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A ‘metagenome’ is the theoretical collection of
genomes from all members of a given microbial
community, and a ‘metagenomic data set’ is the
subset captured in a given sequencing event.
Although these terms are often used interchangeably
and metagenomic data sets are regularly called
metagenomes by synecdoche, their relationship is
analogous to sample and population in statistics.
The fraction of the metagenome represented in the
metagenomic data set, termed coverage (not to be
confused with the repetition of features, termed
sequencing depth), is of key importance in assessing
statistical significance of features sampled (taxa,
genes and so on). However, quantitative computa-
tional methods to assess the level of coverage are
limited, a problem we have recently attempted to
solve. In extreme cases, where small data sets
are used to characterize complex communities,
misleading inferences can arise. For instance,
random variation can be frequently mistaken for
real differences in comparisons of metagenomic data
sets with extreme differences in coverage. Further,
insufficient coverage also reduces the detection
limits and statistical power of the comparisons,
hiding real, ecologically relevant trends and
differences (Figure 1). We demonstrate here how
available solutions can determine the level of
sequencing coverage obtained by metagenomic data
sets and thus, guide their robust analysis and
comparison.

One widely used qualitative method to estimate
coverage is a rarefaction curve, sometimes also
called a collector or complexity curve. This method
relies on the observation that the curve of rarefied
counts of any feature (for example, operational
taxonomic units, named species, predicted genes,
functional categories or even short motifs) should
plateau if the sample is close to saturation. Use of
rarefaction curves in microbial community studies
was popularized by tools such as mothur
(Schloss et al., 2009) and recently extended to
include accurate projections at higher sequencing
efforts by preseq (Daley and Smith, 2013), which
allows the estimation of coverage across features
(arithmetic mean). However, this technique and

others like it typically rely on a high-quality
assembly, comprehensive reference data sets or
both, which are often unavailable for complex or
poorly characterized communities (with the prob-
able exception of ribosomal RNA (rRNA) genes).
Moreover, the preseq projection is optimized for
single-species data sets and, therefore, does not
scale for mixtures of species, making it insufficient
for accurate estimations with complex metagenomic
data sets. Without accurate projections, rarefaction
curves can only be used to determine whether
a data set is close to saturation, a useful but
insufficient assessment of coverage. Performing this
task with rRNA genes is also problematic; largely
because their high sequence conservation frequently
masks important levels of genetic and ecological
differentiation among closely related organisms
(Caro-Quintero and Konstantinidis, 2012).

Another approach is to estimate the coverage of
one or a few target species in the metagenomic data
set using simple statistical approaches such as the
Lander–Waterman expressions (Lander and
Waterman, 1988), while ignoring the remaining
genomes of the community. Such methods are
useful in studies targeting specific species in a
community in order, for instance, to recover com-
plete genomes. The main drawbacks of this
approach include a lack of implemented software
and the requirement of reliable estimates for genome
size and abundance of the target species, which
often poorly represent the community as a whole.
No matter how limiting this approach may appear, it
can be applied to many available metagenomic data
sets, is based on robust statistical frameworks
(Wendl et al., 2012) and the interpretation of
coverage is straightforward: breadth of the genome
covered by sequencing reads.

Finally, genome-wide approaches that capitalize
on community modeling and/or modeling of contig
sequencing depth have been proposed (for example,
Hooper et al., 2010; Stanhope, 2010). Such
approaches are independent of comprehensive
reference databases, which broadens their applic-
ability, but depend on assumed abundance (and
genome size) distributions and high-quality assem-
blies. Moreover, no software has been available to
facilitate their application to real metagenomes.

We recently presented Nonpareil (Rodriguez-R
and Konstantinidis, 2013) as an alternative approach.
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Nonpareil examines redundancy among the indivi-
dual reads of a whole-genome shotgun metagenomic
data set to quantitatively assess the abundance-
weighted average coverage of the data set (for
example, Figure 1). Therefore, Nonpareil is inde-
pendent of assembly, reference databases or abun-
dance distribution models, and allows for direct
comparisons between data sets and with other
quantitative metrics. Furthermore, it projects the
average coverage at larger sequencing efforts,
providing an estimate of the amount of sequencing

required to reach any given coverage and means
to quickly rank diversity in metagenomic data
sets before assembly or taxonomic classification
(Figure 2). Finally, Nonpareil uses empirical cutoffs
to determine redundant reads, which represent well
the area of genetic discontinuity frequently observed
among the sequence-discrete populations that
typify natural microbial communities based on
previous metagenomic surveys (Caro-Quintero and
Konstantinidis, 2012). Accordingly, Nonpareil does
not distinguish between subpopulations. It is
important to note, however, that Nonpareil esti-
mates are based on the organisms recovered in a
metagenomic data set, that is, they represent
abundance-weighted values, analogous to how
metagenomic data sets preferentially represent the
abundant organisms in a sample. Thus, in cases
where the goal is to characterize all members of the
community, or rare members preferentially, and
most of these members are not represented in the
metagenomic data set due to very high species
richness and/or relatively low sequencing effort,
Nonpareil estimates may be limited, and should
be complemented with genome- or marker-based
estimations.

