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Summary

1. Epidemiological dynamics are shaped by and may in turn shape host demography. These

feedbacks can result in hard to predict patterns of disease incidence. Mathematical models

that integrate infection and demography are consequently a key tool for informing expecta-

tions for disease burden and identifying effective measures for control.

2. A major challenge is capturing the details of infection within individuals and quantifying

their downstream impacts to understand population-scale outcomes. For example, parasite

loads and antibody titres may vary over the course of an infection and contribute to differ-

ences in transmission at the scale of the population. To date, to capture these subtleties, mod-

els have mostly relied on complex mechanistic frameworks, discrete categorization and/or

agent-based approaches.

3. Integral Projection Models (IPMs) allow variance in individual trajectories of quantitative

traits and their population-level outcomes to be captured in ways that directly reflect statisti-

cal models of trait–fate relationships. Given increasing data availability, and advances in

modelling, there is considerable potential for extending this framework to traits of relevance

for infectious disease dynamics.

4. Here, we provide an overview of host and parasite natural history contexts where IPMs

could strengthen inference of population dynamics, with examples of host species ranging

from mice to sheep to humans, and parasites ranging from viruses to worms. We discuss

models of both parasite and host traits, provide two case studies and conclude by reviewing

potential for both ecological and evolutionary research.

Key-words: demography, dynamics, infectious disease, Integral Projection Model, measles,

murine malaria, parasite

Introduction

Over the course of an infection, as the parasite replicates

and evades or overcomes the host’s defences, parasite den-

sity, size or abundance and associated immune responses

fluctuate, often following complex trajectories (Metcalf

et al. 2011). These fluctuations shape host and parasite

population-level outcomes via their effects on rates of

host recovery, pathology, between-host transmission and

waning of host immunity (Gilchrist, Coombs & Perelson

2004; Graham et al. 2007). Constructing mechanistic

models that capture the detail of these fluctuations is com-

plicated by the array of effectors associated with the

immune response, the abundance of feedbacks designed to

keep potentially harmful immune responses in check (Gra-

ham, Allen & Read 2005), the complex role of host memory

(Antia, Ganusov & Ahmed 2005) and the dynamic nature

of parasite growth itself (Antia & Lipstich 1997). Examples

of analytical models (generally built around partial differ-

ential equations) based on empirical data include models

developed for HIV (Perelson 2002), influenza (Saenz et al.

2010) and malaria in murine (Haydon et al. 2003; Mideo

et al. 2008) and human hosts (Molineaux & Dietz 1999).
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For these examples, considerable data and detailed

biological knowledge are available, and models have fur-

ther deepened our understanding of the processes driving

the time course of infection. Nevertheless, model develop-

ment and appropriate parameterization in the face of avail-

able data remains non-trivial (nonlinear feedbacks result in

extremely erratic likelihood surfaces, leading to ambiguity

in parameter estimates); and further, efforts to extend these

models to connect within-host dynamics to population out-

comes remain rare (Gog et al. 2014).

Linking individuals to population outcomes is of funda-

mental relevance for both ecological and evolutionary

questions (Metcalf et al. 2014). Population-scale questions

such as the impact of coinfection on transmission (Graham

et al. 2007), the spread of resistance mutations in the face

of chemotherapy (Kouyos et al. 2014) or determinants of

spillover, in terms of what makes populations viable reser-

voirs, (Brook & Dobson 2015) require cross-scale models

capable of capturing individual differences and integrating

across them to evaluate population-level outcomes.

Many of the variables that drive the key processes link-

ing individuals to populations (transmission potential,

host survival, etc.) have in common the fact that they are

quantitative traits (e.g. concentrations of virions, unicellu-

lar parasites, antibodies and lymphocytes in the blood).

Integral Projection Models (IPMs) are now broadly used

in ecology and evolution to capture demographic out-

comes linked to continuous individual-level variables such

as size (Easterling, Ellner & Dixon 2000; Childs et al.

2011; Merow et al. 2014). Focal variables generally reflect

individual life-history or physiological traits such as size,

weight, height, snout to vent length and tarsus length.

The dynamics of these traits (e.g. increases in size via

growth or losses via shrinkage) and their links to survival

or fertility are modelled using generalized linear regression

approaches (Easterling, Ellner & Dixon 2000). A transi-

tion kernel reflecting these functions defines transitions

between sizes (or other chosen traits) over a discrete time

step, usually a year. In the simplest analysis, the structure

of the transition kernel is broadly analogous to a classic

matrix population model (Caswell 2001) with a diagonal

reflecting transitions linked to growth and survival and

another important transition area linking adult size to off-

spring size. The key difference is that rather than discrete

probabilities describing how individuals in a particular

stage might be distributed across the range of possible

stages at the next time step, a density relates current size

to the continuous distribution of future sizes.

One of the major strengths of the IPM approach is that

their formulation via a probability density allows inclusion

of variation in trajectories across individuals and through

time. For evolutionary models of continuous traits such as

size at flowering of monocarpic plants (Metcalf et al.

2008), or ecological models exploring the impact of

changes in body size on population dynamics (Ozgul et al.

2010), capturing these details can be key. Selection on life

histories, in particular, will be modified by individual vari-

ation in trajectories – for example, the variance in growth

trajectories of individuals from the same genetic back-

ground decreases the optimal flowering size in monocarpic

plants (Childs et al. 2003), and including individual varia-

tion this is therefore essential for inference.

In the context of infectious disease dynamics, an IPM

framework can capture consistent individual differences as

well as temporal fluctuations in antibody titre, other met-

rics of immunological activity and their downstream

effects on within-host–parasite abundance, which might

result from varied nutritional status and/or history of

infection. Furthermore, and importantly, the impact of

individual trajectories on individual host-level outcomes,

such as survival, and resulting population-level character-

istics, such as transmission, can be appropriately reflected.

