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Abstract

Purpose—High angular resolution diffusion imaging (HARDI) is a well-established method to 

help reveal the architecture of nerve bundles, but long scan times and geometric distortions 

inherent to echo planar imaging (EPI) have limited its integration into clinical protocols.

Methods—A fast imaging method is proposed here that combines Accelerated Multi-shot 

Diffusion Imaging (AMDI), Multiplexed Sensitivity Encoding (MUSE) and Crossing Fiber 

Angular Resolution of Intravoxel Structure (CFARI) to reduce spatial distortions and reduce total 

scan time. A multi-shot EPI sequence was used to improve geometrical fidelity as compared to a 

single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled 

reductions in scan time. The method is regularized and self-navigated for motion correction. Seven 

volunteers were scanned in this study, including four with volumetric whole brain acquisitions.

Results—The average similarity of microstructural orientations between under-sampled datasets 

and their fully sampled counterparts was above 85%, with scan times below 5 minutes for whole 

brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction 

was achieved.

Conclusion—The proposed imaging strategy can generate HARDI results with relatively good 

geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI 

from a successful research tool to a practical clinical one.
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Introduction

High angular resolution diffusion imaging (HARDI) has grown into a useful research tool 

for probing the complex microstructure of the nervous system and the architecture of white 

matter bundles (1,2). Integrating HARDI into clinical protocols might provide considerable 

added value, especially for neurosurgical planning and treatment monitoring (3,4). However, 

technical limitations such as long scan times and pronounced spatial distortions appear to 

have limited clinical adoption. The goal of the present work was to develop a HARDI 

implementation with reduced scan time and improve geometric fidelity to meet the demands 

of clinical environments.

The main characteristic of the HARDI scheme is the large number of diffusion encoding 

directions, typically hundreds, in sharp contrast with more basic schemes that may sample 

only a few. Because so many directions get probed, HARDI can help resolve fiber crossings, 

but requires relatively long scan times to do so. Strategies have been proposed to help reduce 

the number of directions and total scan time, such as utilizing spatial symmetries in the 

diffusion signal (5). Algorithms based on compressed sensing to exploit sparse features in 

the orientation distribution of white matter bundles have also been investigated. One such 

method, ‘Crossing Fiber Angular Resolution of Intravoxel Structure’ (CFARI), subsamples 

the data in the diffusion encoding space and identifies crossing fibers through an l1-norm 

regularization strategy similar to the recovery of compressed sensing data (6,7). An 

algorithm similar to CFARI was employed here to help reduce the number of sampled 

directions and total scan time.

Furthermore, HARDI is typically built upon the single-shot echo planar imaging (EPI) pulse 

sequence and for this reason proves vulnerable to geometric distortions in the presence of 

magnetic field inhomogeneities, especially at higher field strengths. Compared to single-shot 

EPI, multi-shot EPI can very much reduce distortion: k-space is divided into several 

interleaved segments acquired one at a time, increasing the sampling bandwidth in the blip-

encoded direction and decreasing distortion accordingly (8). On the other hand, multi-shot 

EPI requires a longer scan time to accomplish the sampling of the entire k-space and is more 

susceptible to motion. Methods such as parallel imaging have been proposed to accelerate 

segmented EPI (9,10) and typically the acceleration factor is chosen to equal the number of 

interleaves, i.e., a single interleave is sampled. Such an accelerated single-shot EPI method 

combines the improved spatial fidelity of multi-shot sequences with the short acquisition 

time of a single-shot sequence. However reconstruction noise from parallel imaging will 

become significant as the acceleration increases. Regularization can be employed to help 

limit the noise amplification and associated SNR cost (11,12). In the present work, a 

regularized, self-navigated parallel imaging method was employed to accelerate EPI 

acquisitions by four-fold, combining improved geometric fidelity with relatively-short scan 

time.

The purpose of the present work was to introduce a fast HARDI method with good 

geometrical fidelity by accelerating the acquisition both in k-space (to reduce distortion) and 

in the diffusion-encoding space (to reduce acquisition time). Novelty emerges from the 

combination of regularization and k-space sampling ideas from the ‘accelerated multi-shot 
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diffusion imaging’ (AMDI) method in (12), self-referencing ideas from the ‘multiplexed 

sensitivity encoding’ (MUSE) method in (13,14), and compressed sensing ideas from the 

CFARI method (6,7). The resulting approach for faster and less-distorted HARDI imaging 

was used here to image seven healthy volunteers. The acquisition for a whole-brain 3D 

coverage can be achieved in less than 5 minutes.

