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Animal cells use traction forces to sense the mechanics and geometry of their

environment. Measuring these traction forces requires a workflow combining

cell experiments, image processing and force reconstruction based on elasticity

theory. Such procedures have already been established mainly for planar

substrates, in which case one can use the Green’s function formalism. Here

we introduce a workflow to measure traction forces of cardiac myofibroblasts

on non-planar elastic substrates. Soft elastic substrates with a wave-like top-

ology were micromoulded from polydimethylsiloxane and fluorescent

marker beads were distributed homogeneously in the substrate. Using feature

vector-based tracking of these marker beads, we first constructed a hexahedral

mesh for the substrate. We then solved the direct elastic boundary volume pro-

blem on this mesh using the finite-element method. Using data simulations,

we show that the traction forces can be reconstructed from the substrate defor-

mations by solving the corresponding inverse problem with an L1-norm for

the residue and an L2-norm for a zeroth-order Tikhonov regularization.

Applying this procedure to the experimental data, we find that cardiac myofi-

broblast cells tend to align both their shapes and their forces with the long axis

of the deformable wavy substrate.
1. Introduction
Animal tissue cells sense the mechanical and geometrical features of their

environment by applying traction forces to the extracellular matrix. Various

studies over recent decades have demonstrated the importance of tissue mech-

anics for cell behaviour, including cell adhesion, migration, proliferation,

differentiation and fate [1–3]. It has already been shown that cells respond sensi-

tively to the rigidity of their environment, with larger spreading area and higher

force generation on stiffer substrates [4–6]. Even more dramatically, essential cell

processes such as cell differentiation are controlled by substrate stiffness [7–9].

Because environmental stiffness is a passive property of the environment, cells

have to actively pull on it to determine its magnitude [10].

Cellular traction forces are used not only to sense extracellular stiffness but

also to sense geometrical properties of the environment [11–13]. This is most evi-

dent for adhesive patterns, whose geometry also determines cell responses such

as cell survival and differentiation [7,14,15]. However, geometry sensing also

includes cell sensitivity to topographical features of the environment, which

spans several orders of magnitude, ranging from the molecular up to the cellular

scale [16–18]. It has been shown that cell differentiation can be controlled also by

nanotopography [19,20]. Regarding the cytoskeletal response, it has been found

that cells tend to align with grooves on substrates with corresponding nanotopo-

graphy and microtopography [21–23]. Another physiologically relevant example

is topography-driven polarity guidance and directional growth of neurons [24].

Early examples of topography sensing on the micrometre scale are studies that

showed the alignment of actin microfilaments in cells adhered to microcylinders

[25,26]. Interestingly, it was found that cells tend to align either parallel or orthog-

onal to the direction of highest curvature, depending on the cell type. Inspired by
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these observations mechanical cell models have been propo-

sed that suggest the importance of mechanical stress in the

cytoskeleton for the detection of and response to curved

structures [27,28].

Recently, the combined effect of stiffness and geometry has

been studied by engineering topographic features into poly-

acrylamide (PAA) substrates, which as hydrogels, however,

tend to swell in medium and, therefore, change dimensions [29].

Interestingly, it was found that cells align with the topographic

features independent of stiffness. However, no attempt has

been made to measure cellular traction forces in these exper-

iments. In general, there are many physiological situations in

which cells are exposed to mechanical and geometrical cues

simultaneously, and, therefore, will use cellular traction

forces to sense them both at the same time. An interesting

example is podocytes, which are epithelial cells lining the

basement membrane of the glomerular capillaries in kidneys,

which have a wavy shape [30]. However, a set-up that allows

the quantitative measurement of forces in such situations is

still missing, despite recent progress in measuring cellular

traction forces on planar substrates.

During the last three decades, the measurement of cellular

forces (traction force microscopy; TFM) has become a mature

research field [31–34]. The standard set-up uses a planar elastic

substrate whose deformations are tracked using embedded

marker beads. Standard choices for the substrate material are

PAA or cross-linked polydimethylsiloxane (PDMS). For suffi-

ciently thick substrates, one then can use the Green’s function

of an elastic half-space to relate these deformations to traction

forces (GF-TFM) [35]. For a thin substrate, the corresponding

Green’s function is also known [32,36,37]. TFM procedures

can be made quite rapid by inverting the elastic equations in

Fourier space (Fourier transform traction cytometry; FTTC),

which is a special case of GF-TFM [38]. Traditionally, cell

forces had been reconstructed only in the x–y-plane of a

planar substrate (with the z-direction denoting the normal

direction), but, over recent years, the Green’s function

approach has been extended to also reconstruct the z-forces

that cells exert on the substrate [39]. Alternatively, one can

use the finite-element method (FEM) to reconstruct these

z-forces (FEM-TFM) [40,41]. Within the FEM approach, one

does not rely on the analytical form of a Green’s function,

but uses numerical solutions to the mechanical problem inter-

polated on a suitable chosen grid [42–44]. Another alternative

to GF-TFM is the direct method, in which deformations are

directly converted into a stress tensor, from which the traction

forces are extracted [45,46].

If one aims at implementing TFM for non-planar sub-

strates, of these three methods (GF-TFM, FEM-TFM and

direct TFM) only the second seems feasible. First, it is notor-

iously hard to analytically calculate Green’s functions for

non-planar (e.g. wavy) surfaces, thus ruling out GF-TFM. As

we will see below, wavy substrates lead to rather noisy

displacement data, which are hard to deal with in direct

TFM, because it relies on constructing derivatives of the

measured data. Therefore, we opted for an approach using

FEM-TFM, which needs more computer time than traditional

GF-TFM, but offers the same level of robustness. We first devel-

oped a novel experimental technique to prepare curved

micromoulded PDMS substrates with embedded fluorescent

marker beads matching the requirements of TFM application.

