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When crawling on a flat substrate, living cells exert forces on it via adhesive

contacts, enabling them to build up tension within their cytoskeleton and to

change shape. The measurement of these forces has been made possible by

traction force microscopy (TFM), a technique which has allowed us to obtain

time-resolved traction force maps during cell migration. This cell ‘footprint’

is, however, not sufficient to understand the details of the mechanics of

migration, that is how cytoskeletal elements (respectively, adhesion com-

plexes) are put under tension and reinforce or deform (respectively, mature

and/or unbind) as a result. In a recent paper, we have validated a rheological

model of actomyosin linking tension, deformation and myosin activity. Here,

we complement this model with tentative models of the mechanics of

adhesion and explore how closely these models can predict the traction

forces that we recover from experimental measurements during cell migration.

The resulting mathematical problem is a PDE set on the experimentally

observed domain, which we solve using a finite-element approach. The four

parameters of the model can then be adjusted by comparison with experimen-

tal results on a single frame of an experiment, and then used to test the

predictive power of the model for following frames and other experiments.

It is found that the basic pattern of traction forces is robustly predicted by

the model and fixed parameters as a function of current geometry only.
1. Introduction
During immunoresponse and cancer metastasis formation, cells crawl on the

blood vessel wall [1]. This type of cell motion has been reproduced in vitro [2]

and has been the subject of many modelling studies [3–5].

As inertial effects and body forces are vanishingly small in this process, all

forces are instantaneously balanced in the system and, in particular, the resultant

of the traction forces that the cell exerts on its environment has to be zero. The

motion of the crawling cell is thus necessarily driven by its deformation, as the

cell changes shape both by growth and shrinkage due to (de)polymerization at

its leading edges [6,7] and simultaneously as actin cytoskeleton undergoes a per-

sistent centripetal deformation, called retrograde flow [8–10]. To result in a net

displacement of the cell with respect to its surroundings, forces need to be trans-

mitted to it. Although fluid drag and non-specific interactions with the solid

substrate are present, most of the stress is transmitted via specific adhesion inter-

action between ligands present on the surface of the substrate and transmembrane

receptors which are bound to the actin cytoskeleton [11].

The mechanical models attempting to explain cell migration from the

dynamics of its microstructure are thus focusing on the dynamics of actomyosin

and adhesion complexes [12]. Important modelling efforts have been made to

understand the initiation and maintenance of motility [13–17]. These works are

using the simple and stable shape of keratocyte cells, or a one-dimensional (1D)

simplification. While this allows for a fine understanding of possible detailed

mechanisms of motility and is based on the same mechanisms of actin (de)poly-

merization and myosin-driven retrograde flow, the migration of keratocyte does

not present the cycle of events observed in most other cell types during migration

[18]. Moreover, although these models are shown to fit experimental results, in
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general, they have not yet been exploited in a systematic manner.

Indeed, quantitative prediction of cell dynamics and exerted

forces is only at its beginning [19–21]. Whereas fitting models

remains necessary to acquire a minimal set of parameters from

a subset of the experiments available in all cases, these recent

papers are additionally predictive of other experimental con-

ditions for which no further adjustment is done.

Here we combine the prediction of a simple yet quantitat-

ively validated rheological model of actomyosin [19] with a

nonlinear model of cell adhesion adapted from [16] and simu-

late it on the actual geometry of cells tracked while crawling.

Monitoring the deformation of the substrate during the exper-

iment [22] and a traction force microscopy (TFM) method

[23–27] allow us to compute independently the traction

forces that the cell exerts on the substrate, to which the pre-

dicted traction fields can be compared. The number of

adjustable parameters is reduced to a minimum (two for the

linear model, four for the nonlinear adhesion model) and the

robustness of the parameter choice is assessed in a systematic

way. The preditive capability of the model is tested over

different cell migration events and cell types.

Experimental observations in the literature give consistent

pictures of two different scales: the microscopic scale, at which

the dynamics of the relevant molecules are well described

(actin, actin-binding molecules and adhesion molecules), and

the mesoscopic scale of the cell itself. Our approach is to write

a mechanical model based on the microscale knowledge, and

to investigate how these microscale dynamicsyield the emergent

mesoscale behaviours that are observed. In a previous paper

[19], we have successfully used this type of approach and vali-

dated quantitatively at the mesoscale a rheological constitutive

law based on a microscale model of actomyosin dynamics.