IPMs have been deployed to explore transmission of fun-

gal parasites across a size-structured coral population (Ell-

ner et al. 2007); the impact of fungal symbionts on the

population growth rate of two grass species (Chung,

Miller & Rudgers 2015), ant symbionts on the population

growth rate of a cactus (Ford et al. 2015) and a variant

has been used to explore heritability of set point viral

loads (Bonhoeffer et al. 2015). All of these have yielded

insights into the process of transmission, or the effect of

the pathogen on population dynamics, but to date there

has been relatively little work capitalizing on the strengths

of IPMs in the context of within-host dynamics and the

population ecology of infectious diseases in mammals.

Here, we start by introducing the broad categories of

infectious disease-related traits that might be modelled

using an IPM approach and some of the questions that

could be tackled with such an approach and then move

on to examine two case studies on murine malaria and

maternal antibodies against measles; we conclude by dis-

cussing when an IPM approach might be most appropri-

ate and key future directions.

IPMs for host–parasite dynamics

Infectious disease dynamics inherently contain at least

two species (the parasite and the host) – and this number

is increased where multihost–parasites, or spillover from

one host into another, are the focus. Building on develop-

ments in modelling complex life cycles with IPMs (Ellner

& Rees 2006; Metcalf et al. 2013) and modelling infec-

tious disease dynamics in structured populations (Klepac

& Caswell 2011), it is straightforward to adapt an IPM

framework to efficiently capture traits of hosts, parasites

or the combined host–parasite dyad.

Parasites can be broadly categorized into two groups –
acute parasites, associated with short duration infections;

and chronic parasites, where infection is long lasting. Often,

this distinction aligns with the distinction between

microparasites (which multiply within the host) and

macroparasites (e.g. many helminths, which do not). There

are, of course, exceptions – microparasites such as HIV

may result in chronic infections. However, for both acute
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and chronic parasites, at the within-host scale, infection is

an inherently dynamic process, reflected by changes in an

array of continuous traits.

To start with acute infections, parasite multiplication

results in increasing abundance and spread of the parasite

within the host, but this is in turn mitigated by both

target cell depletion (where target cells are the resources

targeted by the parasite) and immune system activity

(Graham 2008; Metcalf et al. 2011). As a result of these

interactions, a focal trait such as parasite load will tend

to rapidly increase and then decrease. Capturing this in

an IPM framework will typically require abstracting the

underlying dynamical details, as an IPM generally reflects

broad features of trait changes using regression tools (but

see Discussion for possible extensions). One option to

appropriately capture the extreme changes observed over

the course of an acute infection is to include a further

structuring of traits along an axis such as day post-infec-

tion (analogous to IPMs where individuals experience dif-

ferent transitions across size for each age class (Childs

et al. 2011), they can experience different transitions

across parasite load based on day post-infection), illus-

trated below (Case study 1). However, care will be

required in estimating and interpreting the underlying

parameters, as many host–parasite IPMs will implicitly

codify assumptions about host and parasite traits and

their relationship. For example, for an IPM describing the

dynamics of parasitaemia, the parameter reflecting the ini-

tial parasite dose could easily be increased to explore the

effects on prevalence in the population. However, results

will be misleading if the model does not explicitly include

what is likely to be a nonlinear relationship between ini-

tial parasite dose and the resulting host immune response.

Explicit codification could be achieved by defining a speci-

fic functional form that links dose dependence and

immune induction in the model, but if data are not avail-

able with which to parameterize such a relationship (here,

such data might include multiple starting doses), then the

assumed functional form is necessarily speculative. This

is, of course, a very general issue in model construction,

but one which may be of particular importance here, as

the formulation of within-host dynamics (which are noto-

riously reactive) via regression tools may result in an

array of cryptic assumptions being made, and special care

should be taken to evaluating the importance of these. As

a result, the strongest inference may follow from compar-

ative analyses across different clones, pathogens or hosts

rather than exploratory model perturbations and forward

simulation – an example is provided in the malaria model

described below. Nevertheless, in some cases, of course,

interpretation of parameters linked to some aspects of

host or parasite biology (e.g. host fertility, host mortality,

parasite growth and parasite reproduction) may be

straightforward and perturbation analyses may be a pow-

erful direction for inference.

Parasite load is clearly not the only possible focal trait

– for acute parasites, infection will usually lead to a rapid

increase in immune activation, including the rate of prolif-

eration of cells of the immune system, boosting of the sig-

nalling molecules that the cells secrete and production of

antibodies specific to the parasite; all these processes are

often subsequently rapidly downregulated to avoid

immunopathology (Graham, Allen & Read 2005). An

array of related continuous features could be modelled

using an IPM-like framework. The scope for the potential

array of models here is enormous – the rate at which cells

and molecules are induced and decay, and the degree to

which they provide indicators of exposure vs. disease may

be both parasite and effector specific. It is worth noting

that some of the most successful infectious disease models

deployed to date have been powerful exactly because

immunity has such extreme dynamics that it effectively acts

as a binary trait (i.e. for completely immunizing infections

such as measles, Bjørnstad, Finkenstadt & Grenfell 2002),

allowing the detail of within-host dynamics to be ignored.

Nevertheless, completely immunizing infections remain a

relatively special case, and there is scope for investigating

immune dynamics related to an array of other parasites

where; for example, antibody titre provides a correlate of

demographic outcomes, such as mortality, or infection

probability, relevant to bridging between scales. Even in

the case of immunizing infections, there are some

areas where more subtle effects are expected – maternal

immunity provides a special case of antibody dynamics for

measles, discussed in detail below (Case study 2).