Methods

Ordering and subsampling scheme in diffusion space and k-space

In general, diffusion-encoded images can be characterized by the direction being probed and 

by the strength of the diffusion encoding. Diffusion-weighted imaging (DWI) schemes have 

been proposed over the years that call for different combinations of directions and b-values 

to be collected: For example, the HARDI scheme calls for a single non-zero b-value to be 

sampled for a large number of different directions, along with a b = 0 (b0) reference. In 

contrast the AMDI method from (12) employed a diffusion encoding scheme that might be 

best described as Cartesian in the sense that a given set of b-values is collected for each one 

of several different diffusion encoding directions. In order to increase acquisition efficiency, 

the AMDI method prescribed how the choice of interleaves should be adjusted from one 

diffusion encoding to the next. The present implementation involved converting ideas 

originally developed for a Cartesian diffusion sampling scheme in (12) to the HARDI one, 

and required changes to the way k-space interleaves are picked for given diffusion images.

In Fig. 1, a regular, fully-sampled HARDI dataset was employed to help illustrate different 

subsampling schemes. A color fractional anisotropy (FA) slice is shown in Fig. 1a, along 

with a dashed white line indicating the 1D array of pixels further employed in Fig. 1b. The 

left-most column in Fig. 1b depicts the sampling scheme in ky – d space: Fully sampled 

(middle row) or subsampled by Rk = 4 (bottom row). The top row in Fig. 1b depicts two 

extreme choices in the ordering of directions d: A smooth ordering along a spherical spiral 

path (central column) or a randomized ordering (right-most column). Magnitude results in y 
– kd space, which is the Fourier dual of ky – d space, are shown for all combinations of full 

vs. Rk = 4 sampling along ky and of smooth vs. randomized ordering along d.

The sampling scheme implemented here optimized smoothness in d space, as depicted in the 

central column of Fig. 1b. The main purpose of Fig. 1b was to help justify this choice by 

contrasting data in the central (smooth ordering) and right-most column (randomized 

ordering). With smooth ordering along d, signals tended to concentrate around the kd = 0 

region, as seen in Fig. 1b. Even when Rk = 4 aliased replicas were created due to ky 

subsampling (lower row in Fig. 1b), the amount of signal overlap among these replicas 

remained minimal in the ‘smooth’ case, as these replicas had limited extent along kd. The 

subsampled ky – d sampling scheme as shown in the left-most column of Fig. 1b, ensured 

that these replicas were shifted with respect to each other in y – kd space, again to minimize 

signal overlap. While in the ‘smooth’ case replicas had a tendency to fall mostly side-by-side 

in y – kd space, signals in the ‘randomized’ case tended to spread over the entire kd axis and 

a full Rk = 4 overlap might have to be handled at most locations in y – kd space. Any 

remaining overlap among replicas can be handled by a regularized and motion-corrected 

parallel imaging implementation as described below. However, minimizing the amount of 
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signal overlap the algorithm must handle, as in the central column of Fig. 1b, can improve 

the odds of reconstructing good-quality images with the present processing. A k-space 

acceleration setting of Rk = 4 was employed here, as depicted in Fig. 1b (lower row), with 

the smooth sampling scheme in d-space (central column, Fig. 1b) to ensure that, at the very 

least, the stronger signals from different replicas do not overlap. Subsequently, the 4-fold 

signal overlap in y – kd space was handled by the algorithm as depicted in Fig. 1c and 

described in the next section.