In contrast with the PAA hydrogels often used for studies of

mechanosensing, the micromoulded PDMS substrates used
here do not suffer from swelling, and, therefore, present

time-independent geometrical cues to the cells. However,

because the point spread function in such a substrate varies

in space, special procedures have to be used for tracking the

marker beads. Because here we focus on measuring traction

forces, we did not vary the mechanical stiffness of the sub-

strates. On the computational side, we established a complete

workflow to reconstruct cellular traction fields on such non-

planar substrates. The core of this technique is a parallelized

optimization framework that efficiently implements FEM to

reconstruct cellular traction forces in three dimensions. We

validated our procedures by reconstructing simulated traction

patterns under various experimental conditions. In particular,

we show that the use of the L1-norm for the definition of the

residue strongly improves our force reconstruction because

it deals better with outliers than the L2-norm. We then applied

TFM to cardiac myofibroblasts cultured on curved elastic

substrates, thus complementing a traditional contact guidance

experiment with measurements of cell traction forces. By

comparing both polarization of the cytoskeleton and the distri-

bution of cellular traction, we show that cells adjust not only

their morphology but also their moments of traction force to

geometrical properties of their surroundings.
2. Material and methods
2.1. Experimental procedures
Elastomeric substrates were made of Sylgard 184 Silicone

Elastomer Kit (Dow Corning GmbH, Wiesbaden, Germany) as

described previously [31]. In brief, both components (base and

cross-linker) of the elastomer kit were mixed at various ratios

to generate after cross-linking either stamps from vinyl disc mas-

ters (10 : 1) or cell culture substrates of stiffness 15 kPa (50 : 1). For

stamp manufacturing, round polypropylene rings (diameter

10 mm) were placed on top of the vinyl disc and cross-linked

at 408C for 4 h. Stamps were peeled off and silanized with

trichlorosilane. For force analysis, cell culture substrates were

equipped with red fluorescent beads (0.1 mm diameter, non-

modified beads; Magspheres, CA, USA), resulting in a dense

microstructured volume (typical bead distance 4 mm). Base oil

was mixed with a 1 : 50 dilution of beads in methanol. The modi-

fied base oil was incubated at 608C for 3 h to evaporate methanol.

The desired amount of cross-linker was added to the modified

base oil and mixed intensively. The stamp was placed onto an

80 mm coverslip with a drop of silicone oil mixture. Layer thick-

ness was adjusted to 80 mm using glass slices of the same defined

thickness (Menzel GmbH, Braunschweig, Germany) as spacers.

Cross-linking of silicone oil was performed at 608C for 16 h.

After curing stamps were carefully peeled off and structured

elastomeric substrates were glued to the bottom of 3.5 cm Petri

dishes to cover predrilled holes [47]. The mechanical properties

of all elastomeric mixing ratios were characterized as described,

resulting in elasticities as given above and a Poisson’s ratio of 0.5.

Cardiac fibroblasts were isolated from 19-day-old Wistar rat

embryos as described previously [48,49]. Primary cardiac fibro-

blasts were cultured for an additional 5 days at 378C and 5%

CO2 in a humidified incubator on standard polystyrene cell culture

dishes to induce their differentiation to myofibroblasts, which have

more prominent focal adhesions and stress fibres. Cells were

trypsinized and subsequently transfected using Nucleofector tech-

nology (Lonza-Amaxa Systems, Cologne, Germany). A total of 106

cells were resuspended in 100 ml liposome solution containing

2 mg purified plasmid DNA (GFP-VASP or GFP-Vinculin). After

transfection, resuspended myofibroblasts were seeded on fibronec-

tin-coated (2.5 mg cm22) (BD Bioscience, Franklin Lakes, NJ, USA)
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Figure 1. Reconstruction of substrate shape from bead positions. (a) Image of the marker beads. The inset shows the anisotopic nature of the point spread function.
(b) The substrate contour is partitioned into volumeric slices along a lateral axis. Bead displacements within the partitioned volumes are projected to the boundary
plane. (c) The 2D a-shape algorithm is applied to projected bead positions in order to determine the envelope. (d ) From multiple envelopes a 3D hexahedral
substrate mesh is reconstructed. Meshing with GMESH and visualization with PARAVIEW. (Online version in colour.)
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silicone rubber wave substrates at a density of 2 � 104 per sample

for traction force microscopy. The cells were seeded for at least 24 h

before the measurements were taken.

Live cell analyses were performed at 378C and 5% CO2 using an

inverse confocal laser scanning microscope (LSM 710; Zeiss,

Germany; software ZEN 2011) equipped with live cell imaging

accessories and a 63� Planapochromat oil immersion objective

(Ph3, NA 1.4; Zeiss). Confocal three-dimensional (3D) micrographs

were taken using appropriate laser and filter settings for detection of

green and red fluorescent light. Z-stacks of approximately 50 mm

with optimized overlap were taken. As a reference value, z-stacks

without cells (peeled off with a glass micro needle) were performed

with the same parameters. Acquisition of a single slice took 8 s and

we typically acquired 100 slices with a distance of around 0.4 mm.

Thus, the acquisition time for one stack was around 15 min.

2.2. Bead tracking
Bead tracking for wavy substrates is challenging because of the

long stack acquisition time leading to considerable drift not

only between the deformed and the reference states, but even

within one stack. We believed that this drift did not result from

cell activity, because 24 h after spreading they were quiescent.