Moving to the case of chronic infections, for macropar-

asites, such as helminths, the parasites may grow within

the host, increasing depletion of host resources (Hayward

et al. 2014b), but they do not generally increase in abun-

dance (apart from ingestion of additional transmission

stages such as eggs). More generally, for chronic parasites

(which includes many macroparasites), in mathematical

terms, we can often think of parasite density and the

host’s immune system (i.e. target cell production) as set-

tling to equilibrium. The details of the dynamics leading

up to equilibrium may be of less importance, and relative

to acute infections, it is thus more straightforward to

envisage capturing within-host dynamics using regression

tools, as the extreme fluctuations in focal traits such as

those that characterize acute infections are avoided. Key

continuous traits that might be modelled using an IPM

framework for chronic parasites might include parasite

load (Bonhoeffer et al. 2015), the density of parasite-spe-

cific lymphocytes (Borchers et al. 2014) or parasite length

in the case of helminths. Insights are likely to emerge

from understanding either the trajectory to the equilib-

rium (where this is amenable to regression modelling), but

also and perhaps more powerfully, the role of variance

around the mean in parasite load, as was explored in a

recent paper by Bonhoeffer et al. (2015). Approximating

all populations and processes by Gaussian distributions,

they derived analytical expressions to describe change in

the distribution of HIV set point load over a single

transmission cycle. In principle, their model could be
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reformulated as an IPM to allow greater flexibility in the

underlying distributional assumptions.

Chronic and acute pathogens will also elicit responses

from the immune system’s enormously complex and

frequently dynamic set of effectors. Some components

may be relatively constant, putting the emphasis for IPM-

based inference more on capturing individual variance

rather than capturing the details of the trajectories

through time. For example, titres of self-reactive anti-

body, a marker used to identify autoimmune diseases, dif-

fer markedly among individuals, but are consistent within

individuals across time, thus providing a heterogeneous

but static individual trait (Vindenes & Langangen 2015),

in contrast to the dynamic traits described so far. In Soay

sheep, self-reactive antibodies correlate positively with

survival and parasite-specific antibody and negatively with

annual fertility (Graham et al. 2010). Parasite-specific

antibodies provide additional power to predict survival of

individuals (Nussey et al. 2014). With detailed data avail-

able to translate such variables into individual-level conse-

quences (e.g. linking antibody titres to host survival and

fertility), an IPM approach could enable powerful explo-

ration of the population-level consequences of trait

heterogeneity across individuals and the roles, for exam-

ple, of alternative modes of defence (such as resistance vs.

tolerance) at the epidemiological scale (Hayward et al.

2014a).

For both chronic and acute infections, successful con-

struction of IPMs, or any other models that bridge scales

of biological processes, will require (i) modelling within-

host dynamics (using regression tools in the case of

IPMs), (ii) careful interpretation of associated parameters

and (iii) robust translation of the chosen focal trait into

processes that have population-level effects. Specifically,

host traits such as recovery, survival or fertility (Fig. 1)

will translate to the population level of disease dynamics,

via their influence on transmission potential, which may

also scale with individual viral load or other features of

within-host dynamics.

Case study 1: Estimating probability of onward
transmission from within-host dynamics of
malaria

In the bloodstream phase of malaria (Plasmodium spp.),

infected red blood cells (RBCs) burst in synchrony,

releasing merozoites that may infect a new RBC.

Twenty-four or forty-eight hours later (depending on

the malaria species), the next generation of merozoites

bursts out, and the cycle then repeats itself until the

host dies or clears the infection (Fig. 2a). Over the

course of the infection, a fraction of the infected cells

develop into sexual forms that are taken up by mosqui-

toes. When the mosquito bites its next host, the para-

site migrates to the liver. Parasites then emerge from

the liver, and the bloodstream phase starts again (Met-

calf et al. 2012).

Here, to illustrate a population-scale inference arising

from IPM analysis of within-host dynamics, we leverage

data describing the bloodstream phase of a range of

clones of rodent malaria (P. chabaudi, described in Long

et al. 2008a,b; Metcalf et al. 2012) to explore the

consequences of these within-host dynamics for popula-

tion-level outcomes, specifically rates of onward transmis-

sion. We do so by nesting an IPM within a basic SIR

population model. We model the within-host dynamics of

this acute infection by tracking the log number of infected

RBCs as our focal trait, denoted z. In principle, it is also

possible to use the number of infected RBCs directly as

the focal trait, leading to a matrix population model

parameterized with regression tools. However, the log

scale is more practical since the range of RBCs spans sev-

eral orders of magnitude and never approaches zero.

Infected RBC load shapes host survival, recovery and

transmission (Mackinnon & Read 2004b); and thus it is

an appropriate focal trait. To also account for the dynam-

ics of this acute 24 h cycling parasite over the course of

the infection, we further structure our model by day post-

infection, ranging from 1 to J days post-infection. The

form of the population model is as follows:

Sðtþ 1Þ ¼ sSðtÞð1� /tÞ þ fSðtÞ

þ f
XJ
j¼1

ZU

L

Ijðz; tÞdzþ fRðtÞ

I0ðz0; tþ 1Þ ¼ s/tSðtÞG0ðz0Þdz

Ijþ1ðz0; tþ 1Þ ¼
ZU

L

Gjðz0; zÞszðzÞð1� rjðzÞÞIjðz; tÞdz

½for j\ðJ� 1Þ�

IJðz0; tþ 1Þ ¼
ZU

L

GJ�1ðz0; zÞszðzÞð1� rJ�1ðzÞÞIJ�1ðz; tÞdz

þ
ZU

L

GJðz0; zÞszðzÞð1� rJðzÞÞIJðz; tÞdz

Rðtþ 1Þ ¼
XJ
j¼1

ZU

L

szðzÞrjðzÞIjðz; tÞdzþ sRðtÞ

where S(t) indicates the number of susceptible individuals

at time t, Ij(z,t) captures the number of infected indivi-

duals at time t with log infected RBC load z, on day j

post-infection (and the prime in Ij(z’,t + 1) indicates that

this reflects the log infected RBC load the following time

step), and R(t) is the number of recovered individuals at

time t; U and L indicate the limits of integration across

log infected RBC load, where the upper limit (U) reflects

a value slightly larger than the maximum observed (which

here reflects the maximum observed log infected RBC

load) and likewise for the lower limit (L). Finally, J is the

total number of days post-infection modelled. Note that

the discrete time unit for this compound IPM (compound

because it is structured by both day post-infection and log
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infected RBC load) is one day – it would also be possible