As opposed to the k-space acceleration factor Rk, the d acceleration factor Rd was not as 

well defined, since the concept of a fully-sampled d axis is open to interpretation: The more 

directions one samples, the better HARDI might resolve crossings, but no single widely-

accepted number of directions can be clearly labeled as fully-sampled. In the present work, 

reference HARDI results were obtained using 128 directions and d acceleration was defined 

in comparison with this reference, i.e., Rd = (128 / Nd) where Nd is the number of sampled 

directions. Results were obtained here with Nd values of 64, and 48, i.e., for Rd acceleration 

factors of 2 and 2.7, respectively. In all cases the Nd sampled directions were evenly 

distributed along a smooth double spherical spiral path, as illustrated in Fig. 1b top row, 

central column.

k-space acceleration

The k-space signal sky,d associated with the d-th diffusion direction was modeled as:

(1)

where Fy and Fd perform Fourier transforms along y and d, respectively, H represents a 

conjugate transpose operator, C and Θ are diagonal matrices that represent the coil 

sensitivity and motion-induced phase errors, respectively, and ρy,kd is a vertical vector 

representing the imaged object in y – kd space. EPI Nyquist ghost corrections are assumed to 

have already been applied to ρy,kd and are not explicitly included in the model from Eq. 1. 

For compactness, a spatial encoding operator Ey = FyC was also defined in Eq. 1. Images 

 were obtained by solving Eq. 1 subject to a least-square error minimization:

(2)

where the first term is for data consistency and the second term for regularization. The 

regularization matrix M is diagonal and λ is a scaling factor (15-18); both will be further 

discussed later in the text. The solution is expressed as:

(3)
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Equation 3 is of a form widely employed for acceleration methods. In addition to a 

conventional pseudo-inverse computation, Eq. 3 further employs a scaling term (I + λM−2) 

where I is the identity matrix, as employed in (19) to partly compensate for regularization-

related signal scaling. When using zeroth-order Tikhonov regularization, with M = I, such 

term might be unnecessary as it would merely amount to global scaling. But when M differs 

from I and different locations in the solution space are regularized differently as done here, 

the (I + λM−2) term may help obtain a more faithful reconstruction.

To solve Eq. 3, prior information including motion-induced phase errors Θ and a 

regularization matrix M was needed. In our prior work (12), such information was obtained 

from low spatial resolution navigator echoes. The requisite for an additional echo potentially 

reduced the number of slices Nz sampled during a given TR. For this reason, to increase Nz 

for greater volumetric coverage, a self-referenced approach that did not require navigator 

signals was sought here instead. An algorithm similar to MUSE (13,14) was implemented 

which essentially involved reconstructing data in two iterations: In a first step, image data 

were reconstructed without phase correction or object based regularization, in other words 

with λ=0. The resulting low quality images were then blurred to generate low-resolution 

images that can serve as navigators. In a second step the image data were reconstructed once 

more, this time using the ‘navigator’ data from the first step to populate the motion-

compensation Θ and regularization M terms (12).

More specifically, the acquired data first underwent standard EPI correction, including 

Nyquist-ghost correction. The fully-sampled b0 data were motion-corrected and 

reconstructed as in (20) and averaged; the multi-coil b0 images obtained as a result images 

were then employed to generate B1 sensitivity maps and the matrix C in Eq. 1. From this 

initial point on, the reconstruction then proceeded as described in the block diagram from 

Fig. 1c and in Eqs 1-3 above. The motion-related phase correction and the regularization 

information were retrieved from navigator data; these data can either be acquired directly or 

emulated from image data using MUSE. In the latter case, with MUSE, the image data were 

reconstructed a first time by parallel imaging alone, a low pass 64×64 Hamming filter was 

applied in kx – ky space to create a low-resolution dataset, which was then used in place of 

navigator signals. The matrices Θ and M were populated using actual or emulated navigator 

data and Eq. 3 was solved. The trace ADC, fractional anisotropy and principal diffusion 

direction were then evaluated from the diffusion-weighted data, . The regularization 

factor λ in Eq. 3 was empirically set, within the range from 10−2 to 10−4, as described in the 

Results section.

Diffusion-space acceleration

The diffusion-weighted data  obtained from Eq. 3 were then transformed from y – kd 

space to the more conventional y – d space:

(4)
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While subsampling along ky improved geometrical fidelity, sampling only a limited number 

of directions Nd was meant to reduce the acquisition time. To help evaluate the orientation 

density function (ODF) from only a reduced Nd, a CFARI algorithm was employed to help 

resolve intravoxel structures, associated with an l1 – minimization formulation. CFARI 

models the diffusion weighted signals as linear combinations of several different anisotropic 

diffusion tensors. With gd a 3-component vector that gives the 3D orientation of the 

diffusion encoding direction d, the diffusion weighed signal o(gd) is modeled as:

(5)

where b is the b-factor, Di represents the ith prolate-shaped diffusion tensor being modeled, 

and wi is the mixture weighting associated with it. For example, for crossings involving only 

two different fiber orientations, one would expect to find only two larger-valued wi weights, 

while all others should have smaller values. In the present work 512 uniformly separate 

prolate-shaped tensors were modeled, assuming a 2:1:1 ratio for their diffusion coefficients 

along principal axes (6,7). Equation 5 can be expressed in matrix form:

(6)

where B contains the diffusion encoding elements and w the weights. The following l1 – 

minimization problem was solved for w, where w was assumed sparse with only a small 

number of significant entries:

(7)

The regularization factor β was fixed here at 10−3. Once the non-negligible elements wi from 

w have been identified, the ODF ψ(θ, φ) can be generated from the associated diffusion 

tensors Di:

(8)

where (θ, φ) represent an orientation in spherical coordinates, and T stands for the transpose 

operation.

Evaluation Metrics

The main purpose of HARDI methods is to reveal the orientation of fiber tracks. As 

acceleration was performed in ky and/or d space, metrics were needed to help evaluate the 

effect of acceleration on the ODF. Two such metrics were developed provided here: a 

similarity index and an angular dispersion index. The similarity index assessed, on a pixel-
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by-pixel basis, the overall changes in ODF that might have occurred between two different 

acceleration scenarios, R1 = [Rk,1 Rd,1] and R2 = [Rk,2 Rd,2]:

(9)

Equation 9 can be understood as a cross correlation between the ODF ΨR1 (θ, φ) and ΨR2 
(θ, φ) for acceleration scenarios R1 and R2, respectively. In practice, the summations in Eq. 

9 were performed over 1024 different combinations of θ and φ, homegenously spread over a 

sphere using an electrostatic repulsion algorithm. Because orientation becomes meaningless 

as FA approaches zero, a threshold of FA > 0.1 was employed. The output of Eq. 9 is a 

percentage, with 100% denoting perfectly identical ODFs and 0% perfectly different ones. 

Intermediate values were helpful mostly in relative terms: For example, when compared to a 

gold standard case, a larger 80% similarity value would be preferable over a smaller 70% 

one, but in absolute terms it is unclear whether either or both cases might be sufficient for a 

given task.

The second metric employed here, the angular dispersion index, is related to angular 

differences in peak ODF diffusion directions. On a pixel-by-pixel basis, one or more angle 

θn was found, where n stands for the number of the ODF peak being probed and where θn = 

0° would mean no change in the diffusion direction of ODF peak number n. In the present 

work, only voxels containing at most two significant peak directions were included for 

analysis, which include about 85% of all voxels in the ROIs analyzed here. The actual 

angular dispersion index, , was defined as the median of θn over the assessed volume, and 

represents the overall angular change in peak ODF diffusion direction as caused by 

acceleration.

Pulse sequence and scanning

Seven healthy volunteers (male/female = 5/2) were recruited and scanned following 

informed consent using an IRB-approved protocol. The scans were performed on a 3 T GE 

Discovery MR750 using a product 8-channel head coil. Scan parameters common to all 

seven sessions were: Matrix size = 128×128, FOV = 22 cm, and b-value = 1500 s/mm2. 

Other parameters are listed in Table 1: The number of acquired slices Nslice thickness, slice 

gap, the k-space acceleration factor Rk, the number of EPI shots Nshot, TE, TR, presence/

absence of a navigator echo, number of sampled directions Nd, and scan duration. For the 

accelerated acquisitions, with Rk = 4, the scan duration was equal to (Nd + 12)×TR: A single 

k-space interleaf was obtained for each diffusion-weighted image, and 12 extra TR periods 

were required to fully sample the b0 data (8 TRs for 2 averages of 4 interleaves) and to 

gather reference information toward Nyquist ghost correction (4 TRs). In contrast, in cases 

without acceleration (i.e., Subjects 1-3), all interleaves were sampled for all diffusion images 

including the navigator data; these non-accelerated data were acquired for validation 

purposes.
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For Subjects #4-7, a fast-spin echo acquisition was performed with same FOV and slice 

setting as the diffusion-weighted acquisition, for comparison purposes. The parameters for 

the fast fast-spin echo scan were: TR = 7.8s, TE = 102ms, Echo Train Length = 24 and 

matrix size = 256×256.