Moreover, the observed drift was similar at any depth in the sub-

strate. As another special feature of wavy substrates, we observed

that, in contrast to planar substrates, the point spread function

varied in space.

Our bead tracking routine consists of three steps: determi-

nation of image drift, single bead localization and feature

vector-based tracking of bead movement. To reduce noise, the

stacks were first binomially filtered with a 3 � 3 � 3 filter

kernel, voxel sizes 0.1 mm or 0.11 mm lateral and 0.39 mm or

0.56 mm vertical. Then spots (usually four) in the undeformed

corners of the image were marked (in the x–y-plane). At these

spots, a cuboid (volume of interest; VOI) with 10% of the

image size in each dimension was cropped from the first image
and cross-correlated with the second image to obtain the drift.

Because the drift in each slice of the stack can differ, this VOI

is cropped along each slice and so the drift is calculated for

every slice separately. The area in which the VOI is cross-corre-

lated with the second stack has to be larger than the maximum

shift of the two image stacks. To decrease the calculation time

for the cross correlation (CC), the size of the image stack and the

VOIs are initially reduced by two levels of a Gaussian pyramid.

The positions of the maximum CC values are then used to calculate

the drift on the full image to obtain the exact drift. This can be done

in a very small search area (5 � 5 � 5 pixels) around the previously

calculated positions. To obtain a subpixel accurate positioning of

the VOIs, parabolas were fitted through three points (maximum

of CC and both neighbours) in the x, y- and z-directions, respect-

ively. The extreme values of the fits are defined as the subpixel

accurate VOI positions. The CC and parabola fitting is also done

in the first image stack to obtain a subpixel accurate position

there. The mean difference between the VOI positions in the first

and in the second stack defines the drift, separately for each slice.

To localize beads in each image stack, both stacks were first

filtered with a 7 � 7 and a 31 � 31 binomial filter. These filtered

images were then subtracted, to obtain a bandpass-filtered stack,

with negative grey values set to zero. Then a VOI that represents

one bead in three dimensions is selected manually and fitted

to a 3D Gaussian. The fit is used as a reference template to

find other beads that match the template. The fitted Gaussian

is cross-correlated with the first and the second stack. Then the

cross-correlated dataset is segmented with a threshold (0.7) and

each segment is labelled. At the maximum CC value in each

labelled segment, the data are again fitted to a Gaussian and

the centre of mass of that fit is defined as the bead position.

Once the beads are localized in both stacks, they have to be

correlated to each other. Here, we adapted a feature vector-

based tracking method as published previously [43]. Before we

apply the tracking procedure, the determined drift is subtracted

from the bead positions found in the second stack. Then the
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Figure 2. Illustration of the direct boundary volume problem (BVP) and the work flow to solve the corresponding inverse problem. (a) Direct elastic BVP with mixed
boundary conditions. The substrate elasticity is defined by Young’s modulus E and Poisson’s ratio v. Boundary conditions: bottom—zero displacement (u ¼ 0),
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distance of a bead (B1) from stack 1 to all other beads in its neigh-

bourhood (50 � 50 pixels in the x–y- and 20 pixels in the

z-direction) is calculated. Vectors are created from B1 to the, at

most, seven beads with the lowest distance. These vectors are

added to beads (B2) in stack 2 (again only in a neighbourhood

of 50 � 50 � 20 pixels around the position of B1) and a cubic

surrounding (e.g. 7 � 7 � 7 pixels) is created at each end of the

vector. If there is a bead located within this surrounding, a hit

is counted. The more hits that are counted, the bigger is the prob-

ability that bead B1 corresponds to B2. The bead B2 with the

most hits (at least three of seven) is assigned to bead B1. If two

or more beads B2 have the same number of hits, the one with

the lowest deviation at the vector ends is chosen.
2.3. Reconstruction of substrate shape
As a pre-processing step for the traction reconstruction we need

to determine the substrate shapes. Although the substrate prep-

aration described above leads to reproducible samples with

micrometre accuracy, shape variations and material relaxation

after mould removal occasionally change the final shape. The

latter effect can in principle be predicted theoretically [50]; how-

ever, in practice local shape variations occur and make the use of

theoretical shape predictions difficult. For that reason, we deter-

mine the substrate shape for each individual TFM dataset by

image processing of the relaxed configuration of the marker

beads, which are distributed sufficiently homogeneously in the

substrate as to carve out the substrate shape.

We developed a custom mesh generation program as illus-

trated in figure 1. In figure 1a, we show an image of the marker

beads; the inset shows the strong anisotropy of the point spread

function. First, bead locations are partitioned into sections along

the long axis of the wavy pattern that are separated by a partition

width w. In a second step, bead positions are mapped to each sec-

tion plane (normal direction pointing towards the partition

direction; figure 1b). By doing this, we end up with a set of

separated slices associated with two-dimensional (2D) bead distri-

butions. After that, we calculate the 2D hull for each bead

distribution using the 2D a-shape algorithm [51] implemented

in the open-source computational geometry algorithm library

(CGAL) (figure 1c). After determination of the hull for each
segmented slice, we again stitch the determined contours together,

separated by the partition width w. We then form a 3D hexahedral

mesh that approximates the substrate shape. In this particular step,

the program uses the open-source mesh generator GMSH.1 A

representative result for the described procedure is depicted

in figure 1d.
2.4. Direct elastic problem and finite-element method
implementation

Traction reconstruction is established by solving an inverse

elastic boundary volume problem (BVP). We first describe the

corresponding direct BVP. Because Green’s functions are not

known for the wavy shapes considered here, we use the FEM.