However, the set-up used in that work did not require a

precise model of the mechanics of cell adhesion, whereas this

is needed here in order to address cell crawling. Cell adhesion

models of graded complexity have been introduced by many

authors [16,28,29]. Our numerical resolution procedure and

quantitative comparison with experimental data allow us to

investigate which of these models match best the observations.
2. Mesoscale experimental observations
We observe cancer cells from two different cancer cell lines (T24

and RT112 cell lines) which are crawling on a relatively stiff gel,

E ¼ 10 kPa. Our experimental observations, traction force

recovery and the relevant other observations in the literature

are described briefly in appendix A(a) and A(b), and at

length in [27]. Here we summarize only some salliant features

that will need to be accounted for by the model predictions.

When plated on the gel, T24 cells assume an elongated

and digitated shape, while RT112 cells have a rounded

shape (figure 1). For both lines, as well as in all other obser-

vations in the literature, the traction forces they exert are

minimal close to their geometric centre and increases distally

(close to the cell edge). The tractions are oriented approxi-

mately along the normal to the cell edge, pointing inwards

(figure 1c). The rate of increase of traction force along an ima-

ginary line from cell centroid to cell edge is greater when the

cell edge is close to centroid, but the intensity of traction goes

generally to much larger values close to the part of cell edges

which are more distal (farther away from centroid). In many

instances, the maxima of the traction field are not situated
right at the cell edge but somewhat proximal (inwards)

from it, and tractions can be vanishingly small at the edge.

In what follows, we will attempt to link these observations

with both the phenomenology of adhesion complexes (as

done, e.g. in [30]) and with the mechanics of the cytoskeleton.
3. Microscale-based mechanical model
It is well established experimentally that the mechanical

properties of crawling cells are controlled by their actin struc-

tures and the proteins that bind to actin [2]. Although other

cytoskeletal components have a smaller contribution in the

mechanical balance, we will neglect them in what follows.

Above a timescale between 0.1 and 10 s, the pressure in the

cytosol equilibrates [31] and the poroelastic behaviour of

the cell becomes negligible. Thus, the variable of interest is

the stress tensor s3D in the actin meshwork (and its strain

and rate-of-strain tensors 13D and _13D, see table 1 for a list

of model variables and parameters) at any position in

the cell. In the absence of inertia and at sufficiently long

timescale, the force balance is written as

r � s3D ¼ F in V3D,

where F are bulk forces, discussed below. This internal stress

of the actin needs to be balanced at the boundaries of the

actin meshwork: thus the actin stress acting at boundaries

where adhesion molecules are present is equal to the stress

T that these exert on the environment at its boundaries.

As the actin flows, its density r will evolve. However,

there is strong experimental evidence that the density of

actin is tightly regulated by filament nucleators and various

molecules favouring growth or shrinkage of actin filaments

[32]. Denoting by �r the target density field of this regulation,

and assuming that it has a characteristic time tr, we can

describe this with an advection–reaction equation:

@r

@t
þr � ðrv3DÞ ¼ 1

tr
ð�r� rÞ,

where v3D is the velocity of actin. In what follows, we will

assume tr � D=jv3Dj, where D is the cell diameter, which

leads to the solution of the above equation r ≃ �r, a uniform

constant. This is supported by fluorescent speckle microscopy

[33] and indeed, although there are visible local variations in

the actin density on fluorescence images, the distribution of flu-

orescence intensity is well peaked and has a standard deviation

of less than 50%.