Effect of regularization parameters

The parameter λ in Eq. 3 determines how much regularization gets applied during image 

reconstruction. Reconstructions were performed with λ settings spanning 8 orders of 

magnitude. While the main purpose of regularization is generally to help keep noise under 

control, too strong a regularization setting can lead to inaccurate reconstructions. As a rule 

of thumb, one tries to find the largest possible setting for λ that does not introduce 

appreciable errors in the reconstruction. Reconstructed FA results were used to help choose a 

reasonable setting for λ; more specifically, the mean and standard deviation of FA values, 

for all voxels in a representative image slice (excluding voxels outside the head and voxels 

with FA < 0.1), were calculated and plotted as a function of λ. The point of inflexion in 

these curves was used to help choose a reasonable setting for λ. It should be noted that if 

protocols were changed in ways that deeply impact SNR, such as changes in coil array 

and/or voxel size for example, one might need to readjust λ accordingly.

Simulated undersampling, from fully-sampled data

Subjects #1-3 were scanned using a fully-sampled 4-shot EPI sequence (Rk = 1), with 

navigator echo and 128 directions (Rd = 1). Scan time in this case was quite long, about 30 

min, as all k-space data for all diffusion directions were acquired. For validation purposes, 

an Rk = 4 acceleration could be simulated from this dataset by discarding three out of four 

shots for each diffusion-weighted image; four independent subsampled datasets with Rk = 4 

were generated from each fully-sampled Rk = 1 acquisition, and these four datasets were 

reconstructed separately as a form of repeatability test. Reductions in the number of sampled 

directions by Rd = 2, 3 or 4 were also simulated by discarding the appropriate number of 

diffusion-encoding directions. Fully sampled and subsampled datasets were reconstructed 

using Eq. 3, and comparisons were performed between the fully-sampled case [Rk Rd] = [1 

1] and subsampled cases [Rk Rd] = [4 1], [4 2], [4 3] and [4 4]. Furthermore, each one of 

these comparisons could be performed either with or without using the acquired navigator 

signal as part of the reconstruction process.

Accelerated HARDI acquisition

Four human subjects, #4-7, were imaged with the fully-implemented version of the proposed 

method, to achieve multi-slice volumetric coverage with reduced distortion and reduced scan 

time. As seen from Table 1, forty-slice datasets were obtained with little geometrical 

distortion in as little as 4 min worth of scan time. These scans included varying numbers of 

sampled directions, with and without navigator signals.
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Results

Effect of regularization parameters

One representative slice (subject #6, slice #19 out of 40) was reconstructed for several 

different λ settings, and the mean as well as standard deviation for the FA value was 

computed for the ROI shown in Fig. 2a. These computed values were plotted in Fig. 2b, as a 

function of λ, for the 48-, 64- and 128-direction cases. Figure 2c further shows regional 

ODF values. Results from Fig. 2, as further confirmed from other slices and subjects, 

suggest that in the present implementation a setting in the range of 10−4 to 10−2 might be 

appropriate. A setting of λ = 5×10−3 was selected here, for all reconstructed results 

presented below.

Simulating undersampling from fully-sampled data

The fully sampled Rk = 1 data from Subject #1 gave rise to four independent Rk = 4 

reconstructions, which were compared pair-wise as a measure of repeatability. The mean 

ODF similarity values were 97.4±2.4%, 93.0±5.5%, 87.6±9.4%, 85.6±10.5% for Nd = 128, 

64, 48 and 32, respectively, as averaged over the ROI shown in Fig. 3a and over all 6 

possible pair-wise combinations.

The data from Subject #1 were further reconstructed in 9 different ways, as explained below. 

Cases reconstructed with all 128 acquired directions were displayed in Fig. 3c i-iv and Fig. 

