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Abstract

Drug addiction is a major public health concern in the United States costing taxpayers billions in 

health care costs, lost productivity and law enforcement. However, the availability of effective 

treatment options remains limited. The development of novel therapeutics will not be possible 

without a better understanding of the addicted brain. Studies in both clinical and preclinical 

models indicate that chronic drug use leads to alterations in the body and brain’s response to 

stress. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may shed light on the 

ability of stress to increase vulnerability to relapse. Further, within both the HPA axis and limbic 

brain regions, corticotropin-releasing factor (CRF) is critically involved in the brain’s response to 

stress. Alterations in both central and peripheral CRF activity seen following chronic drug use 

provide a mechanism by which substance use can alter stress reactivity, thus mediating addictive 

phenotypes. While many reviews have focused on how stress alters drug-mediated changes in 

physiology and behavior, the goal of this review is to focus on how substance use alters responses 

to stress.
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Recreational drug use has existed in nearly every society throughout history. However, this 

recreational use can spiral into addiction for a subset of vulnerable individuals. One of the 

factors mitigating this vulnerability is stress. Clinical research demonstrates that chronic 

stress is a risk factor in the development of addiction [1, 2], and as many as 70% of addicts 

have experienced trauma within their lifetime [3]. Furthermore, life stress is a critical factor 

mediating treatment outcomes and relapse rates [4–6]. In light of this, treatments aimed at 

reducing stress could increase addiction treatment success [7].
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To promote the identification of therapies to reduce stress in addicts, we must first determine 

the neurobiological mechanisms underlying the interactions between drugs of abuse and 

stress. Many studies have examined the ability of stress exposure to potentiate addictive 

phenotypes [8–11]. However, it is just as important to examine how addicts respond to stress 

and how drugs of abuse can alter stress responsivity. This review will focus on how chronic 

drug administration in both preclinical and clinical models can lead to alterations in 

behavioral and physiological responses to stress. Furthermore, we will discuss the 

neurobiological alterations underlying the ability of chronic drug use to affect responses to 

stress and the implications of these alterations in designing new treatment options.

Stress-related Psychiatric Disorders and Substance Abuse Comorbidity

Preclinical research has clearly demonstrated that drugs and stressful stimuli exhibit cross-

sensitization, whereby experience with drugs leads to an enhanced response to stress and 

vice versa [12–15]. This cross-sensitization between drugs and stress is likely mediated by 

the overlap in neural circuitry. Both preclinical and clinical studies have demonstrated that 

acute stress and drug exposure lead to the activation of similar brain regions [5, 16, 17].

As there is such a clear relationship between the neurobiological circuits underlying stress 

and addiction, it is not surprising that there is a high comorbidity between substance use 

disorders (SUD) and post-traumatic stress disorder (PTSD). While overall estimates of SUD 

prevalence are 3–7% nationally [18], within individuals with PTSD, the lifetime prevalence 

increases to 19–35% for SUD and 36–52% for alcohol use disorder (AUD) [19–21]. 

Likewise, PTSD is more common in individuals with SUD, with an estimated lifetime PTSD 

prevalence of 26–52% (compared to 8% in the total population) [3, 22, 23].

Individuals with both PTSD and SUD have more severe symptomology and exhibit poorer 

treatment outcomes than those with PTSD or SUD alone [24, 25], suggesting a magnifying 

effect of substance use on stress responsivity. Poorer treatment outcomes for these disorders, 

are compounded by additional physical and psychiatric health problems, including higher 

incidence of depression and anxiety disorders [22, 25–27], as well as cardiovascular and 

neurological problems [28]. Furthermore, these individuals are more likely to be 

unemployed and are more prone to violence [24, 29, 30]. Taken together, this suggests that 

gaining a better understanding of the neurobiological mechanisms underlying this 

relationship could help reveal unique treatment options for this population.

While much research has focused on patients with PTSD using alcohol and drugs to “self-

medicate”, there is evidence that SUD can predate PTSD. Individuals with SUD have a 

heightened likelihood of trauma exposure, which in turn, leads to a heightened risk of PTSD 

[31, 32]. Furthermore, SUD, as well as nicotine dependence, can increase PTSD 

vulnerability after trauma exposure [26, 33, 34]. Regardless of the temporal order of SUD 

and PTSD, it is clear that SUD can sustain, prolong, or worsen PTSD symptoms [35].

