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Summary

PPARs are transcription factors involved in the regulation of key metabolic pathways. Numerous 

in-vivo and in-vitro studies have established their important roles in lipid metabolism. A few SNPs 

in PPAR genes have been reported to be associated with lipid levels. In this study, we aimed to 
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investigate the interactive effects between SNPs in three PPAR isoforms α/δ/γ and other genetic 

variants across the genome on plasma high-density lipoprotein-cholesterol (HDL-C) levels. Study 

subjects (N = 2,003) were genotyped using Illumina HumanOmniZhongHua-8 Beadchip. Fifty-

three tag SNPs +/− 100kb of PPAR α, δ, and γ (r2 < 0.2) were selected. The effect of interactions 

between PPAR SNPs and those across the genome on HDL-C were tested using linear regression 

models. One statistically significant interaction influencing HDL-C was detected between PPARδ 
SNP rs2267668 and epithelial membrane protein 2 (EMP2) downstream SNP rs7191411 (N = 

1,993, β = 0.74, adjusted P = 0.022). This interaction was successfully replicated in the meta-

analysis of two additional Chinese cohorts (N = 3,948, P = 0.01). The present study showed a 

novel SNP×SNP interaction between rs2267668 in PPARδ and rs7191411 in EMP2 that has 

significant impact on circulating HDL-C levels in the Singaporean Chinese population.
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INTRODUCTION

Cardiovascular disease is the major cause of mortality and morbidity worldwide. HDL-C has 

been overwhelmingly demonstrated as a key factor that is inversely and independently 

associated with the risk of cardiovascular disease in epidemilogical studies (Emerging Risk 

Factors et al., 2009, Durrington, 2002). The protective effect of HDL-C has been 

demonstrated to be mediated through the reverse cholesterol transport (Kwiterovich, 1998, 

Barter et al., 2004), which results in the movement of cholesterol from various tissues to the 

liver. PPARs are well-known lipid-activated transcription factors that play a crucial role in 

the regulation of key molecules in reverse cholesterol transport. PPAR has three isoforms, α, 

δ and γ, which are structually related but differ in expression profiles and target genes. 

PPARα is abundantly expressed in the liver and enterocytes. Its activation increases HDL-C 

levels (Millar, 2013, Shah et al., 2010). PPARγ is predominantly expressed in adipose 

tissues and plays an important role in cholesterol homeostasis (Evans et al., 2004). It 

controls the expression of ATP-binding cassette A1 and caveolin 1, thus contributing to 

variations in HDL-C levels (Akiyama et al., 2002, Zhao et al., 2008, Llaverias et al., 2004). 

Unlike PPARα and PPARγ, PPARδ is ubiquitously expressed but only at low levels in the 

liver (Higgins et al., 2012). Studies of PPARδ have revealed that it promotes reverse 

cholesterol transport through its action on increasing the number of HDL-C particles (Oliver 

et al., 2001). Given the substantial role of PPARs in lipid metabolism, various agonists of 

PPARs have been synthesized and the biological effects of PPAR agonists on lipids and 

cardiovascular diseases have been extensively tested in vivo and in vitro. For example, the 

PPARδ agonist MBX-8025 and GW501516 have been studied in randomized trials in 

humans, showing an effect of increased HDL-C and reduced low density lipoprotein-

cholesterol (LDL-C) (Choi et al., 2012, Olson et al., 2012). Hence, PPARs are important 

factors that can increase HDL-C levels and reduce the risk of cardiovascular disease (Jay & 

Ren, 2007, Duval et al., 2002, Flavell et al., 2000). However, a phenomenom called 

“disappearing HDL syndrome”, which is a reversible severe HDL-C deficiency, has also 

been observed in some subjects after PPAR agonist treatment (Goldberg & Mendez, 2007, 
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Keidar et al., 2007, Sarker et al., 2004, Senba et al., 2006). This perhaps indicates specific 

inherent inter-individual variability to PPAR treatment response, such as epistatic 

interactions that have yet to be understood. Moreover, it has been estimated that 40 to 60% 

of plasma lipid variance is genetically determined (Namboodiri et al., 1985, Weissglas-

Volkov & Pajukanta, 2010). However, the 157 recently identified loci could only explain less 

than 13% of variation for HDL-C (Global Lipids Genetics et al., 2013, Asselbergs et al., 
2012). It is therefore believed that part of the missing heritability could be attributed to gene-

environment and gene-gene interactions. Nevertheless, the heavy computational and 

statistical burden present great challenges in identifying novel interactions. Effective 

filtering strategies have been suggested to reduce the number of data. One approach is using 

statistically significant SNP to prioritize promising SNPs (Evans et al., 2006, Kooperberg & 