3d i-iv; cases with 64 and 48 directions in Fig. 3c vi-vii and Fig. 3d vi-vii, respectively; 

cases with 32 directions in Fig. 3c v, viii and ix, and Fig. 3d v, viii, and ix. The resulting 

diffusion-weighted images were processed to generate ODF maps (Fig. 3c) as well as maps 

of the peak directions of the ODF (Fig. 3d), for the ROI indicated in Fig. 3a. This particular 

anatomical region was selected because it featured an interesting mix of unidirectional fibers 

and fiber crossings. The similarity indices indicated for each ODF map in Fig. 3c are 

calculated based on the data inside the ROI using case (i) as the reference. The FA map in 

Fig. 3a was obtained for case (i), i.e., for [Rk Rd] = [1 1] and navigator, but similar FA maps 

were also obtained in all cases involving our reconstruction method and MUSE (not shown). 

Degraded FA maps were obtained in cases with Rk > 1 and navigator (e.g., Fig. 3b and case 

ii above), and when the proposed regularization scheme was turned off without averaging 

(case ix above).

Maps of the similarity metric of 6 reconstruction scenarios are shown in Fig. 4a for the same 

slice and subject as in Fig 3. Results for the other metric employed here, the angular 

dispersion index, were tabulated in Fig. 4a. In Fig. 4b, examples of ODFs were depicted to 

help illustrate how ODF shape and similarity index were connected: Similarity values in the 

80% range tended to correspond to ODFs with main peaks pointing in similar directions but 

with visible shape differences, and with possible addition/omission of smaller side peaks. In 

the 70% range, more errors in shape but also in peak diffusion directions were typically 

observed.

Results tabulated in Fig. 4a for subject #1 were plotted in Fig. 5, along with results for 

subjects #2 and #3. Results in all three subjects had similar numerical values. For example, 

in the maximum acceleration case (Rd and Rk = 4-fold), in all three subjects the mean 
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similarity index was ~85% and the mean angular dispersion index was ~10° and ~13° for 

single-fiber and fiber-crossing voxels, respectively.

Accelerated HARDI acquisition

All three scans performed with Subject #6, with Rk = 4 and 128, 64 or 48 diffusion encoding 

directions are shown in Fig. 6. ODF maps (Fig. 6b), similarity maps (Fig. 6c) and tabulated 

values for mean indices (Fig. 6d) are displayed. The square ROI used for ODF displays is 

shown in Fig. 6a, overlaid on a T2-weighted acquisition. While it is impossible to 

differentiate losses in similarity caused by motion from those caused by noise or other 

imperfections, motion in-between scans likely contributed, as indicated by the fact that 

similarity tended to be highest within white-matter regions and reduced near tissue 

boundaries, where motion might have most impact.

The geometrical fidelity of diffusion results was assessed in Fig. 7, as compared to a T2-

weighted acquisition. The color FA maps were overlaid on the T2-weighted results, to help 

visually assess geometrical fidelity, both for the axial and the reformatted sagittal planes. An 

ODF map was also shown, as computed from 48 diffusion encoding directions, for an ROI 

indicated in Fig. 7b.

In Fig. 8, ODF maps are shown for all accelerated scans performed with the proposed 

method and protocol, i.e., for all scans performed for Subjects #4-7 (see Table 1). The 

displayed ROI was selected to cover the Anterior Corona Radiata (ACR), Corpus Callosum 

(CC) and some short association tracts (SAT) as this anatomical region is known to feature 

an interesting mix of unidirectional fibers and fiber crossings. Mean similarity index values 

were provided in Fig. 8 for the Nd = 64 and 48 cases, using the Nd = 128 case as a gold 

standard.

Discussion and Conclusion

A method was proposed to help improve geometric fidelity and reduce total scan time in 

HARDI acquisitions, by accelerating the data sampling process both in k-space and in d 
space. The method combined ideas from prior publications such as the CFARI (7), MUSE 

(13) and AMDI (12) methods. As a result an accelerated, regularized, motion-compensated 

and self-navigated HARDI implementation was obtained. Using our preferred setting, only 

about 9.3% of a full dataset was actually acquired, i.e., 1 / (Rk × Rd) with Rk = 4-fold 

acceleration in k-space and Rd = 2.7-fold reduction in the number of diffusion directions. 

With this setting, whole-brain 3D coverage with high geometric fidelity and 40 slices was 

achieved in 4 minutes of acquisition time.

