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Abstract

Introduction—Protein-protein interaction and signaling crosstalk contribute to the regulation of 

pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular 

function.

Area covered—This review covers key historic discoveries and recent advances in our 

understanding of the broad function of PXR and CAR and their regulation by protein-protein 

interaction and signaling crosstalk.

Expert opinion—PXR and CAR were first discovered as xenobiotic receptors. However, it is 

clear that PXR and CAR perform a much broader range of cellular functions through protein-

protein interaction and signaling crosstalk, which typically mutually affect the function of all the 

partners involved. Future research on PXR and CAR should, therefore, look beyond their 

xenobiotic function.
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1. Introduction

The liver plays a major role in the homeostasis of endogenous compounds (endobiotics) 

such as fatty acids, steroids, leukotrienes, prostaglandins, bile acids, biogenic amines, and 

fat-soluble vitamins, as well as in the metabolism of xenobiotics such as therapeutic drugs 

and an immense array of environmental contaminants. The liver has mechanisms to induce 

hepatic enzymes and transporters, leading to the detoxification and elimination of foreign or 

xenobiotic chemicals. Cytochrome P450s (CYPs) and specific transferases, i.e., xenobiotic 

metabolizing enzymes, as well as drug transporters, are induced by the aforementioned 
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compounds. Thus, CYPs, transferases, and transporters are important in maintaining steady-

state levels of many compounds involved in diverse cellular processes, and they facilitate the 

excretion of xenobiotics. Acting as master xenobiotic-regulated transcription factors are the 

nuclear receptors (NRs) pregnane X receptor (PXR; NR1I2) and constitutive androstane 

receptor (CAR; NR1I3), which form complexes with retinoid X receptor (RXR). They 

regulate the induction of their target genes, such as CYP genes, by binding to the xenobiotic- 

and phenobarbital (PB)-responsive enhancer modules XREM and PBREM in response to 

compounds that are either specific to each receptor or shared by both receptors [1–8].

PXR and CAR are members of the NR superfamily, which includes the steroid, retinoid, and 

thyroid hormone receptors. Members of this family function as ligand-activated transcription 

factors and play critical roles in nearly every aspect of development and adult physiology. 

The family members share a common domain structure that includes a highly conserved 

DNA binding domain (DBD) with two zinc fingers. By means of this DBD, the receptor 

targets short stretches of DNA, termed response elements, in the regulatory regions of target 

genes. The carboxy-terminal region of the nuclear receptors includes the conserved ligand-

binding domain (LBD). The LBD serves as the docking site for ligands and also contains 

dimerization motifs and transcriptional activation domains, such as the activation function 2 

(AF-2) helix. The binding of a ligand to the LBD results in a conformational change in the 

AF-2 helix, and this change allows the nuclear receptor to interact with accessory proteins 

and regulate the expression of target genes (reviewed in references [9, 10]).

PXR was originally identified as a xenobiotic sensor that is highly expressed in the liver, 

intestine, and colon. This identification was an important step toward understanding the 

body’s xenobiotic defense mechanism. PXR is involved in drug metabolism, bile acid 

transport, cancer, cholesterol metabolism, and inflammation [3, 11–14]. PXR is similar to 

other NRs in its structure; however, in structural studies, Watkins et al. demonstrated that 

PXR has a larger and more flexible ligand-binding pocket than do other NRs; this accounts 

for the promiscuity of PXR with respect to a wide spectrum of structurally diverse ligands 

[15]. It is noteworthy that PXR has species ligand specificity. For instance, rifampicin is a 

potent human PXR (hPXR) activator, whereas pregnenolone-16α-carbonitrile (PCN) is a 

rodent-specific PXR agonist. Upon ligand binding, PXR forms a heterodimer with RXR and 

binds to xenobiotic responsive elements in the promoters of its target genes. PXR also 

undergoes a conformational change that facilitates cofactor recruitment to modulate the 

transcription of its target genes (reviewed in references [16, 17]). In recent years, PXR has 

been implicated as an endobiotic sensor that regulates energy homeostasis (reviewed in 

reference [18]), in physiologic processes such as cell proliferation and apoptosis [19, 20], 

and in pathophysiologic processes such as inflammatory bowel disease, tumor development 

and drug resistance [21–24].

CAR, like PXR, was initially identified as a xenobiotic nuclear receptor that shows enriched 

expression in the liver and mediates the hepatic detoxification of foreign chemicals [4, 25]. 

CAR is unique in its constitutive activity; its AF-2 is constantly fixed in an active 

conformation because of the presence in its structure of a very stable helix H11 [26]. 

Interaction with agonists further enhances the activity of the receptor. CAR is mainly 

regulated by interaction with cofactors, post-translational modifications such as 
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phosphorylation and acetylation, and the mechanism that regulates its subcellular 

localization (reviewed in reference [27]). Microarray analysis has shown that CAR not only 

induces drug-metabolizing genes but also regulates the expression of genes involved in 

glucose and lipid metabolism, as well as those genes responsible for hepatocyte proliferation 

[7, 28, 29].

Considerable efforts have been made to understand the regulation of PXR and CAR mainly 

by their cognate ligands; however, additional regulatory mechanisms modulate these 

receptors. One such mechanism is the interaction with other proteins and the crosstalk with 

different signaling pathways. This review highlights the recent progress in our understanding 

of the molecular mechanisms regulating PXR and CAR activity. We focus on signaling 

crosstalk and protein-protein interactions that affect PXR- and CAR-mediated signaling.

2. Regulation of PXR through protein-protein interaction and signaling 

crosstalk

2.1 SMRT

SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) is a nuclear 

protein that interacts with transcriptional regulators, including nuclear receptors, by means 

of two receptor-interacting domains, ID-1 and ID-2, which contain extended L/I-X-X-I/V-I 

corepressor motifs [30, 31]. Johnson et al. demonstrated that PXR interacts with SMRT and, 

more importantly, that the C-terminal domain of PXR is essential for interaction between 

PXR and the ID-2 domain of SMRT in vitro [32]. This finding was corroborated by 

structural studies showing that the PXR LBD specifically binds the SMRT ID-2 [33]. 

Rifampicin (RIF), a potent PXR agonist, disrupted PXR-SMRT interaction in the 

micromolar to millimolar range in vitro and in a yeast two-hybrid system, suggesting that 

SMRT preferentially interacts with unliganded PXR. It is noteworthy that disruption by RIF 

is specific for PXR-SMRT interaction. Furthermore, PXR-SMRT interaction was confirmed 

in mammalian cells, because PXR colocalized with SMRT in a distinct punctate distribution 

in nuclei [32]. The same study established the significance of PXR-SMRT interaction as a 

mechanism for repressing PXR transcriptional activity [32] Interestingly, PXR-SMRT 

interaction might also be responsible for PXR repressing the activation of the CYP24A1 
promoter by vitamin D3 [34].