Leblanc, 2008). Another approach is using intrinsic or extrinsic knowledge to reduce the 

number of testing (Xenarios et al., 2000, Stark et al., 2006, Greene et al., 2009, Moore & 

White, 2007, Kanehisa & Goto, 2000, Bush et al., 2009). In this study, we selected PPARs 

based on prior extrinsic knowledge. As there have been no prior studies exploring how 

genetic variants in the three PPAR isoforms (α/δ and γ) interact with other SNPs across the 

genome to impact on HDL-C levels, we aimed to fill this knowledge gap using Asian 

datasets from Singapore.

MATERIALS AND METHODS

Singapore Chinese Health Study

The Singapore Chinese Health Study (SCHS) was used as the discovery cohort. It is a 

population-based prospective cohort which began in 1993 and has a recruitment of 63,257 

residential Singaporean Chinese between age 45–74 by 1998 (Hankin et al., 2001). The 

cohort study recruited only participants belonging to one of the two major Chinese dialect 

groups in Singapore, the Hokkiens or the Cantonese, who originated from two contiguous 

prefectures in southern China. Subjects were interviewed face-to-face at their home by 

trained interviewers using a well-structured questionnaire, which sought information on 

basic demographics, smoking status, usual physical activity, food consumption, menopausal 

status (women only), medical history, and family history (Hankin et al., 2001). Cases that 

had fatal coronary heart disease (CHD) or suffered from non-fatal myocardial infarction 

(MI) were identified through the Singapore Registry of Births and Deaths and the Hospital 

Discharge Database or the Singapore Myocardial Infarction Registry (SMIR) respectively. 

For all non-fatal cases identified through the Hospital Discharge Database, medical records 

were retrieved and reviewed by a cardiologist and only those who had confirmed MI using 

the Multi-Ethnic Study of Atherosclerosis criteria (available at: http://www.mesa-nhlbi.org/

manuals.aspx), were included. The SMIR uses similar methods to verify cases through 

medical record review (Koh et al., 2011). Each verified MI or CHD case were matched with 

two SCHS pariticipants who were alive and free of CHD at the time of the MI diagnosis or 

CHD death on sex, dialect group, year of birth (± 2 years), year of recruitment (± 1 year) and 

date of blood collection (± 6 months). All participants were given written informed consents. 

This study were approved by National Health Group Domain Specific Review Board and 

National University of Singapore Institutional Review Board.
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Significant findings in SCHS were then evaluated in four other cohorts. They are the 

Singapore Chinese Eye Study (SCES)(Lavanya et al., 2009), the Singapore Malay Eye Study 

(SiMES) (Foong et al., 2007), the Singapore Indian Eye Study (SINDI) (Lavanya et al., 
2009) and the Singapore Prospective Study Program (SP2) (Nang et al., 2009).

Singapore Epidemiology of Eye Disease (SEED) studies

The SCES, SiMES and SINDI are population-based, cross-sectional studies of Singaporean 

Chinese, Malay and Indian aged 40 to 80 years (Lavanya et al., 2009, Foong et al., 2007, 

Sabanayagam et al., 2015, Cheung et al., 2014). They were all conducted by the Singapore 

Eye Research Institute and commenced between 2004 and 2007. All subjects were selected 

using age-stratified (10 year age group) random sampling strategy from a computer-

generated list provided by the Ministry of Home Affairs. Selected subjects underwent an 

extensive examination procedure and interviews with detailed questionnaires (Lavanya et al., 
2009, Foong et al., 2007, Sabanayagam et al., 2015, Cheung et al., 2014). Non-fasting blood 

samples were collected for laboratory analysis including serum lipids. All participants gave 

their written informed consents. The studies followed the principles of the Declaration of 

Helsinki and approved by the Singapore Eye Research Institute Institutional Review Board. 

The detailed methodology of the three studies have been previously published (Lavanya et 
al., 2009, Foong et al., 2007, Sabanayagam et al., 2015, Cheung et al., 2014).

