a heterochromatic reporter from
the nuclear periphery.

CEC-4 contains a chromodomain (CD) that binds
H3K9me1, me2 and me3 almost exclusively, with an
affinity similar to those reported for fly, human and
mouse HP1.24 Its loss leads to a release of heterochroma-
tin from the periphery in the nuclei of C. elegans
embryos, perfectly fulfilling the initial experimental
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hypothesis. Furthermore, analysis of CEC-4 localiza-
tion revealed that it is concentrated at the nuclear
rim. A double point mutation that interferes with
H3K9me-recognition, but which does not alter its
subnuclear distribution, was sufficient to relocate a
heterochromatic reporter. This showed that CEC-4 is
the molecule that links heterochromatin to the
nuclear envelope in worm embryos. However, the
story did not end there.

Over the last years, one topic of major debate in the
field of nuclear organization has been whether subnu-
clear localization regulates gene expression, or not.
Although the nuclear periphery is generally a repres-
sive environment that can favor the silencing of some
promoters,25,26 it is also clear that the nuclear envelope
is permissive to transcription and that gene de-repres-
sion per se is not sufficient to cause internalization.15,23

Similarly, and astoundingly, although loss of CEC-4
allowed heterochromatin to shift inwards, it did not
increase transcription levels. In other words, CEC-4 is
a highly specialized H3K9me-reader whose function
is to anchor, but not to repress, heterochromatin.
This enabled a clean genetic separation of transcrip-
tional repression from peripheral sequestration,
even though both phenomena are mediated by the
H3K9me mark. Other H3K9me readers, namely
worm HP1 homologues and LIN-61, a MBT domain
protein with selective affinity for H3K9me2/me3,
led to silencing of a heterochromatic reporter, but
their loss did not affect its spatial segregation. Thus
different “readers” bind the same posttranslational
modification on histone H3 to achieve different phe-
notypes: peripheral sequestration or transcriptional
silencing.

CEC-4 helps suppress other differentiation
pathways during cell-fate induction

It is well-established that heterochromatin sequestra-
tion at the nuclear envelope increases with cell differ-
entiation.27 Therefore, it was possible that any
function served by the anchoring of heterochromatin,
might only be manifest during the process of tissue
differentiation. The first indications suggested this was
unlikely: cec-4 mutant embryos differentiated nor-
mally under standard laboratory conditions. However,
at the L1 larval stage other pathways of heterochroma-
tin anchoring, which work in the absence of CEC-4,
were induced. To circumvent this problem of

compensation and to be able to test for a regulatory
function of perturbed chromatin segregation, the
authors induced the muscle differentiation program in
all cells of mid-stage embryos by overexpressing the
muscle master regulator MyoD (HLH-1 in worms).
Whereas wild-type embryos are plastic enough to
commit fully to this cell fate upon HLH-1 induction,
cec-4 mutants failed to do so. In contrast, larvae-like
individuals expressing non-muscle markers, such as
an intestine gene, emerged after MyoD induction
(Fig. 1). This suggests that the perinuclear sequestra-
tion of heterochromatin by CEC-4 may indeed help
stabilize a specified cell fate.16

Heterochromatin segregation in other species
and redundant pathways

In mammals it is very likely that H3K9 methylation
(particularly H3K9me2) is also a signal for peripheral
localization, as 80% of mammalian Lamina Associated
Domains (LADs) are enriched for H3K9me2/me3.6,28

Moreover, reducing the levels of H3K9me2 by knock-
ing down or inhibiting the relevant histone methyl
transferase (G9a) led to a decreased interaction with
the nuclear lamina.29-31 Although there seems to be
no direct homolog of CEC-4 in non-nematode species,
it is highly likely that a similar mechanism of hetero-
chromatin recognition and anchoring will be found in
mammals, possibly mediated by more than one factor
or more than one mark. It is also likely that other
pathways of anchoring exist both in worms and verte-
brates. Indeed, the complete loss of H3K9 methylation
does not affect heterochromatin sequestration at the
nuclear envelope in the differentiated tissues of worm
larvae.23

Recently the repressive histone mark deposited by
and read by Polycomb proteins, H3K27me3, has been
shown to contribute to the anchoring of sequences at
the borders of LADs in mouse cells.31 Whereas the loss
of H3K27me3 did not affect the peripheral localization
of a heterochromatic reporter in C. elegans embryos23,
nor in larvae (DSC, unpublished data), there may still
be specific sequences in worms, equivalent to the edges
of LADs in mammals, that depend on Polycomb medi-
ated modifications for perinuclear sequestration.