When adhering on a substrate of sufficiently large

stiffness [34], cells spread until their projected surface

Vc ¼ {ðx, yÞj9z,ðx, y, zÞ [ V3D} has a diameter D of the order

40 (RT112) to 100 mm (T24), and present a flat structure

called the lamella [33] whose height is typically less than a

few micrometres, and a dome-like structure referred to as

the actin-cap, under which the nucleus is located, which

has a height of 5–10 mm [35]. In this work, we will consider

that this aspect ratio is sufficiently small to justify a two-

dimensional (2D) approach in which the cell is treated as a

thin layer of thickness h subject to tangential surface tractions

T and bulk forces F only, but it should be borne in mind that

this is only a first approximation. In this context, we will also

consider that the variations of h are small. This geometric

setting constrains some components of the 3D stress tensor

s3D: we have s3D
zz ¼ 0 and @zs

3D
az ¼ �Ta=h for a [ fx, yg
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Figure 1. Migration of epithelial cancer cells on a 10 kPa substrate. (a) T24 cell line, (b) RT112 cell line. (c) Traction field recorded at selected instants for both cells.
(Online version in colour.)
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Figure 2. Mechanical balance and dynamics of the cell. (a) Three-dimensional mechanical balance. (b) Two-dimensional mechanical balance (top view). The 2D stress
tensor (components sxx, sxy ¼ syx, syy) and the traction field T are defined over the cell domain Vc. The stress vanishes along @Vc, sn ¼ 0. (c) Stresses applied to
a 2D element: the stress s of the neighbouring actin elements is felt at the boundaries, the reaction force of the substrate for traction T is distributed over the area of
the element, and sa is the pre-stress created by myosin contractility. Neglecting the fast elastic response for simplicity, the resultant of these stresses must be balanced
by viscous stresses, equal to taG1̇ . (d ) Rate-of-strain 1̇ of a 2D element and associated velocity field v. (e) The traction force field T, assumed tangential, is equal and
opposite to the shear components s3D

az of s 3D at the contact surface. ( f ) The binding of transmembrane adhesion complexes (red symbols) to actin is highly dynamic,
resulting in an effective viscous friction law for T. (g) The dependence of the friction number z ¼ D2cfðjvjÞ=ðL2

f c0
f Þ on the local actin speed jvj is modelled in different

ways: dashed red line, constant by piece (for 1D analytical model), solid blue line, decreasing hyperbolic tangent (for comparison with [16] and numerical simulations),
dotted red line, decreasing exponential (in good agreement with experimental measurements [30]).
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[36] (figure 2e) which allows to rewrite the problem in terms

of a 2D stress tensor, with components sab ¼ hs3D
ab , and write

the 2D force balance as

r � s ¼ hF � h@zs
3D ¼ hF þ T:
See figure 2a,b for a sketch of this mechanical balance. In

practice, F ¼ 0 as bulk forces such as gravity are negligible

and no external force is applied on the cell. At the cell edge

@Vc (which is noted experimentally to correspond to the con-

tact line of the cell with the substrate, @V3D > fz ¼ 0g), there



Table 1. Parameters and variables reference list.

notation meaning, measured or calculated value

a, b any index among x and y

1̇ rate-of-strain tensor

k 2D Lamé’s first coefficient

no experimental data

V3D space occupied by cell

Vc projection of V3D on plane (x, y)

Vi
c same, specifying frame number i

V field of view containing V c

ta relaxation time of actomyosin

ta ≃ 103 s [19]

cf effective friction coefficient

c0
f friction coefficient where jvj � v�

c1
f friction coefficient where jvj � v�

D typical diameter of cell

D ¼ 40 – 100 mm in experiments

distances non-dimensionalized by D ¼ 50 mm

G 2D shear modulus

h height of cell

h=D & 0:1, @ah & 0:1

n external normal to Vc in (x, y) plane

T characteristic time of actomyosin retrograde flow

T ¼ 103 – 104 s [19]

non-dimensional model parameters

l second viscosity, l ¼ k/G

taken equal to 1 (arbitrary)

sa ¼ saI myosin-generated 2D pre-stress [19]

non-dimensionalized by taG/T ¼ 5 kPa mm from

experiments

found to be of the order of 30, i.e. 150 kPa mm

z velocity-dependent friction coefficient

non-dimensionalized by taG=D2 ¼ 10 kPa s mm�1

z0 friction coefficient z where v � v�

found to be of the order of 20, i.e.

200 kPa s mm21.

z1 friction coefficient, where v � v�

found to vary around 5, i.e. 50 kPa s mm21

v* critical velocity ( phenomenological parameter)

found to vary around 0.1, i.e. 1023 mm s21

De Deborah number

De ¼ ta=T & 1 from experiments

taken from 0 to 1 in 1D solutions, 0 in 2D

simulations

non-dimensional model unknowns

s 2D stress tensor

non-dimensionalized by taG/T ¼ 5 kPa mm from

experiments

(Continued.)