2.2 Protein kinase A

Forskolin, a purified extract from the herb Coleus forskohlii, is able to increase cAMP 

levels, thereby activating protein kinase A (PKA); however, forskolin induces CYP3A 

expression in rat hepatocytes independent of cAMP [35]. Ding and Staudinger showed that 

forskolin can function as an agonist for PXR and facilitate PXR-PKA interaction [36]. In in 
vitro kinase assays performed using a catalytically active purified PKA and purified human 

GST-PXR fusion proteins, both the DBD and LBD of PXR were phosphorylated by PKA 

[36]. Mouse PXR (mPXR) was similarly phosphorylated by PKA in vitro. In addition, the 

activation of PKA signaling with 8-Br-cAMP increases the strength of the mPXR-

coactivator protein-protein interaction in cell-based assays. Activation of the PKA signaling 

pathway also potentiates the induction of CYP3A by PXR agonists in cultured mouse 
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hepatocytes. These data suggest that phosphorylation of PXR by PKA plays a key role in 

regulating the induction of CYP3A gene expression in mouse hepatocytes, in part through 

modulating PXR–protein cofactor interaction [36]. It is important to note that the effects of 

PXR-PKA interaction and the crosstalk of the PXR and PKA pathways are species-specific: 

PXR and PKA were synergistic in mouse hepatocytes, whereas their interaction repressed 

PXR transcriptional activity in rat and human hepatocytes [37]. These results indicate that 

PKA signaling has an important effect on the induction of PXR target-gene expression 

through the phosphorylation of PXR.

2.3 Protein kinase C

Protein kinase C (PKC) is a key component of the cytokine signaling pathway in the liver. 

After cytokines are released, PKC represses CYP gene expression in the liver [38–40]. PXR 

was shown to be transcriptionally repressed after PKC signaling was activated by phorbol 

12-myristate 13-acetate (PMA) in cell-based reporter gene assays and in cultured mouse 

hepatocytes, whereas the PKC-inactive phorbol ester 4a-phorbol 12-myristate 13-acetate 

(4a-PMA) had no effect on PXR transcriptional activity [41]. Interestingly, in primary 

hepatocytes treated with okadaic acid (a PP1/PP2A inhibitor), ligand-dependent PXR 

activity was completely abolished. Mammalian two-hybrid analysis revealed that treatment 

with PMA increased the strength of the interaction between PXR and the nuclear receptor 

corepressor (NCoR) and also inhibited ligand-dependent interaction between PXR and 

steroid receptor coactivator 1(SRC-1), whereas treatment with the PKC-inactive phorbol 

ester 4α-PMA had no similar effects [41]. These findings suggest that, through activating 

the PKC signaling pathway, the phosphorylation status of PXR or PXR interaction with 

cofactors is altered and that this modulation of PXR-cofactor interaction ultimately regulates 

PXR transcriptional activity. Sugatani and colleagues performed mutagenesis studies of 

Thr57, Ser180, Ser192, Ser208, Ser230, Ser274, Thr290, Ser305, Ser350, and Thr408 of 

PXR on the basis of a report by Lichti-Kaiser et al.[42] and computer predictions of 

consensus kinase sites. Sugatani et al. showed that phosphomimetic mutations at Thr57, 

Thr290, Ser350, and Thr408 of PXR strongly attenuated RIF-induced UGT1A1 expression, 

and they speculated that Thr290 might be the site for PKA and PKC phosphorylation of 

PXR [43].

2.4 S6K

The Group-Based Phosphorylation Scoring Method (GPS) predicted Thr57 on PXR to be 

the target for ribosomal protein S6 kinase (S6K). In an in vitro kinase assay, the 

reconstituted complexes of the purified 70-kDa form of S6K (p70 S6K) directly 

phosphorylated purified hPXR and conferred negative regulation of both basal and RIF-

induced PXR transcriptional activity [44]. To further implicate Thr57 in PXR function, the 

same group performed mutation studies in which Thr57 was mutated to Asp (PXR T57D) in 

order to mimic phosphorylation. They observed that PXR T57D colocalized with the 

corepressor SMRT, but interestingly, knockdown of SMRT did not rescue the impaired 

function of PXR T57D, suggesting that SMRT is not involved in the PXR loss of function 

caused by the phosphomimetic mutation [44]. Furthermore, Thr57 mutation of PXR did not 

affect the interaction of PXR with SRC-1 [44]. These results suggest that Thr57 of PXR may 

not be involved in cofactor recruitment. Upon further investigation, the same group 
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discovered that Thr57 of PXR is important for the binding of PXR to the promoters of target 

genes, highlighting another level of PXR regulation by phosphorylation [44].

2.5 PRMT1

The protein arginine methyltransferases PRMT1, PRMT2, and PRMT4 (CARM1) have been 

described as nuclear receptor coactivators [45–48]. These enzymes can methylate histones 

[45, 47], suggesting nucleosome remodeling as a possible mechanism for their action. 

Histone methylation could cooperate with other types of histone modification by 

coactivators, including acetylation and phosphorylation, suggesting that large multi-subunit 

enzyme complexes containing multiple histone- and non–histone-modifying activities work 

concomitantly with other chromatin-remodeling machinery to regulate gene transcription 

(reviewed in reference [49]). In a coimmunoprecipitation assay in a HepG2 cell line and 

transgenic mouse liver tissues, PRMT1 was identified as a major histone methyltransferase 

that specifically associated with PXR, and PXR activation was found to be important for the 

association. The interaction of PRMT1 with PXR was further supported by a mammalian 

two-hybrid assay [50], suggesting that the association may be direct. The LBD of PXR was 

mapped as the interactive domain of PXR that is responsible for its association with PRMT1 

[50]. Interestingly, by using mouse embryonic stem cells and a HepG2 cell line, the authors 

showed that PXR requires PRMT1 for full transcriptional activity [50]. Furthermore, the 

PXR-PRMT1 interaction was also shown to be important for PRMT1 subcellular 

localization, which may affect the activity of PRMT1 [50]. Recently, Li et al. demonstrated 

that the PXR-mediated overexpression of multidrug resistant gene 1 (MDR1) regulated 

PRMT1 in breast cancer cells [51]. Altogether, these data indicate that the direct interaction 

of PXR and PRMT1 plays a role in recruiting PRMT1 to the promoters of PXR target genes, 

where it regulates transcription by methylating chromatin. PRMT1 may directly modify 

PXR through methylation, hence altering its transcriptional activity. These are, however, 

conjectures that require further investigation.