In addition, an alternative, sequence-specific mecha-
nism of binding to the nuclear envelope was docu-
mented in a study on the IgH locus in mouse.32 This
pathway involves DNA recognition by cKrox, which
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binds to GAGA motifs, and the interaction of cKrox
with the histone deacetylase HDAC3 and the nuclear
lamina protein Lap2b.32 HDAC3 appears to be a poten-
tially interesting factor in perinuclear localization as it
also binds the nuclear envelope protein Emerin.33 Even
though it is very unlikely that a transcription factor-
dependent mechanism can account for widespread
anchoring of all heterochromatic domains, a role for his-
tone deacetylation is an attractive option, given that

heterochromatin is enriched in hypoacetylated histones
and histone deacetylases are involved in heterochroma-
tin formation.34

Moving toward the study of tissue-specific
heterochromatin segregation

CEC-4 is the first CD-containing protein documented
to localize autonomously to the nuclear envelope. The

Figure 1. Model of heterochromatin anchoring function. CEC-4 autonomously localizes to the nuclear envelope to read all forms of
H3K9 methylated histones. In worms, MET-2 and SET-25 are the enzymes responsible for the deposition of H3K9me1, me2 and me3
(upper half). CEC-4 is a H3K9me reader that anchors but does not silence, while the HP1 homologues, HPL-1 and HPL-2, and the MBT
domain protein LIN-61, silence but do not anchor. Cells of wild-type and cec-4 mutant embryos were forced into the muscle differentia-
tion program by inducing the muscle master regulator MyoD (HLH-1 in worms). While 100% of wild-type embryos commit to a muscle
fate, 25% of embryos lacking CEC-4 resist full commitment and manage to hatch into larvae-like structures that express markers of other
tissues (modified from16). These data represent the first evidence for functionality of a factor solely dedicated to chromatin anchoring in
a multicellular organism, and argue that the perinuclear sequestration of heterochromatin promotes the stabilization of a specified cell
fate.
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characterization of its function demonstrates that
within a multicellular organism the spatial segregation
of chromatin types is an active process. Intriguingly,
as embryos develop into larvae the expression of
CEC-4 becomes regulated in a tissue-specific fashion.
In particular, CEC-4 levels are very high in muscle
and very low in intestine. Since it seems unlikely that
differentiation changes the specificity of CEC-4 for
H3K9 methylated chromatin, one must ask why it is
subject to differential regulation?

One possibility is that different tissues require dif-
ferent degrees of nuclear architectural regulation to
achieve optimal functionality, with muscle needing
higher levels of heterochromatin anchoring. With this
in mind, it is interesting to note that muscle is one of
the key tissues affected by laminopathies, which are
genetic diseases caused by mutations in nuclear lam-
ina components. Examples of this are Emery-Dreifuss
muscular dystrophy,35 where mutations in LMNA
lead specifically to muscle disease, despite the fact that
the gene is widely expressed. We propose that this tis-
sue-specific aspect of lamin (dys)function may extend
to CEC-4 as well, although this remains to be shown.

A second possibility is that different tissues induce
specific pathways of heterochromatin segregation as
they differentiate, and that CEC-4 remains more func-
tional in muscle than in other tissues such as intestine,
despite the presence of other anchors that anchor het-
erochromatin in its absence. Indeed, the absence of
CEC-4 or H3K9 methylation does not impair perinu-
clear anchoring of a heterochromatic reporter in intes-
tine or hypoderm cells of L1 larvae.16,23 Interestingly,
work performed in mammals identified tissue-specific
nuclear envelope transmembrane proteins which are
involved in chromosome peripheral positioning,36 fur-
ther supporting the notion that additional anchors
contribute to cell-type specific nuclear architecture. It
is now crucial to identify the pathways of anchoring in
differentiated tissues and to determine their common
features. Do they act broadly or only in one tissue and
to what extent are they redundant with anchors that
recognize H3K9 methylation?

High throughput tissue-specific approaches to
address questions of nuclear organization represent a
challenge that will require the use of model organisms.
The advantages of working with C. elegans include a
lower degree of redundancy in chromatin modifiers
and histone mark readers than in mammals. Yet, the
general principles of chromatin segregation appear to

be conserved across species. Thus, the future looks
bright for forthcoming chromatin studies in worm
development.

Abbreviations and acronyms
LINE long interspersed nuclear element
LBR lamin B receptor
LAD lamina associated domain
HP1 heterochromatin protein 1
SAM S-adenosylmethionine
CD chromodomain
MBT malignant brain tumor
PHD plant homeodomain
EDMD Emery-Dreifuss muscular dystrophy
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