In principle, this allows us to also use nonlinear formulations

for large deformations and nonlinear materials. However, here

we deal with linear material (PDMS) and small strains, thus

the linear formulation is sufficient. We, therefore, have to solve

the Navier–Lamé equation for the displacement field u(x) in the

computational domain V,

mDuþ ðlþ mÞrr � u ¼ 0: ð2:1Þ

Here l and m are the Lamé coefficients. Traction exerted by cells is

applied to the top surface @Vtop of the substrate volume in the

reference state V. Accordingly, the traction field t(x) enters as the

stress boundary condition, t(x) ¼ s(x)n(x), where n is the normal

vector of the unit surface element and s(x) is the substrate

Cauchy stress tensor. As illustrated in figure 2a, we choose appro-

priate mixed boundary conditions at the remaining parts of the

boundary arriving at a well-defined BVP. At the bottom surface

we require zero displacement, u(x) ¼ 0, due to rigid coupling

between the soft elastomeric substrate and the underlying rigid

glass coverslip. As the used mesh represents a cut-out of the sub-

strate, which is largely extended in lateral directions, proper

boundary conditions at the side surfaces are applied. In the case

of an infinite half-space, an appropriate boundary condition for

the side surfaces of the cut-out would be a counter stress of the

same magnitude. This, however, would lead to an undesired

recursive problem. Here we use vanishing stress boundary con-

ditions, sn ¼ 0, for sufficiently large cut-outs. Based on the
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knowledge that the displacement field monotonically decays at

least as 1/r, the influence of boundary conditions can be neglected

for sufficient large cut-outs. Therefore, we occasionally extend the

substrate mesh in the lateral directions to ensure the repression of

boundary effects.

For a given traction pattern t(x), the direct BVP formulated in

equation (2.1) is now solved by means of the FEM as typically

applied to elastic problems [52–54]. For this purpose, we transform

the elastic equations into the weak form and use linear shape func-

tions on a hexahedral lattice to arrive at an algebraic problem (the

mathematical details are provided as the electronic supplementary

material). The algebraic equations are solved with the conjugated

gradient (CG) method. Alternatively, it is also possible to directly

invert them by means of, for example, Gauss elimination. The

achieved solution can then be used to interpolate the displacement

to any position within the domainV. For the implementation of our

FEM approach, we used the FEM Cþþ library DEAL.II [55]. It pro-

vides the essential set of features to achieve an FEM calculation, for

instance managing local and global indices, matrix manipulation

feature, Gauss quadrature, coordinate transformations and solvers

for the linear algebraic system.

2.5. Inverse elastic problem
The inversion of the direct BVP is in general ill-posed, which

implies that no unique or sufficiently stable solution exists. There-

fore, regularization methods have to be used to render the inverse

problem stable. According to Tikhonov & Arsenin [56], the regu-

larized inverse problems can be formulated as a minimization

problem and in TFM the corresponding Tikhonov functional

T[t(x),l] has the general form

T[t(x0),l] ¼ L[u(x,t(x0))]þ R[t(x0),l], ð2:2Þ

where x [ V and x0 [ @Vtop. L[u(x,t(x0))] represents an error esti-

mate that assigns a value to differences between calculated and

measured displacements (the residue). The larger the deviation,

the larger is the scalar value the estimate returns. The second

term R[t(x0)] is a penalty functional introduced to recover a

well-posed solution (the regularization term) [57].

We discretized the traction field t(x) according to the FEM

mesh in order to set up a finite space of parameters. For this pur-

pose, we use interpolation based on shape functions. Hence, the

entire field is characterized by a set of fixed point values ti, with

i [ f1 . . . Ntg, which represent the degrees of freedom (d.f.) for

the considered optimization problem. As we use linear shape

functions, fixed point values are associated with nodal positions

on the top surface of the FEM mesh @Vtop. Thus, the total

number of optimization parameters Nt is determined by

the number of surface mesh vertices Ntop
v , and the number

of space dimensions (Nd ¼ 3), Nt ¼ 3�Ntop
v . The discretized

version of the Tikhonov functional then reads T[t(x0), l] ¼
L(u(x,{t1, . . . ,tNt }))þ R({t1, . . . ,tNt }; l).

We next need to define the form of the residue and the regu-

larization term in equation (2.2). Standard TFM uses the least

squares estimate L(u(x, t(x0))) ¼
PNbeads

i¼1 k u(x, t(x0))� u
exp
i k2 to

measure deviations between measured and computed displace-

ments. Additionally, most methods use zeroth-order Tikhonov

regularization R[t(x0), l] ¼ l
Ð
@Vtop
kt(x0)k2dA. This enforces a

smooth traction solution by penalizing the amount of total

force and thus represents the simplest approach to repressing

noise-induced fluctuations [35,58,59]. Thus in the standard

approach, both terms employ the L2-norm. Here we write a

more general form,

T½ft1, . . . ,tNtg; l� ¼
XNbeads

i¼1

kuFEMðxi; ft1, . . . ,tNtgÞ

� uexpðxiÞk pL þ l
XNt

j¼1

ktjk pR : ð2:3Þ
The choices p ¼ 1 and p ¼ 2 correspond to the L1- and L2-norms,

respectively. Below we will always use the standard choice

pR ¼ 2 for the regularization term. For the residue, we will

first use the standard choice pL ¼ 2, which corresponds to the

least squares estimator. From a statistical point of view, the least

squares estimator can be derived as the maximum-likelihood

estimate (MLE) for Gaussian distributed errors [60]. Later, we

will argue that pL ¼ 1 (L1-norm for the residue) is a better choice

in our case, because it deals better with the outliers in our

experimental data.