2.6 SRC-1, RIP140, SUG1, GRIP1, and PBP

SRC-1 was originally discovered as an agonist-specific protein that stimulated steroid 

receptor transcriptional activity [52]. In an in vitro binding assay, SRC-1 directly bound 

progesterone receptor (PR) and augmented the transcriptional activity of PR, estrogen 

receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), and RXR in 

response to their cognate ligands [52], hence the namesteroid receptor coactivator 1. 

Multiple coactivators interact with steroid receptors in a ligand-dependent manner, including 

RIP140 [53] and the human homolog of yeast SUG1 called TRIP1 [54]. Masuyama et al. 
[55] showed that PXR interacted with SRC-1 and RIP140 in a ligand-dependent manner, an 

observation similar to that reported for steroid receptors. In addition, they demonstrated that 

endocrine-disrupting compounds—phthalic acid and nonylphenol—enhanced the interaction 

between PXR and SRC-1 or RIP140 and PXR transcriptional activity, suggesting that 

phthalic acid and nonylphenol enhanced PXR-mediated transcription through the interaction 

of PXR with the coactivators. In other studies, the mycoestrogen zearalenone, forskolin, and 

1,9-dideoxyforskolin decreased the interaction between PXR and the corepressor protein 

NCoR while enhancing the interaction between PXR and SRC-1 in cells [36, 56]. 

Surprisingly, however, phthalic acid and nonylphenol did not affect the interaction between 
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PXR and SUG1, an interaction that was enhanced by progesterone [55]. An alternate 

concept of PXR interaction with cofactors was suggested by Navaratnarajah and colleagues 

showing that in in vitro assays, RIF did not alter the thermodynamic and kinetics of PXR-

LBD interaction with peptide fragments of SRC-1 or SMRT [57]. This concept shows 

uniqueness in PXR interactions with coregulators; however, the results of a similar study 

differs in a cellular context in which many more factors are involved [32]. Together these 

findings suggest that different ligands may confer different conformational changes on PXR, 

thereby selecting for distinct cofactors or combinations thereof, depending on the 

physiologic conditions.

Zearalenone, a known ER agonist, was shown to activate human PXR selectively, as 

compared to mouse PXR. To determine the molecular basis of PXR activation by 

zearalenone, Ding et al., used a mammalian two-hybrid system to demonstrate that, in 

response to zearalenone, PXR dissociated from the corepressor NCoR and recruited the 

coactivators SRC-1, PPAR- binding protein (PBP), and glucocorticoid receptor–interacting 

protein 1 (GRIP1, also known as SRC-2) [56]. Another study showed that forskolin and 1,9-

dideoxyforskolin also enhanced the interaction between PXR and PBP [36].

2.7 SREBP1

Sterol regulatory element–binding proteins (SREBPs) are transcription factors of the basic 

helix-loop-helix-leucine zipper (bHLH-zip) family that play major roles in the synthesis of 

cholesterol and triglyceride. The bHLH-zip of SREBPs is located in the N-terminal region, 

with which it binds DNA, and the C-terminal region performs the important regulatory 

functions. The SREBP family has three members, namely SREBP1a, SREBP1c, and 

SREBP2. SREBP1a and SREBP1c, which are transcriptional variants, mainly regulate 

triglyceride and fatty acid synthesis, whereas SREBP2 regulates cholesterol biosynthesis 

(reviewed in references [58, 59]). The activation or overexpression of SREBP1 in primary 

human hepatocytes greatly repressed drug-mediated induction of CYP genes by PXR and 

CAR. SREBP1 was recruited to the promoter of PXR or CAR target genes, but did not bind 

the promoter elements. The molecular mechanism of this inhibitory crosstalk was delineated 

by GST pull-down assays that showed a direct protein-protein interaction between purified 

GST-tagged SREBP1 and in vitro–translated PXR or CAR [60]. The interaction of PXR or 

CAR with SREBP1a was significantly stronger than the interaction with SREBP1c [60]. 

Furthermore, a cofactor recruitment assay showed that PXR-SREBP1 interaction interferes 

with SRC-1 recruitment to PXR or CAR, thereby decreasing transcriptional activity.

2.8 PGC-1α

The peroxisome proliferator–activated receptor 1 (PGC-1) family of coactivators has three 

members, namely PGC-1α, PGC-1β, and PRC (PGC-1–related coactivator). Even though 

PGC-1s have no intrinsic histone acetyltransferase (HAT) activity, they recruit coactivators 

that possess HAT activity, such as SRC-1, p300, and TRAP/DRIP (a complex of the thyroid 

hormone receptor [TRAP] and the vitamin D3 receptor [DRIP]). PGC-1s are ubiquitously 

expressed in various tissues, including heart, muscle, liver, brain, and kidney, where they 

play important roles in glucose, lipid, and energy metabolism. PGC-1 coactivators are highly 

versatile and are able to interact with many different transcription factors and, notably, with 
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PXR and CAR, thereby activating distinct biological activities in a variety of tissues 

(reviewed in references [61–63]). Among the coactivators that affect xenobiotic signaling 

pathways, PGC-1α plays a critical role. In a coimmunoprecipitation assay, PXR was 

associated with PGC-1 in mouse liver nuclear extract, and an in vitro binding assay showed 

the interaction to be direct [64]. The PXR–PGC-1 interaction was modulated by ligand, 

because RIF enhanced the association of the two proteins in HepG2 and COS-1 cells, as 

shown by coimmunoprecipitation and subcellular colocalization, respectively. Further 

analysis using the truncated form of PXR demonstrated that the LBD of PXR interacted with 

PGC-1 [64]. The interaction of PXR with PGC-1 enhanced PXR transcriptional activity, 

which was attenuated by HNF-4. This suggests that PGC-1 is a common cofactor for PXR 

and HNF-4 and that competitive recruitment of the coactivator results in the mutual 

antagonism of PXR and HNF-4 [64].