For example, within a population of PTSD patients, those with lifetime substance use, 

specifically cocaine and marijuana use, exhibited significantly higher PTSD symptomology 

than those without drug use [36]. Furthermore, PTSD patients that smoke exhibit more 
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severe withdrawal from nicotine and this withdrawal leads to exacerbated PTSD 

symptomology [37, 38]. Additionally, PTSD patients that successfully quit smoking exhibit 

improved negative affect compared to those who are unsuccessful [39]. Moreover, alcohol 

withdrawal and craving can increase response to trauma cues in alcoholics with comorbid 

PTSD [40]. Consistent with this, a study of individuals with comorbid SUD and PTSD 

reported intensified trauma symptoms following relapse [41].

Although the effects of drugs of abuse on stress reactivity may be most prominently seen in 

individuals with PTSD, they are not the only individuals affected. Drug abuse is often 

comorbid with other stress-related psychiatric disorders. For example, approximately 20% of 

individuals with mood disorders and 15% with anxiety disorders report at least one 

concurrent SUD. Major depression is strongly associated with SUD as individuals with 

major depression are 7 times more likely to exhibit drug abuse or dependence [42]. When 

examining lifetime SUD prevalence, 50% of individuals with generalized anxiety disorder 

(GAD) report problems with substance abuse. The rates of SUD increase individuals with 

concurrent anxiety disorders, as 46% of individuals with concurrent panic disorder, social 

phobia, and generalized anxiety disorders report comorbid SUD [43]. As with PTSD, 

substance use can exacerbate symptoms of anxiety and initiate additional anxiety disorders 

[44].

Chronic drug use leads to an increased response to stress, even in individuals who do not 

exhibit comorbid psychiatric conditions. Unfortunately, clinical studies are limited by 

extreme environmental and genetic variability, which can obscure the data and misinform 

scientific interpretations. Therefore, this review will focus on the way individuals with SUD 

respond to stress by further examining how preclinical studies have informed us on potential 

neurobiological mechanisms underlying the interaction between chronic drug use and stress 

responsivity.

Corticotropin-Releasing Factor: HPA Axis & Beyond

The high rates of comorbidity between substance abuse and stress-related psychiatric 

disorders may be mediated by the ability of drugs and stress to activate similar neural 

circuits. Consistent with this, animal models have demonstrated that both stress and drug 

exposure lead to an increase in mesolimbic dopamine transmission [45–48]. Though an 

increase in dopamine transmission may explain how stress can augment the effects of abused 

substances, it does not explain how drug use affects stress reactivity.

A key system mediating the body’s response to stressful stimuli is the hypothalamic-

pituitary-adrenal (HPA) axis (see Fig. 1). In response to stress, there is an increased 

production of corticotropin releasing factor (CRF) in the hypothalamic paraventricular 

nucleus (PVN). CRF is a 41 amino acid polypeptide that controls behavioral, hormonal, and 

sympathetic responses to stress [49, 50] and its release onto the anterior pituitary gland 

induces the release of adrenocorticotropic hormone (ACTH) and subsequently the release of 

glucocorticoids from the adrenal cortex [51].

Fosnocht and Briand Page 3

Physiol Behav. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRF serves as the primary mediator in the HPA response to stress in addition to its 

independent roles in brain stress systems [52–55]. It binds to two types of G-protein coupled 

receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2), with high and 

moderate potency respectively [56, 57]. CRF activates the HPA axis stress response via its 

actions at CRFR1 in the anterior pituitary but CRF receptors are widely distributed 

throughout the brain with particularly high concentrations in the cell bodies of the 

paraventricular nucleus of the hypothalamus, the basal forebrain and the brainstem [58]. 

While CRFR1 is widely expressed throughout the brain, distribution of CRFR2 is more 

restricted, with the highest density in the olfactory bulb, lateral septum, bed nucleus of the 

stria terminalis (BNST), ventral hippocampus, and the amygdala [59].

One clear mechanism by which chronic drug use can alter stress response is via actions on 

CRF signaling. Acute administration of cocaine, morphine, nicotine, cannabinoids and 

alcohol lead to increases in CRF release, mRNA, and/or immunoreactivity [60–65]. While 

transient increases are seen following acute drug administration, chronic drug administration 

leads to sustained increases in CRF release [66, 67] and CRF immunoreactivity [68]. 