to separate the time-scales of the within-host and

between-host dynamics (Heffernan & Keeling 2009), but

we chose to keep them unified in the two case studies

illustrated here. We model mouse fertility as a constant,

captured by the parameter f, and survival as a constant

captured by the parameter s, except in infected individuals

whose survival is related to their parasite load z, as

described by a probability sz(z). All of these parameters

are adjusted to reflect 1 day to match the time-scale of

the within-host infection process. The probability of infec-

tion is captured by /t, further described below. Upon

infection, the distribution of log infected RBCs that hosts

experience is captured by the density function G0(z); sub-

sequent transitions between infected states are captured

by the kernel Gj(z’,z); and the probability of recovery is

described by rj(z); see Table 1 for details and functional

forms.

The probability of infection of susceptible individuals,

/t, must encompass the density of the asexual form (cap-

tured here by log infected RBCs, z), allocation by the asex-

ual blood phase to the sexual form, ingestion of this form

by a mosquito and transmission to a new host. Although

differences in allocation to sexual reproduction across

clones and through time have been observed (Mackinnon

& Read 1999; Long et al. 2008a,b; Metcalf et al. 2012), we
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Fig. 1. Hypothetical example of the workflow for construction of an infectious disease IPM. (a) Define the life cycle (here a classic SIR, or

Susceptible-Infected-Recovered framework) and identify the continuous feature of within-host dynamics that is the focal variable; here

taken as viral load, and denoted by z; (b) Frame the observed dynamics of z (here shown as a function of days post-infection on the x

axis), to allow an appropriate regression model to be fitted. Here, the data is re-plotted to relate z 1 day in the future to the current

value of z (grey points), which is well described by a linear regression (line); the density of z on the first day of infection is also required

to construct the IPM, and can be simply obtained by fitting a mean and variance to the distribution of z observed on day 1; (c) Use

regression modelling to describe the relationship between z and key host level outcomes, here taken to be recovery and survival, and

probability that a susceptible individual becomes infected, φ. The latter depends on the relationship between viral load z and transmis-

sion, bz as well as I(z), the number of individuals with viral load z. Other relationships are, of course, possible (e.g. with fertility) but are

not illustrated here. (d) Construct the associated IPM model, where the transition from susceptibility to infection depends on the density

of viral load across the population, and is associated with a starting density of viral load, z; viral load evolves according to a linear

regression over the course of the infection, and there is a probability of survival and recovery during infection associated with viral load.

Other variables include survival of uninfected individuals, s; fertility, f; and the probability of waning of immunity, w.
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initially ignore this complexity and assume that uptake of

the parasite by mosquitoes scales with the numbers of

infected RBCs; modelling transmission as a frequency-

dependent process then captures vector-borne transmission.

Assembling these elements, the probability of infection of a

susceptible individual is defined by:

/t ¼ 1� exp �b
XJ
j¼1

ZU

L

Ijðz; tÞz=Ntdz

0
@

1
A

where b captures the overall scaling of transmission and Nt

is the total host population size at time t. For the purposes

of this illustration, we assume that there is no waning of

immunity. The time course of infection in one exemplar

clone, the AS clone, and associated model fits are shown in

Fig. 2a. The full set of 8 clones is shown in Fig. S1 (Sup-

porting information). These clones have been characterized

as falling along a virulence-transmission trade-off – the

clones that result in the greatest anaemia also have the

highest parasite loads, presumed to correlate with transmis-

sion (Metcalf et al. 2012). Such a pattern is an expected

evolutionary outcome – both low and high virulence patho-

gens might achieve equivalent fitness and coexist if the fit-

ness cost resulting from host mortality experienced by high

virulence pathogens is offset by high rates of transmission

(Anderson & May 1982). However, the degree to which

within-host patterns suggestive of a virulence-transmission

trade-off translate into the population-scale pattern that

evolutionary predictions would suggest is unclear.

To evaluate outcomes at the population scale from this

model, we first combine the regression models fit to the

dynamics of log infected RBCs (Figs 2b, S1, Table 1)

with assumptions about how the burden of infected RBCs

affects survival and recovery probabilities (Fig. 2c), and

then numerically integrate the resulting IPM using the

‘mid-point rule’ (Rees, Childs & Ellner 2014). With this,

S Ij(z) R

Death Death 
f (z)

Death

Clearance 
f (z)

Life cycle, murine malaria

Regression model of within-host 
dynamics of z

Link z to host scale outcomes

Infection

Births

Dynamical consequences

Shapes probability of infection via: 

5 10 15 20

6
7

8
9

10

Day post-infection

Lo
g 

in
fe

ct
ed

 R
B

C
s

4 5 6 7 8 9 10 11

0·
0

0·
2

0·
4

0·
6

0·
8

1·
0

Parasite load (t)

Pr
ob

ab
ili

ty

Recovery
Survival

(i) Ignoring cross-scale (ii) With IPM

12
 0

00
16

 0
00

20
 0

00
24

 0
00

Trough anaemia

P
ea

k 
in

fe
ct

ed
 R

B
C

s

AD AJ

AQ

AS

AT

BC

CW

ER

10 000 20 000 10 000 20 000

0·
18

0·
22

0·
26

Trough anaemia

φ
(z

, t
) a

t e
qu

ili
br

iu
m

AD

AJ

AQ

AS

AT

BC

CW

ER

(a) (c)