The form written in equation (2.3) implicitly assumes an isotro-

pic error (same error distribution in all spatial directions). In our

case, this assumption is not satisfied anymore, due to a reduced

resolution in the z-direction (figure 1a). Therefore, we introduce

a scaling procedure that weights the estimate contribution due to

their relative accuracy. In detail, the z-contribution is weighted

with a factor of 1/3 compared with the x- and y-contributions,

which are assumed to have the same weight.

Owing to repeated time-consuming FEM calculations of the

direct BVP during minimization of the Tikhonov functional, effi-

cient computation is a key issue in solving the inverse problem.

The overall computation time depends mainly on the number of

traction d.f., Nt. Hence, a major objective was to achieve the best

possible local accuracy for a given number of d.f., Nt. In order to

achieve this demand we used predefined mesh refinement and

adaptive local mesh refinement (h-refinement). Mesh refinement

is employed by selectively dividing volume elements into smaller

elements, which effectively increases the density of d.f. The idea

behind this is to use local variations in the mesh size to

concentrate d.f. at regions with higher levels of t. Other regions

far away from the traction sources remain coarser at the same

time. For the sake of completeness, we want to mention the

alternative of local polynomial refinement, which describes local

variation of the polynomial degree of used shape functions,

called p-refinement. Also combinations of both refinement types

in terms of hp-refinement schemes are conceivable. However, as

h-refinement and p-refinement have similar effects to the local

resolution, we here consider h-refinement only. In practice, the

h-refinement in our program is done by an adaptive scheme.

Based on reconstruction results on a coarser mesh, it is decided

by global thresholding whether an element is refined. Afterwards

the reconstruction process is restarted with the interpolated traction

field obtained previously. This process is repeated until a desired

local resolution is achieved. Alternatively, we can also implement

a predefined local refinement based on thresholding of the

measured displacement field. For the calculations in this work,

we retain adaptive local mesh refinement schemes. This procedure

is tested below by reconstruction of simulated data.

2.6. Optimization procedure
The core module of the FEM traction reconstruction program is

the implemented multi-dimensional parameter optimization

procedure based on the CG method. The implementation follows

essentially the Fletcher–Reeves variant of this algorithm as

described in [61]. Different from the standard implementation,

we parallelized most parts of the procedure, such as the numeric

gradient calculation rtT[ti] and the subsequent line minimiz-

ation. Parallel computing was realized by using the message

passing interface (MPI), which is suitable for large-scale distrib-

uted computing on computer clusters or sheared memory

systems. Although the CG method is a common tool in the

field of inverse problems (e.g. [62]), we also tested other

optimization methods, namely gradientless downhill-simplex

optimization, simple steepest descent and heuristic Monte Carlo

optimization with simulated annealing (all described in [61]).

We found that the CG method led to the shortest computation

times and excellent convergence. Figure 2b shows a schematic

representation of our complete workflow.
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3. Results
3.1. Method validation
As reported earlier, for 2D TFM our implementation of FEM-

TFM gives equivalent results to the standard approach with

FTTC [34]. In this case, FTTC is much more efficient and

faster. Here, however, we want to address 3D TFM for wavy

substrates in which a Green’s function is not known, making

FEM-TFM the most reasonable approach. In order to validate

our method for a 3D situation, we first reconstructed simulated

data for planar substrates with both tangential and normal

components. We generated these distributions by a simple

set of rules that mimic typical cellular force distributions.

Figure 3a shows a typical FTTC traction force pattern for a car-

diac myofibroblast cultured on a flat 15 kPa PDMS substrate.

This cell shows the typical dipole pattern that has been

suggested as a minimal model for a contractile cell [10].

Figure 3b illustrates the rules we use to generate artificial trac-

tion patterns. A cell is modelled as a circle with traction patches

located only in a peripheral annulus of width d. Each of these

patches carries a tangential traction stress of f ¼ 3 kPa, which

is a typical value found for cells [63,64]. However, previous

studies also reported appreciable cellular traction stress in

normal directions [39,65,66]. They found a typical pull–push

pattern, such that the cell is pulling up at the periphery and

pushing down with the cell body. The upward forces might

arise from actin fibres being anchored at the dorsal side of

the cell or at the upper side of the nucleus, while the downward

force might be the reaction force localized by the large and rela-

tively stiff nucleus [67]. Here we include these normal forces in

our simulations by adding force in the positive z-direction to

our adhesion patches that are counterbalanced by an extra trac-

tion patch located at the cell centre. Together, these rules allow

us to generate realistic traction distributions that satisfy basic

properties of a typical cell-induced 3D traction pattern.

The displacement fields resulting from these simulated trac-

tion patterns were calculated using the direct BVP introduced

above (equation (2.1)) with our FEM implementation. From

the resulting displacement field, we sampled Nbead random dis-

placements. To account for uncertainties due to the contribution

of experimental noise, we introduced additive random displace-

ment errors uerr that modify each displacement component by a

random value. Subsequently, a simulated bead displacement is

expressed by ubead ¼ uFEM þ uerr. The simulated data allow us to
validate and characterize features and limits of our method

under well-controlled conditions.

In figure 4a–c, we show the results of a typical simulation

without noise (uerr ¼ 0). Figure 4d,e depicts a comparison of

reconstruction results on a homogeneous and an adaptively

refined mesh, respectively. For the adaptive reconstruction,

we started with a two times larger mesh size than the homo-

geneous mesh. After one refinement step, we subsequently

achieved the same mesh size at refined regions, which

makes the results comparable. Both results show excellent

agreement and reconstruct correctly the original traction pat-

tern. The depicted mesh topology shows that the adaptive

refinement automatically adjusts the local mesh size to

regions of accumulated traction stress, where we accordingly

establish higher local accuracy. By doing this we saved 47%

of d.f., which has a positive effect on the computation time.