2.9 TLR

Maintaining the integrity of the intestinal mucosal lining is important to prevent intestinal 

injury and maintain the gut barrier function. It is now clear that, despite the usual insults to 

the intestinal lumen, microbes, food, and metabolites regulate the gut barrier function 

through immune recognition (reviewed in reference [65]). It has become apparent that 

intestinal epithelial barrier dysfunction is associated with a number of diseases, including 

inflammatory bowel disease, intestinal ischemia, graft-versus-host disease, Crohn disease, 

ulcerative colitis, and celiac disease [66–73]. Recently, PXR was shown to be a mediator in 

maintaining gut barrier integrity. Indole 3-propionic acid (IPA), an indole metabolite that is 

exclusively produced by gut microflora [74], was shown to be a possible physiologic ligand 

for PXR that downregulated the inflammatory response cytokine TNFα while upregulating 

cell-cell junctional complex markers such as occludin, ZO-1, E-cadherin, and claudin-7 in 

the mouse small intestine. Claudin-2, a known inducer of barrier defects, remained 

unchanged in this study. This observation was supported by transmission electron 

microscopy of NR1I2−/− mouse intestinal epithelial cells, which showed the microvilli to be 

shorter and more loosely packed than those of the corresponding cells of NR1I2+/+ mice 

[75]. Interestingly, kinases downstream of the Toll-like receptor (TLR) pathways were 

activated in NR1I2−/− mice, suggesting that crosstalk in the TLR and PXR pathways 

regulates gut barrier function. Through inhibition studies in mouse enterocytes and mouse 

knockout studies, TLR2 and TLR4 were identified as being important in maintaining the 

intestinal barrier; however, TLR4 was demonstrated to be essential for maintaining barrier 

integrity [75]. These studies implicate PXR as a physiologic regulator of TLR-mediated 

control of intestinal barrier function. Interestingly, Shah and colleagues implicated CAR in 

the TLR2 pathway in the lipoteichoic acid–dependent downregulation of drug-metabolizing 

enzymes and drug transporters [76]. In another recent study, Ghose et al. showed that the 

activation of human CYP3A4 promoter by RIF and the activation of the mouse Cyp3a11 
gene in response to paclitaxel were significantly attenuated by TNFα and LPS, respectively 

[77]. Thus, these findings indicate that there is important crosstalk between PXR and CAR-

mediated signaling in inflammatory responses, and TLRs in xenobiotic responses.
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2.10 p53

When cells are exposed to genotoxic stress, their DNA can be damaged. The damaged DNA 

is then repaired or the cells undergo apoptosis. The well-known tumor suppressor p53 has 

critical functions in carcinogenesis, particularly in regulating apoptosis. Interestingly, p53 

interacts with PXR, and this interaction exerts an inhibitory effect on PXR transcriptional 

activity. The DBD and AF-2 domains of PXR are critical for PXR interaction with p53 [78]. 

To further test the effect of p53 on PXR activity, a p53 mutant carrying a point mutation at 

amino acid 175 (R175H) in its DBD was used to show that p53 R175H and PXR interacted; 

however, there was no inhibitory effect on PXR-regulated CYP3A4 promoter activity [78]. 

In the colon cancer cell lines LS180 and HCT116 and in normal mouse colon epithelium, 

PXR inhibited deoxycholic acid (DCA)-induced apoptosis while downregulating p53, 

together with another proapoptotic gene, Bcl2-antagonist/killer 1 (BAK1) [79]. Robbins and 

colleagues recently showed that the expression of PXR reduced p53-mediated 

transactivation by decreasing the recruitment of p53 to the promoters of its target genes in 

colon cancer cell lines expressing wild-type PXR [80]. Interestingly, in the HT29 colon 

cancer cell line, which carries a p53 mutation, PXR overexpression did not alter the p53 

protein level but led to increased expression of CDKN1A (encoding p21), a downstream 

target of p53, which contributed to G0/G1 cell cycle arrest and the suppression of cancer cell 

proliferation [81]. In another study, Verma and colleagues showed that the activation of PXR 

in the breast cancer cell lines MCF-7 and ZR-75-1 induced cell cycle arrest and apoptosis by 

inducing the expression of p53 and the p53 target genes CDKN1A, BAX, and BBC3 
(encoding PUMA) [82]. In breast cancer models, one proposed mechanism of PXR-

mediated apoptosis is p53 stabilization in response to cellular stress, because PXR agonists 

increased iNOS mRNA levels in MCF-7 and ZR-75-1 cells [82]. This was consistent with 

earlier reports that p53 could be activated or stabilized in response to DNA damage or 

cellular stress, such as that caused by an accumulation of reactive oxygen species or reactive 

nitrogen species (RNS) in cells. Additionally, RNS-stabilized p53 upregulates both p21 and 

BAX expression [83, 84]. Therefore, the cellular effect resulting from the interaction of PXR 

with p53 may be dictated by the status of the p53 (i.e., wild-type vs. mutated) and the 

cellular and tissue context (i.e., colon vs. breast cancer). As pointed out by Robbins and 

colleagues in a recent editorial [85], the mutual inhibitory effect of PXR-p53 interaction 

suggests a tumor-suppressive function of p53 and an oncogenic function of PXR. Whereas 

p53 increases cancer cell death in response to chemotherapy by inducing apoptosis and 

inhibiting PXR to decrease drug metabolism and enhance drug efficacy, PXR contributes to 

drug resistance by enhancing drug metabolism to decrease drug efficacy and inhibiting p53 

to decrease apoptosis. Because both PXR and p53 can be regulated by many xenobiotics, the 

complex regulation of PXR-p53 interaction warrants further investigation.

2.11 Interleukin-6 and NF-κB

The interest in the role of PXR in the immune response emanated from the 

immunosuppressive role of RIF, which has been observed in many clinical treatments since 

the 1970s [86]. The pro-inflammatory cytokine interleukin 6 (IL-6) was shown to 

specifically inhibit RIF- and PB-mediated induction of the CYP2B6, CYP2C8/9, and 

CYP3A4 genes. This was due to the IL-6–dependent repression of PXR and CAR mRNA 

levels. Surprisingly, the promoter activities of the receptors were not affected by IL-6, as 
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demonstrated in reporter assays [87]. This finding was later corroborated by another study 

showing that PXR was required for IL-6–dependent repression of CYP3A4 in human 

hepatocytes [88]. The regulation of PXR in the inflammatory response was further addressed 

when mutual inhibitory crosstalk between the PXR and NF-κB signaling pathways was 

reported [14, 89–91]. Treatment with RIF was shown to repress NF-κB–targeted pro-

inflammatory genes, such as IκBα, cox-2, TNFα, ICAM-1, and those encoding several 

interleukins. RIF also inhibited p65 and NF-κB activities in a dose-dependent manner. 