(b) (d)

Fig. 2. Constructing a model of murine malaria (following Fig. 1). (a) The life cycle, with choice of parasite density as z, a variable

which shapes both the rate of recovery and survival (f(z) indicates a dependence on z); the susceptible (S), infected (I) and recovered (R)

classes all contribute to births, not shown for clarity. (b) Within-host dynamics showing the time series of parasite density in the blood

phase of malaria for five mice infected with the AD clone (grey points) and fitted linear regression predicted log infected RBCs as a

function of current burden and time step either one time step ahead (dashed line) or over the full time course (solid line); parameters are

provided in Table 1. Similar patterns are obtained for the 7 other clones (Fig. S1). (c) Host scale dynamics including assumed patterns of

recovery and survival as a function of the log infected RBC burden required to construct an IPM (see Table 1), and equation defining

the probability of infection. (d) Comparison of broad inference (i) when ignoring cross-scale dynamics, the maximal infected RBCs

observed over the time course of infection across clones (y-axis) are negatively associated with the depth of the trough of RBCs (x-axis),

an indicator of anaemia, a relationship attributed to a virulence-transmission trade-off (Metcalf et al. 2012); (ii) using an IPM to capture

cross-scale dynamics indicates that the probability of infection of susceptible individuals at equilibrium estimated from the full IPM (y-

axis) shows no clear relationship with the trough of RBCs (x-axis), suggesting that the cross-scale dynamics (incorporation of survival

and recovery) dilute this effect.
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we can project the population forwards and track densi-

ties of log infected RBCs (Fig. S2, Supporting informa-

tion) as well as the process of infection.

Malaria has been held up as a powerful example of the

virulence-transmission trade-off (Mackinnon & Read

2004b), and the set of clones available in these data illus-

trate this very clearly, with the clones that lead to the

greatest anaemia also having the highest peaks of parasite

density and thus, by inference, transmission potential

(Fig. 2d). However, these patterns describe individual

host-level outcomes. The degree to which ‘transmission

potential’ translates to population-level outcomes such as

incidence of infection is unclear (Alizon et al. 2009). Using

our IPM framework, we can evaluate this across the eight

clones presented here, comparing the probability that a

susceptible individual will be infected at equilibrium, /t,

with the depth of the trough of anaemia for each clone

(Fig. 2d). If the population-scale outcomes simply reflect

within-host outcomes, we would expect that the most viru-

lent clones (i.e. those associated with the greatest parasite

density) are also the clones that pose the highest risk to

susceptible individuals – that is a positive relationship. In

fact, we find that the virulence-transmission pattern

expected is considerably diluted with the full population

model – although virulent strains, for which the trough of

RBCs is particularly deep, tend to have high /t at equilib-

rium, the pattern across the clones reverses the trade-off,

and the least virulent clone (CW) achieves substantially

more transmission than within-host pattern predicts. In

other words, processes occurring across scales obscure the

outcome we would expect from a virulence-transmission

trade-off at the scale of the host individual – and in fact,

one might conclude that the host-level pattern is less an

outcome of selection than a simple emergent property of

the process of infection in malaria – inevitably, gain of

one infected RBC requires loss of one uninfected RBC.

Intriguingly, these results also suggest that at the popu-

lation-level scale, the AS clone deviates from the broad

positive relationship seen across the other clones and has

a much lower risk of onward transmission to susceptible

individuals, /t. The AS clone has an especially long his-

tory of propagation through serial passage, which is

expected to select for increased virulence (Mackinnon &

Read 2004a) – this adaptation might diminish perfor-

mance when a population-level perspective is taken, as is

suggested here (Fig. 2d). However, the many components

of the model for which we did not introduce clone-specific

parameters (gametocyte production and, particularly,

recovery) might either diminish or accentuate this result.

This is an exciting area for future research.

There are a number of issues that should also be consid-

ered in evaluating the patterns reported, and which are of

more general importance in considering the utility of IPMs

for capturing within-host dynamics. First, the time course

available does not entirely resolve the full infection for the

range of clones (Fig. S1) – in fact, many clones experience

secondary increases before the end of the time course (re-

crudescence), and few mice have recovered – without

detailed parameterization of this process, the IPM cannot

capture it and therefore may under- or overestimate popu-

lation-level outcomes as a result. This is likely to be a very

general consideration in both experimental and natural

systems. Since the force of infection in the population will

depend on transmission across individuals at all stages of

the infection, the model will be sensitive to the exact choice

of maximal days post-infection modelled (J) as well as the

Table 1. Parameters and functional forms for IPMs relating to murine malaria, indicating parameters for the AD clone, shown in

Fig. 2a. The full array of parameters across clones is shown in Table S1 (Supporting information). For the numerical integration, we set

the upper limit of integration U = 12, the lower limit L = 3 and the number of days post-infection tracked to be J = 15