Figure 4f shows the traction profile through a reconstructed

traction patch. Both reconstructions led to a slightly

smoothed profile compared with the original. This reduced

resolution of a sharp edge can be explained by a limiting

bead density (in our simulation nbead¼ 0.048 mm22) according

to the sampling theorem by Nyquist and Shannon. From the

simulation results, we conclude that adaptive local mesh

refinement has no detrimental effect on the traction reconstruc-

tion accuracy. However, it clearly needs much less d.f. and,

therefore, is much more computer time efficient.

When solving an inverse problem the stability of the solution

strongly depends on the uncertainties in the provided data [57].

In particular, the problem might be ill posed due to the effect of

noise. This has been explicitly shown for the case of traction

reconstruction [58]. As mentioned in the introduction, exper-

imental conditions limit the resolution measured displacement

fields. The main reasons for this are the limited optical resolution

of the microscope and errors in the bead trackingprocedures. The

first issue can be treated as Gaussian-shaped errors that limit the

spatial localization of beads [33]. The latter is less relevant in the

planar 2D case because state-of-the-art 2D tracking methods are

very accurate with eventually negligible error rates. However,

bead localization and tracking in three dimensions is far more

challenging, even with modern microscopic set-ups. This is

due to anisotropic optical resolution that produces a notably

inferior accuracy in the z-direction compared with the corre-

sponding lateral directions. There already exist improved

set-ups such as dual objective super-resolution microscopy
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techniques [68–70]; however, these are not standard and rarely

available and because of this no application in TFM has been

shown so far. Therefore, we aimed at improving bead tracking

in three dimensions and at adapting the traction reconstruction

method to data with anisotropic optical resolution. In fact, we

realized that due to the substrate topography we have to deal

with a locally varying point spread function. That directly

affected the tracking of bead movements when using image

cross-correlation techniques. Hence, we applied a more robust

single bead tracking method than done in standard TFM,

using feature vectors introduced earlier for 3D TFM for the

same reasons [43]. By using this technique we obtained a signifi-

cantly improved displacement field; however, the data showed

strong and inhomogeneous drift which could not be corrected

by a single drift vector (evaluated in one focal plane). This

effect can be explained by relatively long image stack acquisition

times of approximately 30 min when recording � 100 images

per stack. Owing to this long acquisition time we observed

non-monotonic drift when comparing two image stacks. In

order to solve this problem, we applied drift correction for each

individual slice, which successfully cancelled out most of the

drift. Nevertheless, the derived displacement data showed aniso-

tropic deviations and occasionally higher densities of outliers.

Figure 5a shows the displacement field used in figure 4 with

Gaussian noise of strength 20% (measured with respect to

maximal displacement). The force reconstruction without

regularization is shown in figure 5b and clearly is not very

good. Therefore, we next used zeroth-order Tikhonov regular-

ization (R ¼ lktk2) to find an approximated reconstruction

solution. Here, we determine an optimal regularization par-

ameter by using generalized cross validation (GCV) [71]. The
optimal value of l depends on the noise level and, for the

given example, we determined l ¼ 1 �1026. The regulariz-

ation improves the result significantly, as shown in figure 5c.

The penalization of total force induced by zeroth-order Tikho-

nov regularization, however, led to traction underestimation

and edge smoothing.

Next, we simulated the presence of outliers. We drew the

additive random displacement error uerr for each bead either

from a Gaussian distribution N(snoise) or from a box-shaped

distribution Hi(wi) limited by the box width w. We decided

from which distribution an error contribution is drawn by

calculating an equally distributed random variable X over

the interval [0,1]. If X � e, we draw uerr from the box-

shaped distribution, corresponding to an outlier. In the case

of X . e, we calculated a Gaussian distribution uerr. Here, e

corresponds to the fraction of outliers. In general, there are

two possible approaches to diminish the effect of outliers

for the reconstruction. One is to filter out outliers based on

predefined criteria. This demands that appropriate filter

limits are set up. Moreover, such a procedure might overlook

valuable information in the data. As a second approach one

can use robust estimates for the optimization process. We

will show in the following that reconstruction can be

improved, when the least square estimate in the Tikhonov

functional is replaced by a robust measure that is more insen-

sitive to data outliers. We tested different robust MLEs

known from optimization theory [60].

The simplest robust estimate uses the L1-norm, r(x) ¼ jx=sj.
As the L2 estimate described above, it can be derived analyti-

cally from the maximum-likelihood assumption, in this case

based on a Laplace distribution f (x) ¼ (1=2s) exp (�jxj=s).
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The essential advantage of this estimate is its weighting of devi-

ations, which compared with the L2 is less sensitive to outlier

contributions. As alternative estimates, we implemented also

Huber functions or biweighting functions [60]. They require

an additional cut-off parameter k to characterize the transition

feature of the effective deviation weighting. This indeed requires

a good guess about expected outlier strength.