Furthermore, in the same study, increased inflammation was observed in the small bowel of 

PXR-null mice [91]. Conversely, NF-κB activation by LPS and TNFα plays an important 

role in CYP3A4 downregulation [89, 91] which is dependent on NF-κB interaction with the 

heterodimer of PXR and RXR [89]. p65 was observed to interact directly with the RXR 

DBD and interfered with PXR-RXR dimerization on PXR response-element (ER6) 

consensus sequences in the CYP3A4 promoter. The p65-RXR interaction thereby inhibited 

PXR-regulated gene expression [89]. These findings explain the clinically observed mutual 

suppression of xenobiotic metabolism and the immune response. The crosstalk between NF-

κB, IL-6, and PXR represents an important nexus between the inflammatory response and 

drug metabolism.

2.12 FoxO1

Forkhead box protein O1 (FoxO1) is a forkhead transcription factor that plays important 

roles in regulating gluconeogenesis by insulin signaling. It directly binds to the insulin 

response sequence (IRS) to regulate some gluconeogenic genes, such as PEPCK1and 

glucose-6-phosphate (G6P), in the absence of insulin. In response to insulin, FoxO1 is 

phosphorylated and inactivated through the phosphatidylinositol 3-kinase (PI3K)-Akt 

pathway [92]. It was found that FoxO1 crosstalks with CAR- and PXR-related drug 

metabolism. FoxO1 was shown to directly bind to CAR and PXR in a ligand-dependent 

manner to enhance CAR- and PXR-mediated expression of CYP3A [93]. Interestingly, this 

interaction was also repressively regulated by the insulin-PI3K-Akt pathway. In contrast, 

CAR and PXR can repress FoxO1-IRS activity, thus disrupting gluconeogenesis [93]. 

Glucose-6-phosphatase (G6Pase) is a critical enzyme in glucose metabolism. It was 

demonstrated that not only FoxO1 [93] but also hepatocyte nuclear factor 4 (HNF4) and 

CRE (cAMP response element)-binding protein (CREB) have binding motifs in the 

promoter region of the G6Pase gene. PXR strongly repressed HNF4-activated G6Pase 
promoter activity in a RIF-dependent manner [94]. GST pull-down revealed that PXR 

directly binds to the CREB DBD, consequently decreasing CREB binding to the G6Pase 
promoter region and repressing the transcriptional activity of CREB, and thus downregulates 

gluconeogenesis [94].

The PXR-CREB interaction–dependent repression of gluconeogenesis may not be dominant 

in human cells. Other studies showed that, in a human liver cancer cell line, RIF-activated 

PXR increased the expression of G6pase, concomitant with an increase in the level of 

serum- and glucocorticoid-regulated kinase 2 (SGK2) mRNA [95, 96]. These studies 

demonstrated that PXR binds to two PXR response elements in the SGK2 promoter region 

when treated with RIF. Knockdown experiments revealed that SGK2 is required for the 

PXR-mediated expression of G6Pase and PEPCK1 and that PXR is also required for SGK2-
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dependent G6Pase expression in response to RIF [96]. Further studies revealed that the 

dephosphorylation of SGK2 at Thr193 by PP2Cα in response to statin increased the 

recruitment of PXR and RXRα to the G6pase promoter, thereby increasing the level of 

G6Pase mRNA [95]. Although SGK2 is important in gluconeogenesis, PXR is required for 

transcriptional regulation of G6Pase.

The crosstalk between PXR and another member of the FoxO family, FoxO3, was reported 

to stimulate hepatocyte proliferation. PXR activation by PCNinhibits FoxO3-mediated 

transcriptional regulation of cell-cycle suppressor genes such as Rbl2, thus promoting 

hepatocyte proliferation [97]. On the other hand, overexpressed FoxO3 inhibits the PXR-

mediated enhancement of hepatocyte proliferation [97]. The regulation of hepatocyte 

proliferation by PXR has previously been reviewed by Pondugula et al. [98].

2.13 HNF4α and SHP

Several cofactors are involved in PXR-mediated transcriptional regulation. Hepatocyte 

nuclear factor 4-alpha (HNF4α) plays a vital role in liver development and in the regulation 

of bile acid synthesis, lipid homeostasis, and xenobiotic responses. Although HNF4α 
harbors a motif for binding to the CYP3A4 promoter, it can activate the CYP3A4 promoter 

without binding to it. HNF4α induces PXR expression in fetal liver and synergistically 

enhances PXR-induced CYP3A4 [99]. A GST pull-down assay showed that RIF treatment 

enhanced the binding between PXR and HNF4α; however, this interaction was disrupted by 

the small heterodimer partner (SHP, NR1I0) [100]. SHP is the functional partner of 

farnesoid X receptor (FXR) that regulates bile acid and lipid homeostasis. SHP functions as 

a corepressor binding partner of FXR or PXR, resulting in the downregulation of CYP3A4 
[100]. The interaction between PXR and SHP is ligand dependent, as it was enhanced by 

RIF treatment. Interestingly, a GST pull-down assay showed that HNF4α and SHP 

competed for interaction with PXR. A ChIP assay demonstrated that SHP did not block the 

binding of PXR to HNF4α but affected PXR recruitment of HNF4α to the CYP3A4 
promoter [14].

The transcriptional regulation of CYP3A5, a member of the CYP3A subfamily, is also 

controlled by PXR and CAR [101]. Recently, CYP3A5 was shown to mediate resistance to 

tyrosine kinase inhibitors (erlotinib and dasatinib) and paclitaxel in all subtypes of 

pancreatic ductal adenocarcinoma (PDAC) [102]. By using an siRNA knockdown assay, 

Noll et al. showed that the basal expression of CYP3A5 was controlled by HNF4α; however, 

the drug-induced upregulation was regulated by PXR. Therefore, knockdown of both 

HNF4α and PXR maximally sensitized exocrine-like pancreatic adenocarcinoma to drug 

treatment [102]. CYP3A5 was shown to have a minor role in normal physiology [103], and 

together with the recent finding, this makes CYP3A5 an attractive target for overcoming 

basal and acquired drug resistance in PDAC. Because both HNF4α and PXR regulate 

CYP3A5 expression, interfering with these regulatory mechanisms may provide a plausible 

approach to suppressing the CYP3A5 pathway.
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2.14 UBR5, DYRK2, and Hsp90β

By using siRNA-based screening and mass spectrometry analysis, Ong and colleagues found 

that UBR5 and dual-specificity tyrosine-phosphorylation–regulated kinase 2 (DYRK2) 

interact with and negatively regulate hPXR stability and, subsequently, CYP3A4 promoter 

activity [104]. DYRK2 phosphorylates hPXR and facilitates hPXR ubiquitination by UBR5 

[104]. In addition to ubiquitination, PXR stabilization was also regulated by the chaperone 

protein heat-shock protein 90β (Hsp90β) [105]. RIF-activated casein kinase 2 (CK2) was 

shown to phosphorylate Hsp90β at serine 225 and serine 254. The phosphorylation of 

Hsp90β increased its interaction with PXR and promoted PXR stabilization, consequently 

increasing the expression of MDR1—an essential mediator of multidrug resistance [105].