Singapore Prospective Study Program

The SP2 is a repeat examination of 7,742 subjects (74.1% response rate) drawn from 4 

population-based, cross-sectional surveys conducted in Singapore-Thyroid and Heart Study, 

the National Health Survey 1992, the National University of Singapore Heart Study and the 

National Health Survey 1998, which have been described before (Nang et al., 2009). Data on 

demographic, life style factors and medical history were collected by interviewer-

administered questionnaires. The likely MI/CHD status was determined based on their 

responses (No, Yes) to the following questions in the questionnaire, “Has your doctor ever 

told you that you have blockage of the arteries to your heart” or “Have you had ever had a 

heart attack”. Subjects were aged 18–69 at baseline and represented a random sample of the 

Singapore population. Among participants, 5,094 provided blood samples and overnight 

fasting blood samples. Informed consents were obtained from all participants. This study 

was approved by National University of Singapore Institutional Review Board and 

Singapore General Hospital Institutional Review Board.

Blood collection and lipoprotein measurements

In SCHS, blood samples were collected during home visits. The final number of blood 

samples available for the SCHS was 28,439; including MI cases for whome blood was taken 

prior to their incident event (Hankin et al., 2001). In SCES, SiMES, SINDI and SP2, blood 

samples were collected at the time participants visited study clinic for examination (Lavanya 

et al., 2009, Nang et al., 2009). Blood components of each sample (i.e., fractions of plasma, 

buffy coat, serum and red blood cells) were separated and stored at −80 °C.

Non-fasting total cholesterol, HDL-C, LDL-C and triglycerides were measured in SCHS, 

SCES, SiMES and SINDI samples at baseline with the enzymatic, colorimetric method or 
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elimination/catalase method using the Siemens Advia 2400 instrument (Siemens Medical 

Solutions Diagnostics, Deerfield, IL, USA) (Nang et al., 2009, Foong et al., 2007, Lavanya 

et al., 2009). Fasting total cholesterol, HDL-C and triglycerides were measured in SP2 

samples with kits from Boehringer Mannheim Systems (Mannheim, Germany) and a BM/

Hitachi 747 analyzer (Roche Diagnostics, Corp. Indianapolis, IN) (Nang et al., 2009, Foong 

et al., 2007, Lavanya et al., 2009). LDL-C was calculated using the Friedewald formula in 

SP2. Lipid-lowering medication was not available for the SCHS. In total, 2,003 subjects in 

SCHS, 2,099 subjects in SP2, 1,872 subjects in SCES, 2,541 subjects in SiMES and 2,538 

subjects in SINDI were available for subsequent association analyses.

All the measurements were undertaken at National University Hospital Referral 

Laboratories, which participated in external quality assessment schemes such as the National 

Proficiency Testing Programmes, CAP, Bio-Rad Laboratories EQAS, QASI, RCPA and 

UKNEQAS. No significant deviation in measurements of reference samples was observed.

Genotyping and quality control

SCHS, SCES, SiMES, SINDI and SP2 were genotyped on different arrays, with SCHS on 

Illumina HumanOmniZhongHua-8 BeadChip (San Diego, California, the United States), 1/3 

SCES, SiMES, SINDI and 1,467 samples of SP2 on the Human610-Quad BeadChip, 2/3 

SCES on Illumina OminiExpress, and 1,016 samples of SP2 on the Human 1M-Duo v3 

BeadChip. The quality control of SCES, SiMES SINDI and SP2 have been described 

elsewhere (Dorajoo et al., 2013, Liao et al., 2014). Chip-wise quality control procedures 

have been conducted following standard criteria in all studies (Supplementary Table I and 

II). Briefly, SNP quality control was conducted based on allele frequency (MAF < 0.01), 

call-rates (< 0.95) and deviations from Hardy-Weinberg Equlibrium (P < 10−04). Sample 

quality control was conducted based on sample call rates (< 0.98), heterozygosity (> 3S.D), 

first degree relateness and discordant ethnic relationship based on Principle component 

analyses. After quality control, 2003 samples and 802,635 SNPs remained in SCHS. 

Linkage disequilibrium (LD) based pruning (r2 < 0.2) was applied on the genome-wide 

autosomal SNPs using PLINK (version 1.07) in SCHS. Finally, 142,208 independent SNPs 

remained in SCHS for further analysis.