Furthermore, withdrawal from drugs of abuse leads to persistent activation of CRF release 

and immunoreactivity [68–73]. Further, CRF antagonists block many withdrawal-mediated 

anxiety-like and addictive behaviors [74]. As CRF administration enhances stress related 

behaviors such as acoustic startle, conditioned fear and stress-induced freezing behavior [75, 

76], the increase in activation of stress systems following chronic drug use provides a 

mechanism by which addiction leads to a dysregulation of stress responding in addicts.

This dysregulation of CRF activity impacts a number of downstream targets. For example, 

chronic cocaine leads to an increase in excitatory signaling within the bed nucleus of the 

stria terminalis and this increase is dependent upon CRF activation [77]. Another 

downstream target of CRF that has been implicated in addiction is dynorphin and the kappa 

opioid system [78]. The kappa opioid system has been demonstrated to be critically involved 

in the ability of stress to initiate drug relapse as well as withdrawal-induced increases in 

stress responsivity [79–83].

Clinical Studies of Substance Use and Stress Responsivity

The high rates of comorbidity in SUD and PTSD diagnoses clearly suggest that there is a 

relationship between substance use and stress. As we have discussed, much of the work 

examining this relationship has focused on the influence of chronic stress and trauma 

exposure on the likelihood of an individual becoming an addict [35, 84]. However, the 

relationship between stress and addiction does not end there. Along with increasing the 

vulnerability to developing SUD, stress exposure also triggers relapse in abstaining addicts 

[85]. Furthermore, abstinence from drugs of abuse can lead to increased anxiety [86], 

making addicts even more vulnerable to the effects of stress. Therefore, understanding how 

addicts respond to stress, and how this differs from non-addicts, could provide us with 

valuable information for the development of therapeutics for SUD as well as comorbid 

PTSD.
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The link between stress and relapse may be due, in part, to the ability of stress to activate the 

HPA axis. Baseline activity of the HPA axis, specifically levels of plasma 

adrenocorticotropic hormone (ACTH) and cortisol, is increased in individuals with SUD 

compared to healthy controls [87–89]. When presented with stressful stimuli, heroin addicts 

exhibit higher levels of cortisol (both saliva and serum levels) as well as ACTH [90]. These 

increases in stress-induced cortisol seem to persist after longer periods of abstinence [91]. 

Furthermore, acute administration of the stress hormone, cortisol, leads to increased cocaine 

craving in addicted individuals compared to a placebo injection [92].

Activation of the HPA axis is often accompanied by noradrenergic activation of the 

sympathetic nervous system, including increases in heart rate and blood pressure. Heroin 

and cocaine addicts both exhibit an increase in plasma levels of norepinephrine that parallels 

their duration of use [93]. A similar increase in plasma norepinephrine is seen in recently 

abstinent alcoholics compared to healthy controls in response to a yohimbine challenge [94] 

(which increases norepinephrine release by blocking alpha-2 adrenergic receptors [95]). As 

expected, these changes in noradrenergic signaling are paralleled by changes in 

cardiovascular measures of stress reactivity. When exposed to stress, male cocaine addicts 

exhibit greater increase in heart rate and blood pressure compared to controls [96]. Even 

further, increases in noradrenergic signaling, induced by a yohimbine challenge lead to 

increased craving in alcoholics [97].

Along with these physiological differences in the response to stress, there appear to also be 

behavioral differences in the stress reactivity of individuals with SUD. For example, when 

presented with fearful faces, heroin addicts report higher levels of anxiety compared to 

healthy controls [90]. Additionally, when given a yohimbine challenge, heroin addicts 

reported higher levels of subjective anxiety than healthy controls [98]. The severity of drug 

use may contribute to an addict’s response to stress. When high frequency cocaine abusers 

are presented with stressful stimuli they exhibit higher levels of craving and anxiety than low 

frequency abusers. Additionally, the high frequency abusers exhibit higher increases in heart 

rate and blood pressure in response to these stressful stimuli [99].

In contrast to what is seen with other abusive substances, smokers exhibit a blunted 

cardiovascular and decreased salivary cortisol levels in response to stress [100]. However, 

this decrease in stress reactivity may reverse during withdrawal, with former smokers 

exhibiting higher responses to stress than healthy controls [101, 102].

This brings up the important consideration of withdrawal state when examining the clinical 

literature. During acute withdrawal, addicts exhibit an increase in anxiety [103, 104]. 