Description Functional form Parameters

Details of

parameterization

Dynamics of log infected

RBCs, Gj(z’,z)

zt = ag + bgzt–1 + cgj + dgj
2 + e ag = 4�83, bg = �0�11, cg = 0�51,

dg = �0�0003, e = N (0, r = 0�43)
Fitted to data

Starting density of z on

infection, G0(z’)

z0 = a0 + x a0 = 6�75; x = 0�37 Fitted to data

Survival of infected individuals logit(sz(x)) = m0 + msx m0 = 30, ms = �3 Specified to result in

mortality for mice with

z>xx, based on previous

analyses

Recovery of infected

individuals

logit(rj(x)) = r0 + rsx r0 = 26, rs = �4 for j<J Specified to result in recovery

if z falls below 7; and for j=J,
in the absence of further

information, we set rj=1
Survival of uninfected

individuals

s 0�997 Based on an average mouse

life span of 12 months

Fertility f 0�13 Based on average mouse

fertility of 5 litters of 10 mice

per year

Transmission b 5 Assuming approximately 5 new

infections per infected

individual.
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parameterization of the recovery process. Furthermore,

choice of insufficiently large J may result in heaping in the

categories corresponding to the last day post-infection

modelled, or unintentional eviction from the IPM (see Wil-

liams, Miller & Ellner (2012) for more discussion of this

issue). On the positive side, further sensitivity analysis (such

as exploration of the consequences of parameter perturba-

tion (Caswell 2001), albeit keeping in mind the caveats out-

lined above) with the IPM framework would allow

evaluation of exactly how important these last infection

processes are, and which are the key parameters for which

further investment and investigation would be most benefi-

cial. Sensitivity to survival, fertility and transmission

parameters could likewise be explored.

Case study 2: Exploring dynamical
consequences of individual variability in
immune parameters: maternal immunity to
measles

Women who have been exposed to measles during their life-

time and developed antibodies to this parasite can transfer

those antibodies to their offspring (Nicoara et al. 1999).

Following birth, these transferred antibodies continue to

protect the child from infection by measles. However,

maternally transferred antibodies degrade over time, and

once their concentration has waned to negligible levels, off-

spring are once again vulnerable to measles (C�aceres, Stre-

bel & Sutter 2000). The exact magnitude of the transferred

antibodies affects the time until susceptibility and can thus

have population-level consequences. Furthermore, vacci-

nated mothers are known to transfer lower levels of anti-

bodies to their children, a phenomenon echoed by

heterogeneities in transfer of maternal antibodies observed

from birds to mammals (Boulinier & Staszewski 2008), and

the dynamical consequences of this are still unresolved.

We use data and models presented in Waaijenborg et al.

(2013) to develop regression models to capture the pattern

of decline of maternal antibodies as a function of current

levels (obtained by simulating from the model they develop

to describe antibody concentration as a function of age), as

well as initial densities and threshold marking the transi-

tion to susceptibility (Fig. 3a–c, Table 2). As above, we

nest this within an SIR framework but now including a ‘V’

category for vaccinated individuals:

Sðz0; tþ 1Þ ¼ ð1� mÞ½A0ðz0ÞBþ A0mðz0ÞBm�

þ s

ZU

L

Aðz0; zÞð1� /ðz; tÞÞSðz; tÞdz

Iðtþ 1Þ ¼ s

ZU

L

/ðz; tÞSðz; tÞdz

Rðtþ 1Þ ¼ sRðtÞ þ sIðtÞ
Vðtþ 1Þ ¼ m½Bþ Bm� þ sVðtÞ

;

where S(z,t) reflects the number of susceptible individuals

with maternal antibody concentration z, I(t) is the number

of infected individuals, R(t) is the number of recovered

(and completely immune) individuals, and V(t) is the

number of vaccinated individuals (also completely

immune). We could also have chosen to model an explicit

maternally immune or ‘M’ compartment, but instead

chose to consider maternal antibodies as indicative of sus-

ceptibility status for simplicity. The time step here taken

as 2 weeks, which reflects the approximate generation

time of measles (Grenfell, Bjornstad & Finkenst€adt 2002).

The probability of vaccination in one-two-week time step

is captured by v; s is the probability of survival (we ignore

infection-related mortality for simplicity), f is fertility,

likewise, and /(z,t) is the probability of infection of an

individual with maternal antibody concentration z (fur-

ther detailed below). At birth, the distribution of maternal

antibody concentrations in infants is captured by the den-

sity function A0(z) for unvaccinated mothers and A0v(z)

for vaccinated mothers, where B indicates the number of

children born to unvaccinated mothers and Bv children

born to vaccinated mothers; subsequent decline of mater-

nal antibodies is captured by the kernel A(z’,z); the inte-

gration occurs between an upper and lower limit of

antibody concentrations U and L, and recovery is com-

plete within one-two-week period, so all infected individu-

als moved into the recovered stage at t + 1; see Table 2

for details of parameters and functional forms. The prob-

ability of infection, /(z,t) is defined by

/ðz; tÞ ¼ ð1� expð�btIðtÞ=NtÞÞpðzÞ

where bt captures seasonally varying transmission, Nt is

the total host population size at time t, included as immu-

nizing childhood infections generally scale in a frequency-

dependent fashion (Grenfell, Bjornstad & Finkenst€adt

2002), and p(z) reflects the probability of being suscepti-

ble, for an individuals with antibody concentration z.

To illustrate the use of IPMs in this setting, we simu-

lated two contrasting situations – in both, vaccination

was introduced, but in the first case, the observed differ-

ence between the offspring of vaccinated and unvacci-

nated mothers was implemented, and in the second, we

assumed that this difference did not exist, that is a0v = a0s
(Table 2, Fig. 3d). Intriguingly, if vaccinated mothers sup-

ply their children with just as high a concentration of

antibodies as unvaccinated mothers, this can nevertheless

actually result in a higher burden of cases. This illustrates

the importance of nonlinear feedbacks that characterize

infectious disease dynamics – in this example, specifically,

the effect of ‘honeymoons’ resulting from vaccination

(McLean & Anderson 1988). Classically, this occurs

because introduction of vaccination reduces transmission,

thus leaving individual who are unvaccinated also unex-

posed to natural infection, allowing accumulation of sus-

ceptible individuals, potentially eventually resulting in a

large outbreak. Here, the twist is that the absence of

© 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 85, 343–355

350 C. J. E. Metcalf et al.



maternal protection in vaccinated individuals prevents the

longer build-ups of susceptible individuals, by accelerating

waning of immunity, and allowing earlier, and thus smal-

ler outbreaks. Removing this difference has the opposite

effect – amplifying the honeymoon effect. By extension, it

can clearly be seen that individual differences such as

those described here linked to vaccination can have popu-

lation-level dynamical consequences. Further evaluation

of the effects of individual heterogeneity as well as the

trajectory of waning of immunity could be undertaken

with the framework described here.