Candidate SNP selection

The genomic locations of the three PPAR genes were obtained from Ensembl Genome 

Brower (GRCh37/hg19, http://www.ensembl.org/index.html). The SNPs 100kb upstream 

and downstream of these genes were extracted by Haploview 4.2 using CHB+JPT analysis 

panel (Version 3 Release R2). The number of SNPs for PPAR α, δ, γ were 227, 110 and 

163, respectively. Of this total number of 500 PPAR SNPs, 233 SNPs were part of the 

802,635 SNPs that were genotyped on Illumina ZhongHua array which passed the quality 

control. These genotyped SNPs were further pruned by selecting those with r2<0.2 using 

PLINK version 1.07. Finally, 53 independent SNPs of PPAR (25 in PPARα, 10 in PPARδ 
and 18 in PPARγ) remained for analysis (Supplymentary Table III).
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MicroRNA binding site prediction

PolymiRTS Database 3.0 (http://compbio.uthsc.edu/miRSNP/) was utilized to predict the 

effects of SNPs on miRNA taget sites in our study (Bhattacharya et al., 2014).

LD pattern comparison

The online database Singapore Genome Variation Project (SGVP, http://

www.statgen.nus.edu.sg/cgi-bin/gbrowse/sgvp/#search) was utilized to compare the LD 

pattern around SNPs among different ethnic groups (Teo et al., 2009).

Statistical analysis

Statistical analysis of data was carried out with STATA (version 12.0). Differences between 

means in demographic and biochemical parameters were evaluated by the t-test. Differences 

in frequencies between groups were examined by the chi-square test. Raw HDL-C levels 

were normalized by rank-based inverse normal transformation in all cohorts (Beasley et al., 
2009). Samples with more and less than 3 S.D of rank-based inverse normal transformated 

HDL-C levels were excluded from analyses. The number of outliers were 6 in SCHS, 5 in 

SCES, 5 in SP2, 6 in SiMES and 6 in SINDI. Body mass index (BMI) was derived from 

height and weight measurements (BMI = weight/height2). Missing BMI values were 

imputed using multiple imputation in the SCHS dataset only (White et al., 2011). The 

association of genetic variants with HDL-C was evaluated in SCHS using PLINK version 

1.07 (Purcell et al., 2007) using a linear regression model with adjustment of age, age2, 

gender, smoking status, MI status and imputed BMI. To adjust the multiple tests in 53 SNPs, 

we defined the significance for association as < 9.43×10−4. Interaction was first tested 

between 53 PPAR SNPs and 142,208 independent genome wide SNPs in an additive model 

in SCHS (N = 2,003). This was executed in PLINK version 1.07 using a linear regression 

model by including the multicative term of 2 SNPs (each of the 53 PPAR SNPS*each of the 

142,208 genomewide SNPs). Three rare double homozygotes of PPARδ and EMP2 were 

observed among the five cohorts (N = 10,973). To reduce the possibility of a chance finding 

caused by rare double homozygotes, the interactions were presented in a dominant model 

with adjustment for age, age2, gender, BMI, smoking status, priciple components (for non-

Chinese cohorts) lipid-lowering medication and MI status where available. We defined the 

statistical significance as 6.63 × 10−9 based on 7,537,024 tests (53 PPAR SNPS*142,208 

genomewide SNPs). Replication analyses of top interaction hits identified from the SCHS 

were conducted in SCES, SP2, SiMES and SINDI using the same model. Meta-analysis was 

conducted in the two Chinese cohorts, SCES and SP2, using fixed effect model. One way 

analysis of variance and Tukey’s honestly significant difference pos-hoc test were used for 

the multiple comparisons of genotypic mean HDL-C levels between different combined 

genotypes of rs2267668 (PPARδ) and rs7191411 (EMP2).

RESULTS

As shown in Table 1, gender, age, HDL-C and BMI levels varied significantly across the five 

Singaporean cohorts. We therefore adjusted for age, gender and BMI in subsequent HDL-C 

association analyses. We also adjusted for smoking status, as it is a strong determinant of 

HDL-C levels.
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The associations of 53 PPAR tag SNPs with HDL-C in SCHS were examined by linear 

regression analysis. None of them remained significant after correction for multiple testing 

at a threshold P value of 9.43×10−4 (Supplementary Table IV). Additionally, these 53 SNPs 

did not show significant main effect on other lipid traits including total cholesterol, LDL-C 

and triglycerides (data not shown). The gene-gene interactions were subsequently tested 

between PPAR SNPs and other independent SNPs across genome using an additive model. 