Accompanying this behavioral response is an increase in CRF and this dysregulation can 

persist after longer periods of abstinence [105–108]. For example, during acute withdrawal, 

heroin addicts exhibit an increased stress-potentiated acoustic startle response, accompanied 

by an increase in circulating cortisol [109]. Similar increases in acoustic startle have been 

seen in alcoholics during acute withdrawal [110]. However, after more prolonged periods of 

abstinence, cocaine addicts exhibit decreased acoustic startle compared with healthy 

controls, suggesting a dampened stress response [111]. Additionally, stimulant dependent 

individuals exhibit decreased cortisol response to a stressful situation, as do alcoholics after 
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longer periods of abstinence [94, 112, 113]. However, when marijuana dependence is added 

to the equation, the results are quite different. In a sample of treatment seeking individuals 

dependent upon cocaine and alcohol, those who were also marijuana dependent showed an 

increase in basal anxiety as well as stress-induced cortisol and ACTH compared to those 

who were not marijuana dependent as well as healthy controls [114]. Despite these 

decreases in peripheral markers of stress reactivity seen in alcoholics, post mortem 

microarray analysis of their brains reveal an upregulation of gene expression of genes that 

have been associated with stress signaling, suggesting that the dampened physiological 

response to stress may not reflect a decrease in the activity of brain stress systems [115].

As these studies were done in postmortem tissue, it is not possible to examine how substance 

use affects the ability of acute stress to activate stress-related genes in humans. Therefore, 

we must look to preclinical studies to determine how chronic drug administration affects the 

brain’s response to stress. A focus of many of these animal studies has been the role of CRF 

in addiction and the response to stress after drug administration.

Preclinical studies of drug administration and stress responsivity

Preclinical studies in animal models of drug administration and addiction allow us to more 

directly examine how drugs of abuse modulate stress response, both behaviorally and 

physiologically. Furthermore, clinical studies do not allow for the examination of causality 

for a variety of reasons. As we know, chronic early life stress can predispose individuals 

towards addiction and chronic stress can alter future responses to stress, making it difficult 

to determine how drug administration affects stress response in human addicts. Additionally, 

many drug addicts are also alcoholics or polydrug users, making it difficult to determine 

which drugs of abuse might be causing the differences in stress responsivity. Therefore, 

focusing on the HPA axis and brain CRF systems, we will discuss how individual drugs of 

abuse alter stress responses in animal models.

Stimulants

Effect on HPA axis—Acute stimulant administration activates the HPA axis, leading to 

increases in corticosterone (CORT) and ACTH [116, 117]. Furthermore, chronic stimulant 

exposure can lead to increased basal HPA activity as seen with the increased basal CORT 

and ACTH levels following binge cocaine administration [117, 118]. Stimulant 

administration also leads to an increase in the ability of stress to elicit HPA activation. For 

example, repeated experimenter-administered amphetamine administration led to augmented 

CORT and ACTH release following a restraint stress [119]. Similar increases in restraint-

induced CORT are seen following cocaine self-administration [120]. Binge cocaine exposure 

during adolescence leads to exaggerated CORT responses to the elevated plus maze and 

forced swim stress [121, 122]. Although stimulants do not cause a typical withdrawal 

syndrome, there are changes in the HPA axis that occur during stimulant withdrawal. For 

example, animals exhibit decreased ACTH and CORT responses to amphetamine challenge 

when withdrawn 28 days from chronic amphetamine [123]. However, there appears to be an 

enhanced ability for stress to activate the system during withdrawal, as evidenced by 
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increases in restraint-induced CORT following acute withdrawal from chronic cocaine 

administration [124].

Behavioral alterations—These alterations in HPA response to stress seen following 

stimulant administration are accompanied by alterations in behavioral stress reactivity. For 

example, acute cocaine administration leads to an increase in acoustic startle response in 

rhesus monkeys [125]. It is difficult to examine stress responsivity following stimulant 

administration because many behavioral paradigms are confounded by stimulant-induced 

increases in locomotor activity [126]. However, there is evidence from a runway model that 

acute cocaine administration induces anxiety-like behavior [127]. The majority of work 

examining anxiety-like behavior and stress responses following stimulant exposure has 

focused on the withdrawal period. Withdrawal from chronic cocaine leads to enhanced 

responsivity to forced swim stress and increased anxiety-like behavior within the elevated 

plus maze and defensive burying test [128–130]. This enhanced responsivity to stress may 

last well beyond the initial withdrawal period, as rats exhibit an increase in immobility in the 

forced swim test after 12 days of withdrawal from repeated cocaine administration [131].

