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ABSTRACT
The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo,
endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and
early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed
number in each silique and leading to increased seed size. A similar effect on seed size was observed with
other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed
size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is
modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines
with unmodified inflorescences, and also upon removal of side branches and axillary stems. This
phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the
main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we
conclude that plant architecture is a further important factor to consider in appraising seed phenotypes.
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Plants have a sessile lifestyle and their development and growth
respond to the environment.1-6 Within this context, plant mor-
phogenesis is a plastic process that requires the integration of
developmental and environmental cues. In higher plants, the
reproductive phase leads to the formation of seeds, which are
essential for plant dispersal and survival. Angiosperm seeds
derive from a fertilized ovule and are comprised of three main
compartments: the embryo derived from fertilization of a hap-
loid egg cell, the endosperm derived from fertilization of the
diploid central cell by haploid sperm cells and the integuments.
Mitotic cell proliferation underpins the growth and develop-
ment of all three components and is therefore essential for both
embryonic and post-embryonic development.

The mitotic cell cycle of eukaryotes is composed of two
alternating phases, during which DNA is first replicated
(S phase) and then chromosomes are partitioned (mitosis, M),
interrupted by two gaps G1 (between M and S) and G2
(between S and M). In eukaryotes, progression through the cell
cycle requires the modulation of the activity of kinase complex
composed of the cyclin-dependent kinase (CDK) and the regu-
latory subunit, cyclin (CYC).7

Cell cycle progression requires tight regulation that occurs at
two main checkpoints: G1-to-S and G2-to-M. In Arabidopsis,
CDKA1;1/CYCD kinases8-10 regulate the G1-to-S transition
whereas G2-to-M transition requires the activity of CDKB
kinases. These checkpoints are key steps to integrate develop-
mental, environmental and nutritional cues and CYCDs have

been shown to be direct or indirect integrators of mitogenic sig-
naling triggered by phytohormones such as auxin and cytoki-
nin and carbohydrates (e.g. sucrose and glucose) levels.8-9

We have used targeted expression of CYCD7;1 using the highly
specific FWA promoter to address the consequences of altering
the normal pattern of divisions early in Arabidopsis seed develop-
ment.11 The FWA promoter is active pre- and post-fertilization in
the central cell of the female gametophyte and developing endo-
sperm of the seed. Interestingly, targeted expression of CYCD7;1
using the FWA promoter overcomes cell cycle arrest in the central
cell of the female gametophyte before fertilization, resulting in the
central cell becoming multinucleate with high frequency. Post-fer-
tilization there is an acceleration of early endosperm and embryo
development, although this slows after heart phase of embryo
development, by which time the FWA promoter is no longer
active. We also observed a high degree of lethality of embryos,
leading to abortion.

Associated with these phenotypes provoked by CYCD7;1
expression, we recently reported that FWA:CYCD7;1 transgenic
lines produce seeds with increased final size.11 These seeds dis-
play faster seedling establishment upon germination, which
might benefit the fitness of this transgenic lines.11 We noted
that a number of seed developmental mutants have similarly
been reported to display either lethality or enlarged seeds.12-18

Previously only Fang and colleagues17 have reported both
parameters and we considered whether these phenotypes might
be causally related. Examining mutants with lethality but no
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obvious other connection to seed growth also showed increased
seed size. This suggests that drawing conclusions from observa-
tions of altered seed size must be carefully considered alongside
any sibling lethality observed.12

Hence in this study, we showed evidence for the trade-off
between seed size and seed number in the siliques.12-18 Targeted
CYCD7;1 expression in the seed under the control of the FWA
promoter was also tested using the UAS/GAL4 system,19 and
using these FWA>>CYCD7;1 transgenic lines, the trade-off
between seed size and number was further explored within the
context of resource allocation. The number of seed pods was
artificially decreased by removal of the branches of the floral
stalk as well as the axillary shoots (referred as SUPRA, Fig. 1A)
or increased by cutting back the primary stem to stimulate
branching and therefore leading to the production of numerous
seed pods (SUB, Fig. 1A). We found that these manipulations
of plant architecture influenced seed size in untransformed
WT plants, as well as modulating the effect conferred by
FWA>>CYCD7;1. The mean seed size distribution of WT
plants was not significantly different between seeds grown on
NORMAL floral stalks or on SUPRA stems (i.e. when axillary

stems were removed). However on SUB shoots where the main
stem was removed to increase side branching, mean seed size
was decreased by 4% (p D 0.76). In each case, overall mean
seed size from the whole plant was determined as described.11

These results suggest that either mean seed size differs between
the main inflorescence and side inflorescences or that it can be
affected by limiting the resources available. However the former
explanation would suggest that SUPRA seeds from the main
stem only should be larger than from the NORMAL which
includes both main stem and side shoot-derived seed, which
was not the case, since seed size was not increased by axillary
stem removal (SUPRA), in contrast to the effect of sibling abor-
tion within the silique itself12 on seed size.

In line with our analysis of the FWA:CYCD7;1 seeds,11 we
found that both FWA>>CYCD7;1 NORMAL and SUPRA plants
produce larger seeds compared to WT controls (two-way
ANOVA, p D 1.18 £ 10¡47; Fig. 1). In NORMAL plants,
FWA>>CYCD7;1 seeds were 8% larger than the WT (two-way
ANOVA, p D 3.95 £ 10–45) and in SUPRA conditions
FWA>>CYCD7;1 seeds showed a 9% increase in overall area.
However, on the SUB plants with increased branching

Figure 1. Influence of plant architecture on seed size. (A) Cartoon depicting the experimental design: in SUPRA conditions, all axillary and secondary branches were
removed resulting in a reduction of the number of seed pods produced. In NORMAL conditions plant architecture was untouched. In SUB conditions, the primary stem
was cut soon after the floral transition initiating the formation of additional axillary stems and increasing the number of seed pods. (B-D) Comparison of seed size parame-
ters between the different architectures. For each type, nine plants were grown and from each individual plant seeds were harvested and analyzed seperately. For each
plant, a minimum of 200 seeds was measured. Mean seed area (B), mean seed length (C) and mean seed width (D). Error bars show § SE. (�) indicates a statistical
difference in one of the of seed size parameters.
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FWA>>CYCD7;1 mean seed size was 4% smaller than the WT
control with increased branching, indicating that the beneficial
effect of targeted CYCD7;1 expression is lost when shoot growth is
stimulated. The length and width showed results similar to those
observed for the overall area, suggesting that these trends are the
same in both dimensions (Fig. 1). At this point we cannot exclude
a possible effect of pruning on the expression of the FWA driven
transgene, but measuring seeds from developmentally comparable
shoots suggests that the effect of the transgene depends rather on
the architecture of the mother’s shoot.

These observations suggest that not only is seed size affected
by sibling lethality but this effect can also be dependent on
other aspects of growth. In this case, the manifestation of the
enlarged seed phenotype conferred by CYCD7;1 ectopic expres-
sion appears to be dependent on the availability of sufficient
resources. This confounding influence of plant architecture on
the effects of ectopic expression CYCD conferred phenotypes
might have implications in our evaluation of phenotypes.20-24
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