We observed one significant gene-gene interaction between PPARδ (rs2267668) and EMP2 
(rs7191411) (β = 0.58, unadjusted P = 1.12 × 10−10, adjusted P = 8.44 × 10−04, Table 2) in 

the additive model. To reduce the possibility of a chance finding caused by one double rare 

homozygote (HDL-C level = 2.49mmol/L, N = 1) and the bias caused by MI status, the 

interaction was examined in a dominant model with stratification of MI status and remained 

significant (β = 0.74, unadjusted P = 2.97 × 10−09, adjusted P = 0.022) (Table 2). This 

interaction was subsequently examined in four additional Singaporean datasets, SCES, SP2, 

SiMES and SINDI, and was successfully replicated in the meta-analysis of the two Chinese 

cohorts (Table 2; P = 0.01) SCES and SP2, but not in the non-Chinese cohorts SiMES (β = 

−0.11, P = 0.29) and SINDI (β = −0.14, P= 0.15) (Table 2).

Figure 1 shows the HDL-C-lowering effect of increasing number of minor alleles from 

either one of the PPARδ and EMP2 SNP. However, plasma HDL-C levels were significantly 

elevated among subjects when minor alleles from both SNPs are present. The levels of 

HDL-C for each genotype combination are presented in Table 3 for the discovery and two 

replication Chinese cohorts.

The EMP2 variant rs7191411 is 339 bases downstream of EMP2. To explore potentially 

functional SNPs that are in linkage disequilibrium (LD) with this SNP (r2 > 0.90), we 

calculated pairwise LD of all genotyped SNPs across the chromosome 16 with rs7191411. 

One such SNP, rs12928798 (r2 = 0.97 in SCHS, r2 = 1 for all Chinese subgroups in 1000 

Genome database), was identified. SNP rs12928798 is located in the 3’UTR region of 

EMP2. The PPARδ SNP rs2267668 is located within the intronic region of PPARδ. No 

potentially functional SNPs in LD with this SNP could be found in the genotyped SNPs.

DISSCUSSION

In this study, we first examined the association of 53 common variants in the three PPAR 
genes with HDL-C for their main effects. Subsequently, the interactions between the PPAR 
variants and all independent genotyped SNPs elsewhere in the genome were analyzed. None 

of the 53 SNPs were significantly associated with HDL-C levels after adjustment for 

multiple comparisons. However, one statistically significant interaction between PPARδ 
(rs2267668) and EMP2 (rs7191411) was identified, which showed an increase of HDL-C 

levels in individuals carrying minor alleles from both SNPs.

The EMP2 SNP tested in this study (rs7191411) is in high LD with rs12928798, which has 

been predicted to be a binding site of hsa-miR-4302 by PolymiRTS Database 3.0. Therefore, 

the observed interaction effect of rs7191411 may be attributed to its high LD with the latter, 

which could influence the expression level of EMP2. Subsequent in vivo and in vitro studies 
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would be necessary to elucidate the mechanism of how PPARδ and EMP2 interact to affect 

HDL-C levels.

The PPARδ and EMP2 interaction was replicated among two independent Singaporean 

Chinese cohorts but not among the Malay and Indian datasets. The effect of the interactions 

in all three Chinese cohorts were consistent (all showing positive betas). One plausible 

explanation for the failure of replication in the Malays and Indians could be due to differing 

LD patterns at the two identified loci (PPARδ and EMP2) among various ethnic groups 

evaluated in the study. Based on data from haplotype maps of Chinese, Malay, Indian and 

European population groups that was made available by the Singapore Genome Variation 

Project (http://www.statgen.nus.edu.sg/cgi-bin/gbrowse/sgvp/#search) (Teo et al., 2009), 

there is evidence of a different pattern of LD around rs2267668 (PPARδ) between Chinese 

and Indian population groups but not between Chinese and Malays, and between Chinese 

and Europeans (Supplementary Figure I). We are not able to account for the failure of 

replication in the Malays. This is one of the limitation of our study. The other limitation is 

the lack of data for lipid-lowering medication in SCHS and verified MI status in SP2 and 

SEED studies.

PPARs are well-known lipid-activated transcription factors. Many studies have shown the 

effects of interactions between PPAR polymorphisms and alcohol consumption, dietary 

polyunsaturated fatty acid, diet and physical activity on serum lipid levels (Wei et al., 2011, 

Chan et al., 2006, Robitaille et al., 2007, Halder et al., 2014). However, only a few studies 

have investigated the interactions between PPAR polymorphisms and other genetic variants 

on serum lipid levels. These studies focused on the gene-gene interactions within PPAR 

receptors, showing a gender or diet conditioned interaction between PPAR δ polymorphism 

rs2016520 and the PPAR α polymorphism rs1800206 on LDL-C levels (Skogsberg et al., 
2003, Alsaleh et al., 2011).