Neurobiological underpinnings—The increases in anxiety seen during stimulant 

administration and withdrawal from stimulants are likely influenced by alterations in CRF 

signaling. Acute cocaine stimulates hypothalamic CRF release [132]. Furthermore, the 

ability of acute cocaine to increase anxiety-like behavior is attenuated by administration of 

CRF antagonists in the ventral tegmental area [133]. However, this increase in release 

undergoes habituation with chronic cocaine administration. During a prolonged cocaine self-

administration session, CRF release decreases by ~25% in central amygdala [70]. However, 

this decrease is reversed during withdrawal, when there is an increase in both CRF release 

and immunoreactivity [70, 134]. Furthermore, levels of CRFR1 are increased in the anterior 

pituitary following two weeks of withdrawal from binge cocaine administration [117].

Additionally, there is evidence that this augmentation of CRF signaling following chronic 

stimulant use has functional consequences. For example, chronic cocaine administration 

leads to an increase in the ability of CRF to potentiate glutamate release and excitatory 

transmission within ventral tegmental area dopamine neurons [135, 136], thus demonstrating 

a mechanism by which stress may promote drug seeking. Additionally, chronic cocaine 

leads to a CRF-mediated increase in synaptic strength in the amygdala [137, 138], providing 

a mechanism by which cocaine could alter anxiety and stress reactivity. In fact, mice with a 

CRF receptor type 2 (CRFR2) deficiency do not exhibit stress-induced memory deficits seen 

during cocaine withdrawal, suggesting that downregulating the CRF system could decrease 

cocaine-induced increases in stress responsivity [139].

Opiates

Effect on HPA axis—Heroin and other opiate agonists have a complex interaction with 

the HPA axis, as acute exposure in naïve animals results in elevated levels of CORT and 

ACTH, while animals that have received chronic administration and withdrawal show 

decreased CORT and ACTH in response to a heroin challenge [140, 141]. This may be due, 

in part, to the increases in basal ACTH and CORT seen following chronic opiate 

Fosnocht and Briand Page 7

Physiol Behav. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administration and acute withdrawal [140, 142]. These increases in CORT have been seen as 

early as two hours after cessation of chronic opiate administration, but seem to disappear 

after long periods of abstinence [143]. Along with these alterations in basal and drug-

induced HPA responses, opiates also affect the HPA response to stress. Chronic morphine 

increases the ACTH and CORT response to a mild novelty stress in juveniles [144]. During 

acute withdrawal (12hr), animals exhibit a heightened CORT and ACTH response to 

restraint stress [142].

Behavioral alterations—These alterations in the physiological responses to stress are 

paralleled by behavioral alterations following opiate administration. Despite the ability of 

acute opiates to activate the HPA axis, acute opiate administration can lead to decreased 

anxiety-like behavior in the elevated plus maze following restraint stress as well as 

decreased fear potentiated startle responses [145–147]. In contrast, chronic morphine leads 

to increased response to forced swim stress and tail suspension stress during both short 

(24hr) and long (1 week) withdrawal periods [143, 148]. These increases in stress 

responsivity seem to persist through even more prolonged periods of withdrawal as animals 

show augmented responses to tail suspension and forced swim stress after 4 weeks of 

withdrawal [143, 149].

Neurobiological underpinnings—These behavioral and physiological responses to 

opiates are accompanied by regionally specific alterations in brain stress systems. Within the 

hypothalamus, acute morphine triggers the release of CRF [141, 150, 151]. However, this 

release is attenuated in animals that have received chronic morphine [141]. Within the 

BNST, chronic morphine leads to a decrease in transport of CRF to the cell membrane, 

suggesting decreased CRF release [152]. However, this potential decrease in synaptic CRF 

may be countered by an engagement of more individual neurons, as chronic morphine 

increases activation of CRF+ cells with the BNST [153]. Within the central nucleus of the 

amygdala, chronic morphine upregulates CRF mRNA and increases the ability of morphine 

to activate CRF+ cells [153, 154]. Within the dorsal raphe the morphine-induced alterations 

in the CRF system occur at the receptor level. After chronic morphine exposure there is a 

decrease in CRFR1 mRNA within the dorsal raphe during both acute (3hr) and prolonged 

(7d) withdrawal [155]. In contrast, increases in CRFR2 mRNA were seen in the raphe 

during prolonged withdrawal [155]. Taken together, it is clear that opiates alter the CRF 

system in a profound way but these regional alterations may mediate different aspects of 

stress responsivity and withdrawal.