DWI with good geometrical fidelity is typically difficult to achieve in the area around the 

brainstem, but results from Fig. 7 suggest that the proposed method performed well in this 

regard. More specifically, fiber tracts visible in the ODF results around the pons, such as the 

pontocerebellar tract and the corticospinal tract, appear well aligned with the anatomy. One 

possibly-surprising observation from the present work was that reconstructions involving 

navigator-echo signal provided lower quality than self-referenced ones, as seen in Fig. 3. 
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Navigator signals were more heavily T2-weighted and had lower spatial resolution that the 

imaging data, which may have had a role to play in the finding.

Decreasing the number of sampled directions and the number of k-space interleaves allowed 

good geometrical fidelity to be achieved in clinically-relevant scan times, but there were 

also, of course, negative impacts on image quality. Much of the presented method and of its 

regularization schemes were geared toward handling the extra noise and the less-favorable 

conditioning associated with the accelerated datasets. Even with only 32 directions (instead 

of 128) and a single k-space interleaf (instead of 4) the mean similarity index compared to 

the fully-sampled case remained relatively high at 86%, see Fig. 4a. More specifically, the 

shape of the ODF for voxels with unidirectional fibers varied very little from fully-sampled 

to accelerated cases, unlike voxels that included fiber crossings where subtle changes were 

observed. For this reason, results for single- and crossing-fiber voxels were presented 

separately in Fig. 5, and the mean angular dispersion index for crossing-fiber voxels was 

evaluated at ~13° for the case Nd = 32, in three subjects (Fig. 5c). In Fig. 3, for accelerated 

acquisitions, turning regularization off led to poor ODF results (Fig. 3c ix), which helped 

justify the regularized approach employed here. While averaging datasets, not surprisingly, 

did improve results (Fig. 3c v) acquiring different directions instead proved preferable, 

presumably because extra directions helped both in terms of noise and conditioning.

Limitations included a fairly limited number of subjects, seven here, and the fact that these 

subjects were healthy volunteers. Furthermore, while ODF maps are presented, no 

tractography results were explicitly generated, even though fast non-distorted tractography 

could ultimately prove the main application for the present imaging and reconstruction 

scheme. While they tend to be visually impressive, tractography results are notoriously 

difficult to compare and to quantitatively evaluate. Based on ODF maps metrics, were 

devised here to help measure and judge to some degree the effect of acceleration on data 

quality; in contrast, comparing tractography results instead of ODF maps would have proved 

a much more daunting and arguably less informative task.

As a further limitation, some acquisition parameters held constant in this study might 

ultimately benefit from optimization, such as the k-space acceleration factor Rk, the choice 

of receive coil array, and basic sequence-related parameters such as TR or spatial resolution. 

The setting Rk = 4 was selected here as a trade-off, as this value is higher than the two- or 

three-fold acceleration routinely obtained with parallel imaging alone, but yet small enough 

so that good-quality results could be confidently obtained in seven consecutive volunteers. 

Furthermore, small variations in imaging parameters among subjects were mostly 

unavoidable, as the fully-sampled reference-standard acquisitions performed in Subjects 1-3 

required larger slice gaps to keep scan time within reason. The larger slice gap for Subjects 

1-3, as compared to Subjects 4-7, may be associated with slightly increased SNR, although 

this effect was mitigated here by the use of a long TR period and the sequential acquisition 

of odd and even slices. Lastly, reconstruction time may also be considered a limitation of the 

proposed approach. For the present Matlab-based implementation, about 16 hours were 

required to reconstruct a 40-slice volumetric dataset with 48 diffusion-encoding directions. 

Reconstruction was performed in Matlab on the CPU of a single off-the-shelf computer, and 

reconstruction times could undoubtedly be much reduced through a more involved 
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implementation involving lower-level programming, multi-threads, GPU processing and/or 

better hardware, so that reconstruction time is not expected to ultimately represent a major 

limitation of the approach.

In conclusion, HARDI results with good geometrical fidelity and clinically-realistic scan 

times were achieved, which may hopefully help further facilitate the transition of this very 

successful research tool to clinical practice.
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Fig. 1. 
(a,b) A fully-sampled HARDI dataset is used to illustrate the proposed sampling and 

ordering scheme in ky – d space. The present implementation sampled one out of every four 

ky lines, as shown in the lower row in (b), and employed a smooth ordering along d, as 

shown in the middle column in (b). (c) The undersampled data were then reconstructed 

using the proposed algorithm, depicted here with a block diagram. See text for more details.
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Fig. 2. 
Images were reconstructed while varying λ in Eq. 3 (Subject #6, 64 directions). The mean as 

well as standard deviation of the FA value, calculated over the ROI shown in (a), is plotted in 

(b) as a function of λ. (c) Similarly, choices in λ also affected the shape of the ODFs. 