Discussion

The overview we present here, in conjunction with the

two case studies, suggests that there is considerable poten-

tial for using IPMs to understand the consequences of

continuous traits for infectious disease dynamics, while

also highlighting some of the technical challenges. These

include all the usual issues experienced in IPM develop-

ment (Williams, Miller & Ellner 2012), as well as some of

the more subtle issues in interpretation and model con-

struction, such as issues of extrapolating the regressions

beyond the range of the data (Merow et al. 2014).

For any particularly study system, a further important

consideration in evaluating the value of an IPM approach

is the quality and characteristics of the data available.

Longitudinal data that capture individual trajectories in

the focal trait (such as pathogen load or antibody titre),

as well as variance across individuals, are essential. Data

that capture the full time course of the infection process

will also be key, as appropriately detailing the process of

recovery (or not) will be essential for capturing dynamics

(see Case study 1). In the absence of such data, inverse

modelling approaches where population-scale data, such

as relative abundance of individuals of different sizes, or

prevalence of the infection, are used to strengthen infer-

ence (e.g. Cropper & Anderson 2004) may provide some
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Fig. 3. Dynamical consequences of effects of vaccination on maternal antibodies (following Fig. 1). (a) The life cycle, with choice of mater-

nal antibodies as z, a variable which shapes the loss of susceptibility and thus infection (f(z) indicates a dependence on z); the Susceptible

(S), Infected (I) and Recovered (R) and Vaccinated (V) classes all contribute to births, and the level of z is defined by the identity of the

mother, see text for details. (b) Within-host dynamics showing the distribution of maternal antibodies at birth for unvaccinated (black)

and vaccinated (grey) mothers, and their subsequent decline; where the distribution around this decline obtained via a regression model

(grey lines); (c) Host scale dynamics including the probability of become susceptible as a function of maternal antibodies; see Table 2 for

parameters and their sources. (d) Simulations from the IPM model showing cases obtained under a simulation with no vaccination (grey

line) and cases obtained under 85% vaccination when mothers do (black line) or do not (dashed line) differ in their maternal immunity;

indicating the counter-intuitive outcome that increased protection of offspring can actually result in more cases via nonlinear effects. The

legend indicates total cases after the start of vaccination in each of the three scenarios – both vaccination scenarios reduce the number

of cases, but counter-intuitively, if vaccinated mothers transfer antibody concentrations as high as naturally infected mothers, the total

number of cases may be higher as a result of transient dynamics.
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power, but parameter identifiability is likely to be a major

challenge. Broader data on the ecology and life history of

the species will also be important for robust prediction.

For example, seasonal birth pulses shape the ecology of

many rodent species and may have profound effects on

disease dynamics (Peel et al. 2014). It is straightforward

to extend the models described here to incorporate such

ecological realism. A particularly interesting dimension

may be interaction between host ‘condition’ (often cap-

tured by some measure of body mass) and parasite or

immune dynamics. Host condition may be influenced by

disease burden and past environmental conditions. Since

infection risk may in turn depend on the condition of

individual hosts (Koski & Scott 2001; Beldomenico &

Begon 2010), there is potential for feedbacks between the

transmission processes and host trait dynamics, leading to

complex both ecological and evolutionary dynamics

(Boots et al. 2009; Hayward et al. 2014a).

Our focus in the two case studies presented has been on

traits that reflect dynamical heterogeneity (Vindenes &

Langangen 2015), which various lines of evidence suggest

may be key to understanding ecological and evolutionary

processes. For example, analyses of reproductive timing in

a monocarpic perennial herb have shown that among-

individual variation in growth trajectories influences the

age distribution of reproductive timing and that the costs

and benefits of this variation are influenced by (among

other factors) temporal variation in the mean annual

growth rate (Childs et al. 2004; Rees et al. 2004). There

has also been a recent expansion of analyses of the conse-

quences of static heterogeneity (Vindenes & Langangen

2015), that is traits that vary across individuals, but that

an individual will retain for its entire life. Failure to

include such static heterogeneity into models has been

shown to result in misestimation of both the long-term

population growth rate, but also an array of other key

life-history variables such as the mean age of mothers

(Vindenes & Langangen 2015). Considering such features

is likely to be of particular importance in models captur-

ing infectious diseases, as there is considerable evidence

for strong genetic or early environment signatures on

responses to infection (Hill 1998).

The default tool for modelling infectious disease

dynamics in structured populations has long been partial

differential equations (Anderson & May 1991). The two

case studies presented here suggest that IPMs might pro-

vide a tractable, data-driven alternative. However, the

degree to which IPMs are applicable for epidemiological

systems will depend very much on the scale of data avail-

able – if data only exists at time steps that prove too

coarse for regression-based tools to capture the detail of

within-host dynamics, then IPMs are unlikely to be the

best modelling approach. A major challenge to deploying

IPMs for questions in the ecology and evolution of infec-

tious disease may therefore be that the level of fine-scale

detail explored here is likely to be only rarely available,

especially in field systems. On the other hand, IPMs might

offer a framework for more theoretical investigations –
for example, allowing investigation of specific functional

forms and their effects on disease dynamics, providing a

framework for generating hypotheses.