2.15 CDK2

The phosphorylation status of PXR fine-tunes its activities in response to various stimuli 

[37, 106]. By screening a library of known bioactive compounds for small-molecule hPXR 

activators, Lin and colleagues identified two CDK inhibitors, kenpaullone and roscovitine, 

that strongly activated the hPXR signaling pathway but only weakly bound to hPXR. 

Consistent with this observation, this group showed that the activation of CDK2 led to the 

abrogation of hPXR transcriptional activity. Furthermore, CDK2 was shown to directly 

phosphorylate hPXR in an in vitro kinase assay. By using phosphomimetic hPXR constructs, 

Ser350 was demonstrated to be a putative CDK phosphorylation site [107]. Interestingly, 

however, the repressive effect of CDK on PXR was counteracted by the protein phosphatase 

type 2C isoform beta long (PP2Cβl) [108]. These findings suggest a link between cell cycle 

regulation and PXR signaling and highlight the importance of considering the cell cycle 

status when analyzing PXR activity and CYP expression.

2.16 p300 and SIRT1

Recently and for the first time, acetylation of PXR was shown to regulate PXR 

transcriptional activity. PXR was show to be acetylated in its unstimulated state, and 

deacetylated in response to RIF [109]. In a genome-wide profiling of PXR regulated genes 

in response to RIF, Smith et al. discovered that p300 was recruited with PXR to putative 

regulatory elements upon RIF stimulation [110]; furthermore, Pasquel and colleagues 

uncovered the relevance of PXR-p300 association and showed that PXR is directly 

acetylated by p300 on lysine 109, by using LC-MS/MS analysis in vitro and performing 

confirmatory studies in cells [109]. The authors went on to demonstrate that PXR 

deacetylation was mediated partly by SIRT1 resulting in activation of PXR’s lipogenic 

functions in a ligand-independent manner [109]. A SUMO-acetyl “switch” model was 

recently suggested by Cui et al. for PXR transcriptional regulation wherein acetylation was a 

prerequisite for SUMOylation of PXR. PXR was shown to differentially associate with 

HDAC-SMRT corepressor complex, and was transcriptionally repressed following 

acetylation and SUMOylation. The repressive effect was independent of interaction with 

HDAC-SMRT complex, but depended directly on the SUMO-modification. Furthermore, 

acetylation was shown to regulate the subcellular localization of PXR [111]. These recent 

findings underscore the interconnectedness between SUMOylation and acetylation in post-

translationally regulating PXR activity.
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3. Regulation of CAR through protein-protein interaction and signaling 

crosstalk

3.1 Hsp90, PP2A, ERK1/2, and RACK1

As a well-characterized indirect activator of CAR, PB is able to induce nuclear accumulation 

and transcriptional activation of CAR in CYP genes by binding to the PBREM in their 

promoters [2, 112]. In normal mouse liver cells, CAR binds to Hsp90 and resides in the 

cytoplasm, and PB treatment results in the recruitment of protein phosphatase 2A (PP2A) to 

CAR-Hsp90 complex, leading to the dephosphorylation and nuclear translocation of CAR 

[113].

Coimmunoprecipitation using an antibody that specifically recognizes phospho-ERK 

confirmed the interaction between active extracellular signal–regulated kinase (ERK) 1/2 

and T38D CAR phosphomimetic mutant. Kabayashi et al. described that CAR complexes 

with CCRP and Hsp90 to accumulate in the cytoplasm [114]. T38D CAR was shown to 

retain primarily in the cytoplasm; however, T38A CAR mimicking the dephosphorylation of 

Thr38 on CAR redistributes into the nucleus and has greater basal and induced 

transcriptional activity [115, 116]. Presumably, the phosphorylation of thr38 on CAR is 

essential for its interaction with CCRP and Hsp90, thus regulates the cytoplasmic 

localization of CAR. On the other hand, the C-terminal xenobiotic response signal (XRS) 

peptide of CAR is responsible for its direct interaction with ERK1/2 and essential for its 

nuclear localization [115, 117]. As shown by Mutoh et al., PB competitively binds to EGFR 

and compromises the downstream activation of Src kinase, thereby enabling the interaction 

between the dephosphorylated receptor for activated C kinase 1 (RACK1) and Thr38-

phosphorylated CAR and the dephosphorylation of phosphorylated Thr-38 by PP2A [118]. 

Collectively, these observations suggested that the binding partners of CAR could modulate 

CAR activity by regulating the subcellular localization of CAR through modifying its 

phosphorylation status.

3.2 FoxO1

As discussed in section 2.12, FoxO1, a member of the family of Forkhead box transcription 

factors [119], broadly participates in cellular processes modulated by various growth factors 

[120–122]. FoxO1 could be phosphorylated by Akt through insulin stimulation, resulting in 

its transcriptional repression and nuclear exportation to downregulate the targeted 

glucogenetic genes [123, 124]. By means of yeast two-hybrid screening and a GST pull-

down assay, FoxO1 was identified as a direct binding partner of mouse CAR, which 

enhanced CYP2B6 transcriptionin the presence of 1,4-bis[2-(3,5-dichloropyridoxy)]benzene 

(TCPOBOP) [125, 126]. Conversely, mCAR functions as a suppressor of FoxO1 

transactivity on gluconeogenic genes such as G6Pase and PEPCK1 [93]. A study in mouse 

liver verified that, in correlation with increased cyclin D1, the level of p21, a cell cycle 

inhibitor, was downregulated in response to CAR activation by preventing FoxO1 from 

binding to its target promoters [127]. As CAR is an inhibitor of gluconeogenesis, 

lipogenesis, and fatty acid synthesis genes in the mouse via different mechanisms [7, 128, 

129], its interaction with FoxO1 provides more insight into how energy homeostasis is 

regulated by transcriptional factors in response to stimuli.
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3.3 PGC-1α

PGC-1α was initially identified as a coregulator of PPARγ in brown fat cells [130]. In 

addition to its roles in adipocyte differentiation, several studies have revealed that PGC-1α 
can also augment the expression of key enzymes on glucose uptake and gluconeogenesis in 

skeletal muscle and liver cells [131–133].