Alcohol

Effect on HPA axis—Acute alcohol administration has been clearly shown to activate the 

HPA axis in both humans and laboratory animals [65, 156]. However, work in laboratory 

animals has allowed us to determine that this increase in ACTH secretion is mediated 

through activation of CRF, as inhibiting CRF blocks this effect [65]. Furthermore, chronic 

alcohol administration has been shown to lead to alterations in the HPA axis. For example, 

binge-like alcohol administration leads to an increase in basal plasma CORT levels [157]. 

However, alcohol dependence seen after self-administration leads to a relative dampening in 

alcohol-evoked CORT and ACTH, suggesting a habituation in these animals [158].
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Behavioral alterations—Despite this attenuated HPA response to alcohol following 

chronic alcohol use, behavioral and physiological responses to stress are sensitized. For 

example, chronic alcohol exposure leads to a sensitization of the stress response to a forced 

swim stress [159, 160]. Furthermore, there is a correlation between animals that exhibit 

higher behavioral reactivity to stress and those that self-administer more alcohol [161]. 

However, alcohol administration may dampen the response to stress in alcohol dependent 

animals, as seen in fear potentiated startle paradigms [162]. The anxiogenic effects of 

alcohol withdrawal may in part, mediate this effect. During withdrawal from ethanol, 

animals exhibit an increased responsiveness to external stimuli, as shown by an increased 

acoustic startle response [163]. Animals exhibit other signs of anxiety-like behavior during 

withdrawal as well, such as decreased open arm exploration in the elevated plus maze and 

decreased social interaction [164–166].

Neurobiological underpinnings—These increases in anxiety-like behavior may be due 

to alterations in the CRF system. Alcohol withdrawal leads to an increase in extracellular 

CRF release within the central amygdala [167–169] and the BNST [170]. This increase in 

CRF activity within the BNST is normalized by alcohol administration [170], paralleling the 

behavior on fear potentiated startle [162]. Along with these baseline alterations in signaling 

seen following alcohol administration, there is also an effect of chronic alcohol on neuronal 

responses to stress. When exposed to a forced swim stress, animals with a history of chronic 

alcohol intake exhibit increased neuronal activation, as indicated by increased c-Fos 

immunoreactivity, within the central nucleus of the amygdala [159]. Double-labeling 

revealed that this increase in stress-induced activation following chronic alcohol is mediated 

by CRF-positive cells [159], suggesting that stress engages the CRF system more following 

chronic alcohol. This is consistent with data demonstrating an increase in CRFR1 mRNA 

following chronic alcohol use and may be due, in part, to a decrease in basal CRF release 

[158, 171]. Taken together this would suggest an increased signal to noise in the CRF 

system that could be the cause of the increased stress reactivity seen in alcoholics. In support 

of this, neuropeptide Y (NPY) activity is decreased following binge alcohol drinking and 

NPY activation within the extended amygdala leads to an inhibition of CRF neurons [172].

Nicotine

Effect on HPA axis—Acute nicotine leads to an activation of the HPA axis, as evidenced 

by a dose-dependent increase in ACTH and CORT [173–175]. Furthermore, nicotine can 

enhance the ability of stress to activate the HPA axis, leading to a further increase in stress-

induced CORT and epinephrine [176]. Chronic nicotine also has the ability to augment 

stress-induced HPA activation. Following nicotine self-administration, rats exhibit a greater 

increase in ACTH and CORT following a mild stressor [177, 178]. Additionally, nicotine 

self-administration augments stress-induced activation of the paraventricular nucleus, a 

central player in the HPA axis [179].