PPARδ is a ubiquitously expressed transcription factor. Cellular and animal studies have 

shown that an agonist of PPARδ (GW501516) could lead to a 80% increase of HDL-C 

compared to baseline level through ATP binding cassette transporter subfamily A member 1 

(Oliver et al., 2001, Barish et al., 2008). Recently, several clinical trials have demonstrated 

that patients dosed with PPARδ agonist showed an enhancement of HDL-C in terms of 

levels and the number of HDL particles (Ooi et al., 2011, Olson et al., 2012, Choi et al., 
2012). The mechanism underlying the effect of PPARδ on HDL-C is through the protection 

of caveolin-1, an essential protein in reverse cholesterol transport, from degradation (Her et 
al., 2013). This protein has been reported to localize and interact with ATP binding cassette 

transporter subfamily A member 1 and their interaction is crucial for caveolin-1 regulation 

of cholesterol efflux (Lin et al., 2009). Interestingly, another member of the PPAR family, 

PPARγ, has been reported to modulate the expression level of caveolin-1(Burgermeister et 
al., 2003). This suggests that PPARδ and PPARγ play important roles in cholesterol efflux 

through the regulation of caveolin-1 in protein and transcriptional level. Importantly, EMP2 

has been demonstrated to down regulate caveolin-1(Forbes et al., 2007, Wadehra et al., 
2004). A recent report has shown that the mutation in EMP2 can cause childhood-onset 

nephrotic syndrome, of which hyperlipidemia is one of the cardinal manifestations (Gee et 
al., 2014). Although the biological relationship between EMP2 and PPARs has never been 
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studied, our study provides statistical evidence suggesting that EMP2 and PPARδ could 

interact to influence cholesterol efflux and thus modulate HDL-C. The relevant biological 

roles of PPARδ and EMP2 in reverse cholesterol transport also provided some support to the 

possibility of such an interaction. The overall impact of this interaction may not be limited to 

the regulation of HDL-C concentrations but could also fundamentally affect the cholesterol 

efflux capacity, which has been shown to be a more important factor in the prediction of 

coronary artery disease than HDL-C concentrations per se (Khera et al., 2011).

PPARδ agonists, including Vascepa (Caldari-Torres et al., 2006, Kondo et al., 2007), 

Bezafibrate (Tenenbaum et al., 2005), Treprostinil (Ali et al., 2006), MBX-8025 (Choi et al., 
2012) and GW501516 (Olson et al., 2012), are effective and promising drugs for lipid 

disorders and have shown properties of raising HDL-C and lowering LDL-C. The three 

drugs Vascepa, Bezafibrate, Treprostinil are FDA-approved commercial drugs. MBX-8025 

and GW501516 are currently under phase II clinical evaluations (NCT00158899, 

NCT00841217, NCT00388180, NCT00701883, and NCT02472535). However, the clinical 

effects of PPAR agonist treatment may be complicated, an example being the “disappearing 

HDL syndrome” (Goldberg & Mendez, 2007, Keidar et al., 2007, Sarker et al., 2004, Senba 

et al., 2006). As PPARs function as transcription factors, any molecular interactions with 

PPARs might influence the final clinical effect of PPAR agonists. The identification of 

EMP2 in this study as a potential molecule that may interact with PPARδ may provide a lead 

for future investigations to unravel the puzzling effects of PPAR agonists in clinical use.

In conclusion, our study provides genetic epidemiological evidences for the first time that 

PPARδ (rs2267668) could interact with EMP2 (rs7191411) to influence circulating HDL-C 

levels. A significant reduction of HDL-C levels was observed in subjects with minor 

allele(s) from either SNPs but an increase of HDL-C when minor alleles from both SNPs are 

present.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

CHD coronary heart disease

EMP2 epithelial membrane protein 2

LD linkage disequilibrium

MAF minor allele frequency

MI myocardial infarction

SCES Singapore Chinese Eye Study

SCHS Singapore Chinese Health Study

SEED Singapore Epidemiology of Eye Disease

SGVP Singapore Genome Variation Project

SiMES Singapore Malay Eye Study

SINDI Singapore Indian Eye Study

SMIR Singapore Myocardial Infarction Registry

SP2 Singapore Prospective Study Program

UTR untranslated region
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Figure 1. 
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