Using Nonpareil, we were able to directly com-
pare the abundance-weighted average coverage of
subsampled data sets with frequent analyses in
microbial ecology studies. Fewer genes were identi-
fied as differentially abundant between data sets
with lower coverage at a nearly log-linear rate
(Figure 1, main panel), and both the significance
and power of the statistical test decreased in these
cases. The sensitivity of the tests rapidly declined as
coverage decreased, while the specificity experi-
enced a dramatic drop when comparing data sets
with extremely different coverage, indicating a high
rate of false positives (Figure 1, smaller panels). In
general, we have observed that data sets with
average coverage above 60% perform better in terms
of assembly and detection of differentially abundant
genes (see also Rodriguez-R and Konstantinidis,
2013), and comparisons of data sets with extreme
differences in coverage (for example, 4twofold)
should be avoided.

Here, we advocated for the estimation of the
average coverage obtained in metagenomic studies,
and briefly presented the advantages of different
approaches. Figure 2 shows how coverage is not
simply a function of data set size (often the only
indication to coverage in metagenomic studies), but
largely depends on the complexity of the commu-
nities sampled. Figure 1 shows that quantitative
estimations of coverage can serve as a basis for the
adjustment of statistical tests, applicable to most, if
not all, metagenomics studies. We recommend using
at least one of the above-mentioned tools to estimate
coverage (directly or indirectly) when analyzing
metagenomic data sets, taking into consideration
the objectives of the study and the nature of the
data sets.
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Figure 1 Effect of average coverage on detection of differentially
abundant features. The abundance of nonredundant genes
(assembled and clustered at 98% amino-acid identity) detected
in the metagenomes of Lake Lanier (Atlanta, GA, USA; Sequence
Read Archive Projects SRP028408, SRP005437-9; abundance
estimates were based on read-mapping at 95% nucleotide
identity) was compared between three summer and two winter
samples, at different levels of subsampling (0.01–50% of the total
data set) and the coverage was computed using Nonpareil
(coverage axes). The main panel (bottom-left) shows the number
of detected genes, represented by the color of the circles (see
legend). The values between subsamples were estimated using
bicubic interpolation. Note that the detection of genes is more
strongly affected by the coverage in summer data sets owing to
lower gene richness in the winter data sets. The additional panels
correspond to the comparisons of the subsamples against the
complete (not subsampled) data sets, which showed 64% and
75% coverage for winter and summer, respectively. The compar-
ison between complete winter and summer data sets (top-right
circle in main panel) was used as a reference for the definition of
true/false positives (TP/FP) and true/false negatives (TN/FN).
Sensitivity was defined as TP/(TPþFN), specificity as TN/(FPþ
TN) and accuracy of the test as (TPþTN)/(TPþTNþFNþFN).
Sensitivity, specificity and accuracy were interpolated using
cubic splines with smoothing parameter 0.6. Differential abun-
dance was defined as adjusted P-value p0.1 in the negative
binomial test implemented in DESeq (Anders and Huber, 2010).
Note that sensitivity drops rapidly when coverage of any (or both)
of the collections of data sets decreases, while specificity is
typically high, except at extreme differences in coverage. In
general, the accuracy was compromised (o90%) in data sets with
4twofold difference of coverage.
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Figure 2 Comparison of diversity and coverage in available metagenomic data sets using Nonpareil curves. The abundance-weighted
average coverage is presented as a function of sequencing effort in the form of Nonpareil curves (Rodriguez-R and Konstantinidis, 2013)
for selected available metagenomic data sets. Note that more diverse communities require larger sequencing efforts to achieve the same
level of coverage, hence located rightward in the plot. Four samples of the Human Microbiome Project are shown that represent
communities in the human microbiome of varying diversity, all of which are less diverse than selected environmental samples. Soil
(Tibet soil and Peru tropical forest) and marine (Baltic sea, 21 m depth) samples are the most diverse among those selected. The Sequence
Read Archive identifier of each sample is provided within squared brackets, except for the Peru tropical forest sample obtained from
Fierer et al. (2012).
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