Shiraki et al. showed that PGC-1α enabled the ligand-independent transcriptional activation 

of CAR, which could be further enhanced by RXRα [134]. A GST pull-down assay 

demonstrated that the LXXLL motif and serine/arginine-rich domain (RS domain) in 

PGC-1α are direct binding regions for the CAR LBD. Notably, the RS domain is also 

required for CAR accumulation in nuclear speckles [134]. CAR can also induce the 

ubiquitination and degradation of PGC-1α through the recruitment of Cullin1 E3 ligase 

[135]. Interestingly, CAR crosstalks with HNF-4α in a functionally inhibitory manner by 

competitively binding to PGC-1α [136]. In addition, PGC-1α and FoxO1 are both glucagon 

sensors, and they could couple with each other to promote the expression of glycogenesis 

genes in human and mouse liver cells, which is blocked by insulin [137]. On the other hand, 

the activation of CAR improves glucose tolerance and enhances insulin sensitivity, thereby 

improving a diabetic condition [138]. Taken together, these results indicate that 

understanding the crosstalk between energy expenditure and drug metabolism might provide 

more avenues to explore in the search for therapies of metabolic diseases.

3.4 SRCs

The SRC family of p160 coactivators consists of SRC-1, SRC-2/GRIP1/TIF2, and SRC-3/

pCIP/ACTR/AIB1/RAC-3/TRAM-1 [139]. With their highly conserved LXXLL motifs, 

SRCs are capable of interacting with nuclear receptors in a ligand-dependent manner to 

enhance transcriptional activation [140]. Studies showed that the recruitment of SRC by 

CAR to trigger transactivation may be ligand-independent; however, the levels of SRC1 

recruitment are proportional to the liganded state of the CAR:RXR heterodimer [141, 142]. 

In rat hepatocytes and HepG2 cells, SRC-1 coactivates mCAR-induced cytochrome P450 

2B1 (Cyp2b1) expression, which can be further enhanced by transcription factor Sp1 [143].

By using GST pull-down, glucocorticoid receptor–interacting protein 1 (GRIP1) was 

identified as a direct partner of mCAR, and the interaction could be strengthened in the 

presence of RXR and TCPOBOP [144]. In addition to activating CAR-regulated genes, 

interaction with GRIP1 could also promote CAR nuclear accumulation in hepatocyte-based 

assays [144]. Furthermore, although the three SRCs possess overlapping roles in the 

activation and nuclear translocation of mCAR [145], SRC-3 has been identified as the 

preferred coactivator for mCAR functions, as demonstrated by GST pull-down and cell-

based reporter assays [146]. This finding was supported by an ex vivo model in which the 

proliferation and CAR-mediated induction of drug-metabolizing enzymes were repressed in 

cells isolated from SRC3−/− mice, even in the presence of an agonist [146].

3.5 SMRT, NCoR, DAX-1, and SHP

Among the cofactors that regulate nuclear receptor transcriptional activity is a group of 

corepressors, including SMRT and NCoR, that inhibit transcriptional activity [147, 148] by 
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coordinating with mSin3A/B and histone deacetylases [149–151]. A mammalian two-hybrid 

assay uncovered an androstanol-dependent interaction between mCAR and SMRT that could 

be effectively enhanced in the presence of RXR [152]. By using yeast two-hybrid and GST 

pull-down assays, NCoR was also shown to be a binding partner of mouse and human CAR. 

In addition, a series of mCAR and hCAR agonists and antagonists were shown to affect 

CAR transcription, which was concomitant with the binding affinity of CAR for coactivators 

or corepressors [153, 154].

DAX-1, an atypical DBD-deficient orphan nuclear receptor which has been characterized as 

a repressor for many nuclear receptors [155], was shown to require NCoR for its inhibitory 

roles [156]. Cell reporter and mammalian two-hybrid assays indicated that the activity of 

human CAR was abrogated in response DAX-1 expression. Coimmunoprecipitation and 

alpha-screen assays further confirmed direct interaction between CAR and DAX-1, and this 

interaction was enhanced by CITCO, an hCAR agonist [157, 158]. Another nuclear receptor 

SHP was initially identified as an interacting partner of mCAR by two-hybrid screening 

[159]. Similar to DAX-1, SHP also lacks the zinc finger DBD. GST pull-down and gel 

mobility shift assays demonstrated that SHP acts as a suppressor of CYP2B gene 

transcription without affecting DNA binding or GRIP1 recruitment of the CAR/RXR 

complex [160].

3.6 GADD45B

Growth arrest and DNA damage–inducible 45b (GADD45B) is a negative regulator of cell 

growth and apoptosis [161, 162] and its expression could be induced by TCPOBOP in a 

CAR-dependent manner in mouse liver [29]. GST-pull down and coimmunoprecipitation 

experiments have confirmed a direct interaction between CAR and GADD45B and MAPK 

kinase 7 (MKK7) [163]. Upon pre-stimulation with TCPOBOP and co-stimulation with 

actinomycin D and TNFα, CAR potentiates GADD45B to inhibit MKK7 from 

phosphorylating and activating Jun N-terminal kinase 1 (JNK1). This mechanism describes 

CAR’s function in suppressing mouse hepatocyte death [163]. These studies also provided a 

better understanding of the CAR-mediated tumorigenicity induced by agonists [163, 164].

4. Conclusion

We have discussed many of the interactions and pathways that control PXR and CAR 

activity, as summarized in Tables 1 and 2. The protein-protein interactions of these receptors 

regulate their localization in cells, recruitment of cofactors, stability, and binding to the 

promoters of their target genes. As summarized in Table 3, it is not surprising there is an 

overlap in the binding partners of PXR and CAR, which explains their similar regulation of 

a subset of genes. As we learn more about the roles of PXR and CAR in xenobiotic and 

endobiotic responses and their regulation thereof, it remains to be determined whether this 

knowledge can be harnessed in treating human diseases.

5. Expert opinion

The nuclear receptors PXR and CAR are key mediators of the xenobiotic response in the 

liver that is regulated by an array of ligands [3, 4, 15] and this discovery has biased the study 
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of PXR and CAR towards their xenobiotic functions. It is now clear that these nuclear 

receptors are versatile in their activity, as demonstrated by their involvement in energy 

homeostasis, through their effects on lipogenesis and gluconeogenesis, and in the immune 

response, through their effects on the NF-κB and TLR signaling pathways [75, 77, 137]. 