Although changes in 3D objects such as an ODF may be difficult to visualize, distortions at 

low / high λ values can be seen here, for example the red arrow in (c) pointing to a noise-

induced secondary peak in the 10−8 case, and the black arrow pointing to a swollen ODF in 

the 10° case. A setting near the point of inflexion in (b) was chosen, λ = 5 × 10−3, and 

adopted for all results presented below.
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Fig. 3. 
Color-coded FA maps are shown for the fully-sampled case (a), as well as an accelerated and 

navigated reconstruction (b). ODF maps and the similarity metrics within the ROI (c) and 

ODF peak directions maps (d) are shown, for the ROI indicated in (a), for 9 different 

acquisition/reconstruction scenarios. The fully-sampled reference is shown in column (i), 

and columns (ii-ix) involve 4-fold k-space accelerated results. More specifically: (ii) 128 

directions, with navigator signal, (iii) 128 direction, MUSE-based self-navigation, (iv) 128 

directions and regularization turned off, (v) 32 directions, 4-fold averaging, and 

Chao et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regularization turned off, (vi) 64 directions, self-navigated, (vii) 42 directions, self-

navigated, (viii) 32 directions, self-navigated, (ix) 32 directions, and regularization turned 

off.
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Fig. 4. 
a) Six of the reconstruction scenarios from Fig. 3 are compared here as well, this time in 

terms of ODF. The similarity and the angular dispersion indices were calculated using the 

fully-sampled case as a reference standard. The similarity index is both mapped and 

tabulated, and its mean value varied from 100% (reference case compared to itself) down to 

72% (navigated case). The self-navigated algorithm performed better than the navigated one; 

a mean similarity index of 86% was obtained with Rk and Rd both equal to 4-fold. The mean 

angular dispersion index is tabulated for cases without and with fiber crossings, with values 

of 11.3° and 14.1 °, respectively, again for Rk and Rd equal to 4-fold. (b) Examples of ODF 

shapes and their relation to the similarity index are depicted, see text for more details.
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Fig. 5. 
The similarity index and the angular dispersion index are plotted here for three different 

subjects for our proposed self-referenced reconstruction, for varying numbers of diffusion 

directions, Nd. Both mean and standard deviation values are shown. (a) Similarity index 

values decreased as the number of directions decreased, but remained high (~85%) even for 

the lowest number of direction, Nd = 32. (b,c) The mean angular dispersion index remained 

below about 13 ° even for the maximum-acceleration scenario considered here, and even in 

voxels featuring fiber crossings.
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Fig. 6. 
ODF maps (b) and similarity maps (c) are shown for all 3 scans performed with Subject #6. 

Visually-good geometrical fidelity was achieved compared to the T2-weighted image in (a). 

The similarity and the angular dispersion indices for peak directions of the slice are shown 

in the table (d) using the 128-direction data as the reference. The ODF maps in (b) 

correspond to the ROI shown in (a) as on overlay to the T2-weighted image.

Chao et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
The color FA maps are overlaid on the corresponding T2-weighted images both in a 

reformatted sagittal plane and an axial plane for visual comparisons to indicate the good 

geometrical fidelity for the DWI results (Subject #6, 48 directions). An arrow in the sagittal 

slice marks the location of the axial slice, and a dashed box in the axial slice depicts the ROI 

used for the ODF display.
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Fig. 8. 
ODF maps are shown for the indicated ROI for all four subjects imaged with acceleration, 

i.e., not fully sampled: The k-space acceleration Rk was equal to 4, and the number of 

diffusion directions varied from 128 down to 48. The selected ROI contained white matter 

fibers from the Anterior Corona Radiata (ACR), Corpus Callosum (CC) and short 

association tracts (SAT). Results obtained with 128 sampled directions were used as a 
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reference standard for similarity index measurements. The overall mean ODF similarity 

measure inside the ROI remained near or above 80%.
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