Table 1. (Continued.)

notation meaning, measured or calculated value

v field of actomyosin velocity in plane (x, y)

non-dimensionalized by D=T ≃ 10�2 mm s�1

T field of traction

non-dimensionalized by taG/(TD) ¼ 100 Pa from

experiments
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is no specific line force so the stress tensor s along this

boundary must vanish (figure 2b)

sn ¼ 0 on @Vc: ð3:1Þ

The stress tensor s needs then to be related with the defor-

mations by a constitutive law. As most of the intracellular

stress is borne by the actin meshwork, it is the deformation of

actin which is relevant to study in a first approximation. We

have derived and validated such a rheology for the actomyosin

cortex in [19], by taking into account the dynamics of cross-

linkers that bind to actin and the input of mechanical energy

by the myosin motor molecules. The dynamics of cross-linkers

is modelled by a single constant residence time, ta, which was

found to be of the order of 103 s for two cell types (fibroblasts

and myoblasts). The myosin molecular motors, which are

among the cross-links that bind and unbind, are in addition

responsible fora supplementary term in the constitutive relation,

which reads as a pre-stress sa ¼ ðta=tmyoÞGamyoð‘bÞ2, where

amyo is the fraction of cross-linkers which are myosin filaments,

and effectuate a power-stroke of step length ‘ at frequency

1/tmyo. G is the elastic modulus of the cross-linked actin

network and b is inversely proportional to its Kuhn length.

In [37], we have shown that the fluorescence intensity of

labelled myosin molecules could provide a proxy for the

local variations of amyo; however here, in the absence of

measurements for most of individual terms in sa, we will

treat it as a constant globally, as was done successfully in

[19]. For the sake of simplicity, we will also assume that the

actin filaments are isotropically distributed in the plane parallel

to the substrate, and define the pre-stress tensor sa ¼ saI. With

these assumptions, the constitutive equation writes

ta s
r þs� taktr _1� 2taG _1 ¼ sa, ð3:2Þ

where _1 is the rate-of-strain tensor, s
r

the objective upper-

convected time-derivative of the stress tensor s and k is

Lamé’s first coefficient. The group taG has the dimension of

a viscosity and this term corresponds to the energy dissipated

in (slowly) deforming the actomyosin network [38] in an irre-

versible manner due to cross-linker unbinding [19]. This

balance of stresses and the deformations linked with the vis-

cous stresses are described in figure 2c,d. This rheology is in

line with early models of actomyosin [39] and active gels

models [40]. We do not supplement this contractile liquid be-

haviour with an elastic resistance term of the cell, contrarily

to what is done in mechanosensing [41,42] and migration

models [17]. Other models have also considered the same

rheology for cell migration, with an additional inertial term

used for numerical stabilization [4].

Finally, a rheological law must be proposed for the relation-

ship between the traction forces T and the relative displacement
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Figure 3. One-dimensional model and results. (a) Schematic of the relevant structures for cell mechanics and of the variables of interest. We define the stress tensor
s and the velocity v of the filamentous actin network at every point of the 1D domain corresponding to the cell. The cell interacts with its environment mostly
through specific adhesion complexes, which link the intracellular actin network with the substrate, we name T the traction forces that actin exerts on the substrate
via these adhesions. The relationship between stress tensor s and velocity v is modelled by the rheological constitutive law (3.4a); the relationship between the
relative velocity of actin with respect to the substrate v and the traction force field T is given by the friction model (3.3). (b) Analytical result of system (4.1) with
De ¼ 0, sa ¼ 1 and a uniform friction with friction length Lf ¼ 0.1 D. The stress tensor s (reduced to its xx component), velocity v and traction field T are
represented by their magnitude (respectively, green, black and red curves) and vector or tensor representation (green, black and red arrows or double-pointing
arrows). The stress is mostly constant and positive in the cell lamella and body, corresponding to a tension, which is balanced by centripetal traction forces con-
centrated at the periphery. The tension gives rise to a deformation rate of the actin, resulting in the retrograde flow. (c) Same as (b) but with Lf ¼ 0.3 D. The
weaker friction number leads to a wider peripheral zone of large tractions, but also to build up a lower tensile stress s, as the actin yields more and flows at higher
velocity. (d) Same as (c) but with a nonuniform friction number, equation (4.2), z1/z0 ¼ 0.16 and v* ¼ 0.26.
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between the substrate and the cell [3,36]. Here again, the rel-