An array of powerful tools have been developed for

matrix population models (Caswell 2001; Klepac & Cas-

well 2011) and extended for IPMs (e.g. Ellner & Rees

2007), opening the way to evaluating the impact of an

array of important features such as stochasticity on

Table 2. Parameters and functional forms for IPMs relating to maternal antibodies of measles. For the numerical integration, we set the

lower limit of integration L = �10 and the upper limit U = 4, based on data from Waaijenborg et al. (2013)

Description Functional form Parameters Details of parameterization

Dynamics of waning of log maternal

antibody concentration, z, A(z’,z)

mt = ag + bgmt–1 + cg m
2
t–1 + e ag = (�1�52, bg = 0�94, cg = 0�07

e = N (0, r = 1�28)
Fitted to a simulation

based on data described

in Fig. 1 of Waaijenborg

et al. (2013); and

parameters provided in

the Table S1

Starting density of z for children

born to infected mothers, A0(z’)

z0s = a0s + x a0s = 1�74; xs = 1�11 Obtained from

Waaijenborg et al. (2013)

Starting density of z for children

born to vaccinated mothers, A0v(z’)

z0v = a0v + x a0v = 0�48; xs = 1�11 Obtained from

Waaijenborg et al. (2013)

Probability of being susceptible as a

function of log maternal antibody

concentration

logit(ss(z)) = s0 + s1z s0 = 1�60; ss = �1 Based on a cut-off titre of

1�60 for susceptibility

(Waaijenborg et al. 2013)

Survival of uninfected individuals s 0�99 Reflecting high biweekly

survival

Total offspring each biweek B 500 Reflecting a high fertility

context

Transmission b 18 Based on average R0 for

measles

Seasonal forcing function (t indexes

biweek in the simulation)

(1 + a cos(2p(t/24))) a = 0�5 Based on observed patterns

for measles
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disease dynamics in an IPM framework. There are also a

number of open directions for interesting technical

developments – for example, building on innovations link-

ing age and stage with infectious disease dynamics in a

matrix framework (Klepac & Caswell 2011), it should be

possible to derive descriptors of the expected number of

secondary infections depending on the underlying initial

parasite burden (e.g. R0(z)). This would provide interest-

ing ways to quantify the impact of individuals with under-

lying focal trait value x on the dynamics of infection, a

statistically rooted way of tackling the role of super-

spreaders (Lloyd-Smith et al. 2005).

The two case studies we provide both use phenomeno-

logical models to capture the complexity of feedback-

driven dynamics of the process of infection, thereby

providing an abstraction of the true dynamics (feedbacks

between immunity and parasitaemia, for instance). For

maternal antibodies, where the process is unlikely to

respond to perturbations such as infection (C�aceres, Stre-

bel & Sutter 2000), this strategy is likely to be relatively

robust. In the case of murine malaria, blood stage dynam-

ics essentially reflect an SIR process themselves (Mideo

et al. 2008; Metcalf et al. 2011, 2012), and careful inter-

pretation of model predictions given the potential for

unpredictable feedbacks is essential. While the phe-

nomenological approach described is likely to be powerful

for taking a comparative perspective, as illustrated above

using clones with varying levels of virulence (populations,

or environments could be similarly deployed), it precludes

more dynamical investigations of the outcome of pertur-

bations. For example, with the phenomenological models

we develop, exploring the impact of increasing the rate of

growth of the infected RBC population is impossible, as

there is nothing in the model to describe how increased

parasite load will increase immune activity. However, in

principle, we could easily embed a further SIR within the

host-level SIR to capture the details of within-host

dynamics, aligning, for example, infected cell survival with

host immune activity, as our response variable. This

would enable fine-scale analysis of the evolutionary conse-

quences of changes in within-host traits, such as alloca-

tion towards sexual reproduction and its fluctuations

through time (Mideo & Day 2009), or synchrony in burst-

ing of red blood cells (Mideo et al. 2013; Greischar, Read

& Bjørnstad 2014).

To conclude, using IPMs to bring continuous traits to

infectious disease models has the potential to provide a

powerful new approach to tackling an array of important

questions in animal ecology and evolution. As illustrated

here with the rodent malaria example, leveraging a

breadth of data to develop phenomenological models cap-

turing interactions between underlying mechanistic pro-

cesses can yield comparative insights into cross-scale

dynamics. For models, or model components, where the

mechanisms are more directly reflected, perturbation anal-

yses will also allow for exciting ecological and evolution-

ary developments. For example, explorations of the

evolutionary dynamics of pathogen load, using

approaches analogous to those used to explore timing of

flowering of monocarpic plants (Metcalf et al. 2008) could

generate new, and importantly, empirically grounded

insights into virulence-transmission trade-offs. The density

and/or frequency dependence of infectious disease dynam-

ics could result in hard to predict evolutionary feedbacks

linked to this trait, which might be captured using adap-

tive dynamic approaches (Dieckmann 1997). At a more

ecological scale, the feedbacks inherent to infectious dis-

ease dynamics can lead to non-intuitive outcomes, making

models key to generating expectations; however, this also

leads to highly sensitive dynamics, with complex tran-

sients, which can make empirically rooted models essential

to predicting short-term outcomes of underlying continu-

ous traits. Overall, this is a promising area of research

and one in which we expect an array of technical develop-

ments in coming years.
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Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Figure S1. The time series of parasitaemia in the blood phase of

malaria for five mice infected with 8 different clones, clone names

shown as plot titles, and fitted linear regression predicted log

infected RBCs as a function of current burden and time-step

either one time-step ahead (dashed line) or over the full time

course (solid line).

Figure S2. The modelled density of log infected RBCs through time

for each of the clones in the IPM. Earlier time-steps are indicated by
red colors, moving through to blue/purple for the final time-steps – the
density starts with a low mean log infected RBCs, which moves up,
briefly, and then down.

Table S1. Full set of parameters across all murine malaria clones

(column headings) obtained from the regression models fitted to

the time course of parasite density; see Table 1 for parameters

common across clones.
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