Figure 6 depicts the influence of the estimate used on the

quality of the reconstructed traction field. The simulation

study considered an isotropic Gaussian-based noise of

nnoise ¼ 0.1 and a isotropic box-shaped distribution with

w ¼ 10 mm. We investigated the convergence behaviour for

the optimization achieved by L1 and L2 estimates with

respect to the outlier fractions e ¼ 0, 0.1, 0.2, 0.3. To compare

the results, we introduced the relative displacement deviation

jDuj ¼
Pn

i¼0 ju
exp
i � uFEM

i j=juexp
i j. For e ¼ 0 (no outliers), both

estimates converge to a similar result; however, the L1 con-

verges slower. If we chose a non-zero fraction of outliers

e . 0, the convergence dynamics of the optimization pro-

cedure starts to differ between L2 and L1. The L1 still shows
a monotonic decreasing jDuj, while in the case of the L2 the

curve starts to increase again saturating into a different

solution. Corresponding traction field solutions for e ¼ 0:3

are depicted in figure 6. In the case of using the L2, the recon-

struction is strongly influenced by the fraction of outliers. By

contrast, the L1 reconstruction leads to satisfying results

comparable to the target field.

After having established a successful approach for planar

substrates with both tangential and normal forces, we finally

simulated 3D FEM-TFM with wavy substrates as shown sche-

matically in figure 7a. We first distributed random traction

patches at both flanks of the sinusoidal shape, while the traction

vectors point at a common virtual point. In a second step, all

traction directions were reoriented due to movement of the vir-

tual point in three dimensions, until a balance of overall force

was achieved. Figure 7b,c depicts an exemplary simulation

result. It shows a traction field with four distinct traction patches

with a force density of f ¼ 3 kPa. The corresponding simulated

bead displacements are depicted in figure 7c,d as projections to

the xy-plane and xz-planes, respectively. Compared with the
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planar case, the displacements in the z-direction became more

prominent (figure 7d). The resulting reconstruction shown in

figure 7e shows similar good agreement to the planar case,

thereby validating our method also for the experimental

set-up to be studied.

3.2. Morphology and traction forces of cardiac
myofibroblasts on wavy substrates

We finally investigated myofibroblasts adhered to elastic wavy

PDMS substrates with a focus on their morphology and traction

forces. For our context, the choice of PDMS has several
advantages over the PAA system, which is often employed

for planar 2D TFM. In particular, it does not swell due to

water uptake, it has superior optical properties, and it can be

reproducibly moulded into wave structures on a microscopic

scale of several tens of micrometres. We first quantified the

effect of substrate topography on cell morphology and cyto-

skeletal polarization. For this purpose, we evaluated a dataset

of stack images of 30 cells adhered to waves of approximately

70 mm width and approximately 30 mm height. A representa-

tive phase contrast image is shown in figure 8a. Such images

were used to determine the orientation of the topographic fea-

tures. The cells were fluorescently stained for cell adhesion-
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related molecules to measure their internal organization. We

determined the direction and degree of cell polarization by fit-

ting a 3D ellipse to the image and subsequently evaluated the

orientation and eccentricity of the ellipse (figure 8b). We finally

correlated the two measures. Figure 8c shows the eccentricity as

a function of the angle between the substrate and the cell orien-

tations. The plot confirms that cells tend to align with the long

axis of the substrate. Two-thirds of the cells show a ratio R1/R2

(semi-major over semi-minor) larger than 2 and approximately

80% are aligned with the wave within the angular range of

0–158. This indicates that even the cells that are close to

round have sensed the topographic features of the wavy
substrate. From our ellipse analysis we further found that

they tend to adhere most often to the wave flanks and less to

the valleys or hill tops of the height-modulated structures.

In addition to the morphological study we applied the FEM

traction reconstruction to an exemplary set of cells. Here, we

wanted to investigate the influence of environmental topogra-

phy on cellular contractility. The long acquisition time for

displacement data, however, made it very difficult to conduct

a full statistical analysis, and, therefore, in figure 9 we only

show a few typical examples of cardiac myofibroblasts cultured

on wavy substrates with a Young’s modulus of E ¼ 15 kPa. In

figure 9, two different topographies are used, micro-grooves
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and wave shapes. For the substrates in cases A/B/C we used

70/142/91 slices with a z-distance between two slices of

0.55/0.39/0.30 mm. We tracked 6205/9614/13 613 beads,

with an average distance between beads of 5.40/5.91/

2.90 mm. For the reconstruction, we used the adaptive mesh

refinement approach and started to calculate a traction solution

on a coarser mesh (approx. 50 optimization steps). Afterwards

the algorithm refined approximately 40% of the computational

grid cells at the surface based on obtained traction magnitudes.

We subsequently achieved local mesh sizes of dm ¼ 7/10/

6 mm for the corresponding cells A/B/C (figure 9). We further

used an L1 estimate for the residue and a zeroth-order Tikho-

nov regularization with L2-norm (same regularization

parameter for all data). As explained above, the z-direction is

weighted only with a factor of 1/3 due to its poor resolution

compared with the two lateral directions.

Cell A was adhered on top of a slightly curved surface

between two grooves (dimensions: h ¼ 25 mm, w ¼ 120 mm).