evant structure to define a displacement within the cell is the

actin meshwork, which is mechanically bound to adhesion

molecules. In a first approximation, we assume that the sub-

strate displacement rate is small compared with the velocity

of the actin within the cell, j _usj � jvj. This hypothesis

will need to be questioned in future work, as experiments

show that substrate displacement rates are of the order of

1023 mm s21, comparable with the speed of retrograde flow.

With this simplifying hypothesis, the relative speed of actin

with respect to the substrate is the velocity v of actin in the lab-

oratory reference frame and _1 ¼ 1=2ðrvþrvTÞ. On the

ground that adhesion complexes are very dynamic [11], we

can expect a friction-like behaviour (figure 2f )

T ¼ cfðjvjÞv, ð3:3Þ

where cf may depend on the velocity jvj. This is assumed in

many modelling approaches, including [17,28] where cf is

taken constant, and in [43] where position-dependent and

dissymmetric adhesion is implemented.

However, experiments show that although local traction

force and actin velocity are positively correlated on the

whole, above some critical velocity, the traction forces drop

by several folds [16,30], indicating that cf is not uniformly con-

stant. The causes of the drop in cf are only speculated, as

locations with a lower cf share three related characteristics:

the actin flow speed is above a threshold v* which seems to

be a cell-type specificity (v� ≃ 0:2 mm s�1 in fast-migrating ker-

atocytes [16], v� ≃ 0:01 mm s�1 in mammalian Ptk1 epithelial

cells [30]), they are located more distally and adhesion com-

plexes there are less mature [30]. Barnhart et al. [16] propose

a differential equation that implements these different effects.
Note that the precise role of the different terms in this model

has not been experimentally tested so far, and Barnhart et al.
[16] claim that a simple algebraic relation as exemplified in

figure 2g captures the phenomenology. We choose to use

the same algebraic relationship as they do, cf ¼ cfðjvjÞ, in

order to test whether it is able to produce a fair quantitative

prediction of traction stresses.

The modelling discussed so far describes only a (dynamic)

mechanical equilibrium, giving a snapshot of the force balance

and rate of strain of the actin network. It is not in the scope of

this paper to try to predict the subsequent dynamics of the cell,

which would require to describe also processes such as actin

polymerization-based protrusion [2], or to provide some

other more or less explicit dissymetrization of the dynamics.

Indeed, in order to obtain a persisting motility, models require

a more or less explicit dissymetrization either of the actin tread-

milling [28,44], of the myosin contractility sa [16,45] or of the

curvature of a contractile structure [15]. In one dimension,

the need for such an effect can be proved [46]. Here, we

show that the traction forces observed in cells are not domi-

nated by this dissymetrical component, since an entirely

symmetrical model allows us to give good predictions of the

observations. Further refinement of the model and comparison

with the experiments, and new experiments tracking explici-

tely myosin and adhesion molecules will be needed in the

future to address this question.

Two length scales appear in the problem: one, the cell diam-

eter D, is directly observable but depends on cell type and

fluctuates during migration, the other is a friction lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffi
taG=cf

p
. The speed of retrograde flow vt measured at the

leading edge in [47] and calculated from the modelling

of cell-scale experiments in [19] is convenient to scale the
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imentally is not always right at the leading edge, the global pattern and size of high-traction regions are predicted by the model throughout the migration cycle,
across variations in cell area, aspect ratio and orientation. (d) Same for the RT112 cell in panel (b) at t ¼ 0. See electronic supplementary material, figure S5 for
t . 0. Magnitudes are given in Pascals, no parameter adjustment. (e) Relative error of the predicted tractions compared to experiments for the n ¼ 21 instants at
which a frame was recorded in experiments. Relative error on traction vectors T h � T exp