Many studies have been conducted in an attempt to understand the ligand-dependent 

regulation of PXR and CAR; however, it has become increasingly apparent that the 

regulation of these xenobiotic receptors is multifaceted. In addition to direct regulation by 

ligand binding, indirect regulatory mechanisms, including transcriptional, 

posttranscriptional, and posttranslational regulation, affect the levels or activities of these 

receptors [165]. Although there is no experimental evidence to support that endogenous 

PXR and CAR are phosphorylated in vivo, partly due to the low expression levels of the 

receptors in cell models frequently used, exogenous expression of the mutant proteins have 

teased out important residues required for their activity [107]. There are strong evidences 

that support that PXR and CAR are modulated to an extent by phosphorylation. It is also 

becoming evident that acetylation and SUMOylation play important roles in PXR activity 

[109, 111]. Furthermore, PXR and CAR activity is modulated by (1) interaction with other 

proteins, (2) crosstalking pathways that feed into PXR and CAR signaling, and (3) the 

subcellular localization of the receptors [32, 75, 77], all of which affect the overall 

responsiveness of the receptors to stimuli. The regulation of PXR and CAR is finely tuned, 

because the binding of ligand confers a conformational change on the receptors. The 

conformation assumed by the receptors dictates their interaction with cofactors and, hence, 

the transcriptional regulation of target genes. As most cofactors are involved in regulating 

multiple transcription factors, those that interact with PXR may recruit PXR to targets of 

other transcription factors and vice versa, thus giving rise to the PXR crosstalk in multiple 

pathways.

Our recently acquired understanding of PXR and CAR crosstalk with other signaling 

pathways has broadened the scope of xenobiotic receptor studies. This also means that more 

attention should be paid when designing agonists or antagonists of PXR and CAR because 

of the likelihood of adversely altering other interconnected pathways. Caution should also be 

exercised when interpreting data obtained from experiments involving PXR and CAR 

activation or inhibition: The observed effects may not necessarily be PXR or CAR 

dependent, and for this reason, more stringent controls should be included in experimental 

setups. With the recent observation of CYP3A5-mediated drug resistance in pancreatic 

cancer [102], one might wonder how CYP3A4 and CYP3A5 are differentially regulated by 

PXR and how such differential regulation might affect hepatic systemic drug metabolism 

and extra-hepatic tumor cell–autonomous drug metabolism and drug resistance. In addition, 

the contribution of HNF4α to regulating CYP3A4 and CYP3A5 expression suggests that a 

potentially more efficacious drug to prevent resistance would be one that simultaneously 

inhibited both HNF4α and PXR. Thus, many questions remain unanswered, and this is an 

area that warrants further investigation.

The upregulation of drug-metabolizing enzymes and transporters, mediated by PXR and 

CAR, affects the pharmacokinetics of drugs and other co-administered drugs, potentially 

resulting in drug-drug interactions. If the metabolites or the interactions of metabolites are 

toxic, this could result in liver injury [166]. Additionally, the immunosuppressive effects of 
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PXR and CAR activation have long being known [167, 168]; therefore, the activation of 

these xenobiotic receptors may affect the outcome of different therapies through the 

regulation of drug metabolism and the immune response in patients.

Lastly, in view of the recent discoveries regarding the complex network of factors that 

regulate PXR and CAR, it is clear that the full potential of these receptors as therapeutic 

targets has yet to be fully explored. We have discussed many of the metabolic circuits and 

proteins controlling PXR and CAR, and alterations in these pathways could have substantial 

physiologic consequences. The pharmacologic manipulation of these complex networks of 

factors may present novel therapeutic opportunities or improve the current drug therapies for 

numerous metabolic diseases, neoplasms, and immune disorders.

PXR and CAR were first discovered and recognized as master xenobiotic receptors, but it is 

clear that they have much broader cellular functions. Through protein-protein interactions 

and signaling crosstalk, the function of not only PXR and CAR but also their interacting or 

crosstalking partners can be modulated, and this needs to be fully investigated.
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Article highlights

1. PXR and CAR are well-recognized xenobiotic receptors.

2. PXR and CAR interact with other proteins.

3. PXR and CAR crosstalk with other signaling pathways.

4. Protein-protein interaction and signal crosstalk mutually affect the 

function of all partners involved.

5. Investigations of protein-protein interaction and signaling crosstalk 

reveal the broader cellular functions of PXR and CAR.
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Table 1

Representative regulators of PXR in protein-protein interactions and signaling crosstalk.

Proteins interacting
with PXR

Effect on PXR References Notes

PKA Enhances or represses
PXR transcriptional
activity

[36, 37] The effect of PKA on
PXR is species
specific

PKC Phosphorylates and
represses PXR
activity

[41]

P70 S6K Represses PXR
activity

[44]

PRMT1 Required for
maximum PXR
transcriptional activity

[50]

SRC1, RIP140,
SUG1, GRIP1, PBP

Enhances PXR
activity

[36, 55, 56]

p53 Inhibits PXR
transcriptional activity

[78]

HNF4α Synergizes with PXR
to upregulate PXR
target genes

[99, 102]

DYRK2, UBR5 DYRK2
phosphorylates PXR
and facilitates PXR
ubiquitination by
UBR5

[104]

CDK2 Phosphorylates and
represses PXR
transcriptional activity

[107]

p300 Acetylates and
potentiates RIF-
induced PXR
transcriptional activity

[109]

SIRT1 Deacetylates and
enhances ligand-
independent PXR
transcriptional activity

[109]
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Table 2

Representative regulators of CAR in protein-protein interactions and signaling crosstalk.

Proteins interacting
with CAR

Effect on CAR References Notes

PP2A Dephosphorylation
and nuclear
translocation of CAR

[113]

ERK1/2 Phosphorylation and
CAR cytoplasmic
retention

[115, 116]

RACK1 Recruits PP2A to
CAR to enhance
dephosphorylation
and nuclear
transportation

[118]

SRC2 and SRC3 Promote nuclear
accumulation

[144, 146] Interaction with
SRC2/3 was shown
with mCAR

NCoR and DAX-1 Repress
transcriptional activity

[153, 154, 157, 158]

GADD45B CAR potentiates the
antiapoptotic activity
of GADD45B

[163]
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Table 3

Representative regulators of both PXR and CAR in protein-protein interactions and signaling crosstalk.

Proteins interacting with
PXR and CAR

Effect on receptors References

SMRT Represses receptor
transcriptional activity

[32, 152]

SREBP1 Represses transcriptional
activity by inhibiting
coactivator recruitment

[60]

PGC-1α Enhances receptor activity [64, 136]

TLR Downregulates PXR- and
CAR-mediated drug
metabolizing enzymes

[76, 77]

IL-6 and NF-κB Downregulate PXR- and
CAR-mediated drug
metabolizing enzymes

[87, 89]

FoxO1 Upregulates receptor activity [93, 126]

SHP Enhances receptor activity [81, 159]

Hsp90 Stabilizes PXR and CAR [105, 113]
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