Behavioral alterations—These nicotine-induced changes in HPA activity are 

accompanied by changes in behavior. Acute nicotine leads to enhanced anxiety-like behavior 

in the elevated zero maze, particularly in adult females and adolescent males [73]. However, 

there is also evidence that nicotine can decrease stress responsivity in the forced swim test 
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and marble-burying test [180, 181]. Similarly, chronic nicotine can decrease the behavioral 

response to a forced swim stress as well as stress response to novelty [180, 182, 183]. In 

contrast, withdrawal from nicotine can also lead to increased anxiety-like behavior as well as 

enhanced stress responsivity. For example, after 1 day of withdrawal from chronic nicotine, 

mice exhibit higher levels of anxiety-like behavior in the novelty-induced hypophasia test 

[184]. Similar effects are also seen in the elevated plus maze and forced swim test, with 

animals exhibiting augmented responses to these stressors [185–188]. These withdrawal 

induced increases in anxiety-like behavior and stress responsivity are persistent; animals 

withdrawn from nicotine exhibit an augmented response to swim stress after 30 days of 

withdrawal [189].

Neurobiological underpinnings—As seen with other drugs of abuse, the behavioral 

effects of nicotine on stress may be mediated by changes within the brain CRF system. 

Chronic nicotine self-administration leads to a basal decrease in the number of CRF positive 

cells as well as a decrease in CRF mRNA within the paraventricular nucleus [179]. 

However, withdrawal from nicotine leads to an increase in CRF immunoreactivity and CRF 

mRNA within the amygdala [72, 74]. This increase in CRF mRNA is also seen within the 

nucleus accumbens during nicotine withdrawal [73]. Furthermore, CRFR1 antagonists blunt 

nicotine withdrawal-induced anxiety-like behavior and dysphoria [74, 190]. This suggests 

that while chronic nicotine may lead to a decrease in HPA activity, brain CRF systems 

remain sensitized. This sensitization of the CRF system is likely responsible for the changes 

in stress reactivity and normalizing these differences could provide therapeutic relief [191].

Marijuana

Effect on HPA axis—Systemic injections of delta(9)-tetrahydrocannabinol (THC, the 

main psychoactive component of marijuana) do not alter HPA activity on its own and 

subchronic THC seems to decrease HPA activity [192]. This may be due, in part, to 

peripheral effects, as centrally administered THC (intracerebroventricular injections) leads 

to a marked increase in plasma ACTH and CORT at multiple doses [193]. Along with these 

changes in basal HPA activity, it seems clear that higher doses of THC can potentiate the 

ability of stressors to activate the HPA axis. For example, THC and/or other CB1 agonists 

can potentiate CORT release in response to forced swim stress [194], restraint stress [195] 

and footshock stress [196]. Chronic THC has also been shown to potentiate the CORT 

response to restraint stress [197].

Behavioral alterations—Similar to the dose dependent effects of cannabinoids on HPA 

activity, the behavioral effects of THC can be both anxiolytic and anxiogenic. There is 

evidence that low doses of THC and other CB1 receptor agonists can reduce anxiety-like 

behavior and stress responsivity [198–200], while higher doses of the drug have the opposite 

effect [201–204]. High doses of a CB1 agonist lead to increased anxiety-like behavior in the 

elevated plus maze [205]. Additionally, acute administration of a highly potent cannabinoid 

agonist led to an increased stress response in a defensive burying task [64]. Similarly, 

systemic injections or direct infusion of THC into the amygdala increases anxiety in the 

elevated plus maze [203, 206]. Further, acute THC potentiates the behavioral response to 

forced swim stress and systemic administration of a CB1 agonist also increases the ability of 
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chronic stress exposure to potentiate anxiety-like behavioral responses [194, 202]. Although 

there is much less work examining the effects of chronic THC exposure, there is evidence 

that it too can lead to increased anxiety. For example, chronic cannabinoid administration 

leads to greater anxiety-like behavior in the open field test and the light-dark test [197, 207].

Neurobiological underpinnings—Just as with other drugs of abuse, both acute and 

chronic THC leads to alterations in brain CRF systems that may help explain the behavioral 

effects. Acute administration of the endogenous cannabinoid agonist anandamide leads to 

increased hypothalamic CRF release [208]. Chronic THC treatment leads to a decrease in 

CRF mRNA in the central amygdala [205], while increasing CRF mRNA in the 

hypothalamus [209]. However, during withdrawal from chronic cannabinoid administration, 

an increase in CRF mRNA and CRF release is seen within the amygdala [71, 205]. These 

withdrawal-induced changes in the CRF system may explain the increased reactivity to 

stressors seen after chronic THC use. In support of this, increases in behavioral response to 

stress seen following cannabinoid agonist administration are blocked by a CRF receptor 

antagonist [64].