�� ��= T exp

�� ��, and on intensity of traction jT hj � jT expj
�� ��= jT expj

�� �� is
presented for the three experiments on cell types T24 and RT112. No parameter adjustment was done for individual experiments and instants, z�0 and s�a are used
throughout the n ¼ 66 frames.
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rate of deformation of the cytoskeleton: as vt is of the

order 1023–1022 mm s21, and the cell radius of the order of

tens of micrometres, a characteristic time is T ¼ 103–104 s. The

other timescale in the problem is the relaxation time ta, in

[19], we find ta ≃ 103 s: thus the visco-elastic term ta s
r

can

be expected to be of a lower magnitude thans in the consitutive

equation (3.2), although it is not a priori negligible. If we choose

to scale stresses with tavtG=D, the non-dimensional model is

z ~v� ~r � ~s ¼ 0 ð3:4aÞ

and De ~s
~r
þ ~s� k

G
tr~_1� 2~_1 ¼ ~sa: ð3:4bÞ

where we introduce the friction non-dimensional number

z ¼ D2cfðjvjÞ=ðL2
f c0

f Þ, based on a friction length Lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
taG=c0

f

q
for some reference friction coefficient c0

f and the Deborah

number De ¼ tavt=D.
4. Results
4.1. One-dimensional model predictions
In order to reach a good understanding of the mechanical

balance that the model describes, we first study it in 1D.

The cell is assumed to occupy a segment of the real axis,

and as we do not introduce explicitly a dissymetry, our

model will predict a solution which is symmetrical with

respect to the midpoint of this segment. This simplistic set-

ting thus corresponds to cells which are not migrating or

polarized. The non-dimensional equations for the permanent

regime on the domain (21,1) are

� zvþ @xs ¼ 0, ð4:1aÞ

Deð@tsþ v@xs� 2s@xvÞ þ s ¼ @xvþ sa ð4:1bÞ

and s ¼ 0 at x ¼+1, ð4:1cÞ

where we have slightly changed the non-dimensionalization,

using k1D þ 2G1D instead of G when scaling stresses. Note the

nonlinear coupling term 2Des@xv, which arises from the
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Figure 5. Two-dimensional nonlinear model predictions compared to experimental results. Two of the free parameters of the model are kept equal to z0
* ¼ 19.4

and s�a ¼ 27.7 (both non-dimensional) as in figure 4. (a) Comparison of traction field predicted by the model (red arrows) and calculated from experimental
observations (blue arrows) at the initial instant t ¼ 0 of a migration experiment of a T24 cell. To the difference of figure 4a, a non-constant friction
number z is used (see figure 2g) and the additional parameters v* and z1 are adjusted so as to fit best the experimental data. Compared to figure 4a,
the agreement in the large protrusion behind the cell leading edge (right) is better both in term of the local magnitude of traction field and in terms of
the alignment in areas where the magnitude is large. The agreement is also better in one of the sides of the uropod (top left). (b) Paired test of the
change in relative error for the nonlinear model with fixed v* and with v* adjusted at each frame. The test is relative to the linear case, results shown in
figure 4e. The ’nonlinear (NL) model with fixed v*’ makes use of the non-constant friction number z ( figure 2g) whose extra parameters are adjusted on the
first frame of the experiment only. The ‘non-linear model with adjusted v*’ corresponds to the same model, but extra parameters are adjusted on each frame
of the experiment. There is no significant change in the case of fixed v* ( p ¼ 0.53 and p ¼ 0.38 for the two error measures, respectively), but the error sig-
nificantly decreases at each frame when v* is adjusted ( p ¼ 0.010 and p ¼ 1.4 . 1026, respectively). Significance tests were performed with a paired t-test with 20
d.f. (c) Comparison of the field of traction intensity across a full migration cycle as predicted by the nonlinear model (left) and calculated from experimental
observations (right) for the T24 cell in panel (a). Magnitudes are given in Pascals. From top to bottom, a subsample of the experimentally recorded steps is
presented, every 6 min (t ¼ 0, 6, 12, 18, 24, 30, 36 min). Parameter adjustment was performed for v* and z1 only for t . 0.
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upper-convected objective derivative of the stress tensor,

in [36,43], an analogue 1D model with the co-rotational

derivative is proposed.