Compared with the others it shows the largest spread area

and a roughly homogeneous distribution of adhesion sites

(observed in a vasodilator-stimulated phosphoprotein (VASP)

fluorescence image). For this cell, we obtained the largest maxi-

mal traction as Tmax ¼ 543 Pa. Cell B occupied the edge region

of two opposite groove flanks (groove dimensions: h ¼ 30 mm,

w ¼ 70 mm). FAs were concentrated to a limited region at the

edge and the cell spanned the groove with actin SFs bridging

free space. The maximal traction was Tmax ¼ 290 Pa. Strikingly

the traction vectors revealed that most of the forces were

balanced along the edges and not at the opposite groove

flanks. Cell C spanned the gap between two wave-shaped hills

(wave shape: h¼ 30 mm, w¼ 25 mm with separation distance

d ¼ 60 mm). FAs were more concentrated at vertical parts of

the edge region with a similar total area to cell B. We derived

the lowest maximal traction Tmax ¼ 172 Pa for this cell. As for

cell B, however, most of the forces seemed to be balanced

along the right wave instead of across the gap. Therefore, we

conclude that, even if cells span two neighbouring hills, they

still tend to balance their forces along the ridges, in agreement

with the earlier observation that their cytoskeleton is on average

organized in this direction.
4. Discussion
Here we have described experimental and theoretical methods

to reconstruct cellular traction patterns of cells adhering to non-

planar (wavy) substrates. This involves novel micromoulding

techniques to prepare curved elastic substrates with embedded

fluorescent beads, improved image-processing procedures for

bead tracking and a completely novel 3D TFM workflow to

achieve traction reconstruction using FEM and optimization

procedures. We successfully checked the validity of our

method by first reconstructing simulated data considering

different experimental conditions.

As shown §3.1, the presence of outliers plays a crucial role

in proper traction force reconstruction for our 3D data on topo-

graphic substrates. By replacing the typically used L2- by an

L1-error estimate, we demonstrated a way to prevent problems

in traction reconstruction originated from outliers. The L1

estimate is a much more robust measure in the presence of out-

liers in noisy data. This can be essentially traced back to a

reduced weighting of outliers (linear weighting) during the

reconstruction process. Compared with other known robust
estimates, the L1-norm needs no additional cut-off parameters

and converges to the L2 solution for outlier-free data with

Gaussian error distributions [60]. We note that this approach

aims to improve traction field solutions for non-smooth and

noisy 3D data. It has no essential influence on the regulariz-

ation scheme. Here we stay with the standard L2-norm,

which seems appropriate for our case of dense marker beads.

Recently, it has been suggested that the L1-norm is favourable

for the regularization term in the case of high-resolution 2D

TFM [72]. Although we expect that this approach is not

required in our case of rather dense bead positioning (typical

bead difference of 4 mm and cell size around 100 mm), for

future TFM applications it seems very interesting to explore

which combination of norms for the residue and the regulariz-

ation term are most favourable in which situation.

We also emphasize the need for adaptations in the image-

processing procedures on wavy substrates. Because the point

spread function for the marker beads can vary locally in this

case, we cannot use the standard cross-correlation approach

for bead tracking, but resort to a template-matching pro-

cedure based on feature vectors [43]. We also take into

account the anisotropy in the point spread function by

using a reduced weight for the z-component in the residue.

Together with the use of the L1-norm for the residue, this

ensures a very good quality of our traction force reconstruc-

tion as validated by computer simulations. Our analysis is

facilitated by the use of topographic substrates with cylinder

symmetry, which allows us to use the slicing and meshing

procedures shown in figure 1.

We next investigated the degree and orientation of cellu-

lar polarity for cardiac myofibroblasts, which have been

exposed to a wavy substrate geometry. We found that these

cells strongly align and polarize perpendicular to the direc-

tion of maximal curvature, which has been reported before

for other types of fibroblasts on rigid microcylinders. We

note that even round cells tend to align with the substrates’

features, presumably because the feature dimensions are

such that every cell is affected by the topographical cues.

In addition to this observation we determined traction force

maps for an exemplary set of cells and demonstrated the

successful reconstruction of the 3D forces. We found that

cells also balance their forces along the orientation of the

pattern, even if at the same time they form a bridge between

neighbouring hills. Because our reconstruction is strongly

regularized due to the noise issues with wavy substrates,

the absolute values of the measured traction stresses are

expected to be lower than the actual values, as shown earlier

with model-based traction force microscopy [73]. In fact, we

expect the real traction stress to be closer to the kPa range

as used for the simulated data.

In the future, further advances in experimental techniques

as described here (including faster acquisition of the image

data, for example with a light sheet microscope) should

make a full statistical analysis feasible. It would also be inter-

esting to conduct these experiments with other cell types

whose physiological function depends on a curved or corru-

gated environment, such as podocytes filtering the blood in

kidney glomeruli.
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M. 2009 On the effect of substrate curvature on cell
mechanics. Biomaterials 30, 6674 – 6686. (doi:10.
1016/j.biomaterials.2009.08.053)

29. Charest JM, Califano JP, Carey SP, Reinhart-King CA.
2012 Fabrication of substrates with defined
mechanical properties and topographical features
for the study of cell migration. Macromol. Biosci. 12,
12 – 20. (doi:10.1002/mabi.201100264)

30. Endlich N, Endlich K. 2006 Stretch, tension and
adhesion—adaptive mechanisms of the actin
cytoskeleton in podocytes. Eur. J. Cell Biol. 85,
229 – 234. (doi:10.1016/j.ejcb.2005.09.006)

31. Cesa CM, Kirchgessner N, Mayer D, Schwarz U,
Hoffmann B, Merkel R. 2007 Micropatterned silicone
elastomer substrates for high resolution analysis of
cellular force patterns. Rev. Sci. Instrum. 78, 034301.
(doi:10.1063/1.2712870)

32. Style RW, Boltyanskiy R, German GK, Hyland C,
MacMinn CW, Mertz AF, Wilen LA, Xu Y, Dufresne
ER. 2014 Traction force microscopy in physics and
biology. Soft Matter 10, 4047 – 4055. (doi:10.1039/
c4sm00264d)

33. Plotnikov SV, Sabass B, Schwarz US, Waterman CM.
2014 High-resolution traction force microscopy,
vol. 123. Amsterdam, The Netherlands:
Elsevier Inc.
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