Development of Novel Drug Therapies

The large body of literature suggesting the involvement of the CRF system in addiction has 

led researchers to examine the possibility of targeting this dysregulated stress system in the 

development of therapeutics. In support of this, small molecule CRFR1 antagonists can 

reduce alcohol withdrawal induced increases in anxiety without altering anxiety in non-

dependent controls [169, 210–213]. Similarly, anxiogenic withdrawal responses from 

cocaine, nicotine, cannabinoids, and opiates have been reversed by CRFR1 antagonists [71, 

74, 214–218]. This has led to the examination of small molecular CRF antagonists for the 

treatment of addiction and alcoholism. However, to date, the studies examining these 

compounds have not yielded promising results. A recent examination of pexacerfont, an 

orally available and brain-penetrant CRFR1 antagonist, for the treatment of alcoholics found 

no evidence for therapeutic efficacy. The treatment group failed to exhibit a decrease in 

craving or subjective distress responses [219]. However, CRFR1 antagonists with different 

receptor kinetics have yielded promising results for the treatment of depression [220], so it is 

possible that more drug development is needed to find a compound that will be effective. 

However, these compounds have been developed to affect brain CRF activity without 

affecting the HPA axis to aid in their therapeutic safety. Therefore, the sympathetic response 

to stress remains increased in these alcoholics. It is possible that for a therapy to be effective 

it must dampen both brain and sympathetic responses to stress.

Interestingly, recent studies suggest that manipulating the HPA axis could be a more 

effective treatment option. Within a small sample of addicts, Walter et al. [221] found that 

cortisol administration led to a decrease in craving within low dose heroin addicts while not 

affecting heavier users. Additionally, clonidine, which decreases noradrenergic activity 

through presynaptic activation of alpha-2 receptors [222], is currently used in the treatment 

of opiate withdrawal [223], further supporting an idea that peripheral stress responsivity may 

be critically involved in addictive behaviors. The use of another antihypertensive drug, 

prazosin, which decreases noradrenergic activity via inhibition of postsynaptic alpha-1 
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receptors, may be effective in reducing stress reactivity in alcoholics. Whereas four weeks of 

placebo treatment caused an increase in stress and cue-elicited alcohol craving and anxiety, 

this was not seen in individuals treated with prazosin [224]. Further, the blunted cortisol 

response to stress seen in the placebo group was not seen in the prazosin group suggesting 

this drug was able to normalize HPA axis activity. As such, a clinical trial is currently 

underway to test the efficacy of prazosin in patients with comorbid PTSD and SUD 

(NCT007440055; clinical trials.gov).

It is also possible that the failure of CRFR1 antagonists in clinical trials is because other 

stress-related neurotransmitters play a more critical role in addictive phenotypes. One such 

neurotransmitter is substance P, which binds preferentially to the neurokinin 1 receptor 

(NK1R). A small trial in recently detoxified alcoholics demonstrated that an NK1R 

antagonist blunted spontaneous craving as well as stress and cue-elicited craving [225]. 

These decreases in craving were accompanied by a decrease in cortisol, further supporting 

the idea that therapeutics that also act on the peripheral HPA axis may be more effective.

Conclusion

These studies clearly demonstrate that drugs of abuse and alcohol alter the stress response, 

behaviorally, neurochemically, and physiologically. These changes may be linked to the 

CRF system, however clinical trials of CRF antagonists have not been effective. Although 

preclinical data suggest that dampening the CRF system should decrease craving and 

relapse, it is clear that there are differences in basal tone that have to be considered as well 

as stimulus-evoked responses of the system. Furthermore, there seem to be differences 

between how drugs of abuse affect the central and peripheral CRF systems and any current 

therapeutics are hitting both of these systems equally. Perhaps most importantly, it is clear 

that although there are similarities in how different drugs of abuse affect the CRF system, 

the alterations are not identical. The majority of drug addicts use more than one drug, 

including alcohol and nicotine and therefore more work into how different drug 

combinations might affect the system are needed. More research into the interplay between 

these systems and the development of more targeted therapies is necessary to best treat the 

alterations in the stress system that occur following drug addiction.
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Highlights

• Drugs of abuse and alcohol alter behavioral & physiological responses 

to stress

• Drug use leads to altered CRF response to stress

• CRF antagonists have not been effective in treating SUD

• Therapies targeting both central and peripheral stress responses may be 

more effective
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Fig. 1. 
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