Analytical solutions can be obtained in the case De ¼ 0, and

numerical approximations otherwise, the solution procedure is

described in the electronic supplementary material, text A. An

example of dynamical mechanical equilibrium is shown in

figure 3b, for the case of a uniform friction number z ¼ z0

and a vanishing relaxation time De ¼ 0. A centripetal flow

vðxÞ ¼ � saffiffiffiffiffiffiffiffiffiffiffiffi
taGcf

p sinhðx
ffiffiffi
z
p
Þ

cosh
ffiffiffi
z
p ,

corresponding to the retrograde flow, is observed [36]. It is

maximal close to the cell edge, and its intensity is proportional

to the myosin activity sa, consistent with experiments [33,47].

The traction force density T is by hypothesis directly pro-

portional to the retrograde flow here, and thus centripetal
and maximal close to cell edges too. The stress in the actomyo-

sin vanishes at the cell edge, which corresponds to our imposed

boundary condition, and is maximal at the cell centre in

proportion with myosin activity sa:

sðxÞ ¼ sa 1� coshðx
ffiffiffi
z
p
Þ

cosh
ffiffiffi
z
p

� �
:

It is thus myosin activity that puts the actin network under ten-

sion, a tension which is balanced at the cell edges by friction via

the friction number z. If z is large, the tension is constant in

most of the domain and balanced by traction forces in a

narrow zone close to the edge (figure 3b).

In the case when De ¼ 0.1, which corresponds to our esti-

mates for experimental cases, the solution differs little from

the De ¼ 0 solution (electronic supplementary material,

figure S3a). For De � 1, a quantitative deviation can be

appreciated (electronic supplementary material, figure S3b),
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but there is no strong qualitative difference. We will thus

focus on the case De ¼ 0 from this point, as this allows

analytical 1D calculations and less involved numerical simu-

lations in 2D (although the visco-elastic case De . 0 can be

treated, see e.g. [48] using the approach in [49]).

We then turn to the case of a nonlinear friction number

z ¼ z(jvj), in order to allow analytical resolution we take a

piecewise constant function (figure 2g):

zðxÞ ¼ z0 if jvðxÞj , v�,
z1 else,

�
ð4:2Þ

with z1 , z0 consistently with observations [16,30]. In

figure 3d, we see that this results in a more uniform retro-

grade flow close to the cell edge, which is due to the fact

that there is less of a gradient of tension there, due to a

lower local friction. Because of the low friction number

locally, traction is low close to the cell edge, which is the phe-

nomenology that we wanted to reproduce.

Numerically, we can solve with z ¼ z0 expð�jvj=v�Þ
(figure 2g) which is closer to the experimental observations

[30], this gives a smoother behaviour but no essential

qualitative difference.
4.2. Prediction of the traction field of a motile cell
Turning now to a 2D approach, we ask whether for a given cell

shape, the above model can predict the traction pattern that we

measure by TFM, as in figure 1. Starting from the data ofVc for a

typical experimental result, we calculate using a finite-element

approach (see appendix A(c)) the traction field for a linear fric-

tion law (cf independent of v) and a choice of the two

parameters: friction number z0 and myosin contractility sa.

As in 1D, the magnitude of the stress, retrograde flow and trac-

tion forces are in direct proportion to sa (see the electronic

supplementary material, text B.2), while changes in z0 will

modify the pattern of retrograde flow and traction forces. In

consequence, we can find explicitly an optimal value for sa

for a given value of z0, and optimize for this parameter in

order to get the best fitting approximation of the experimental

traction field (figure 4a). The relative error on the traction vec-

tors is kTh � Texpk=kTexpk ¼ 0:73, that is, the error vectors

Th � Texp have a magnitude 0.73 times the experimental vec-

tors Texp in L2 norm. This can be considered a fair result for a

two-parameter fit of a vector field with rich features. Indeed,

the experimental traction field at this instant indicates that

there is probably no mature adhesion under the protrusion vis-

ible on the left hand side, since the traction field decreases

dramatically there. This feature cannot be described by this

first model where the friction number is taken to be a homo-

geneous constant, thus limiting the possibility to approximate

the experimental observations. The relative error on the inten-

sity of traction is kjThj � jTexpjk=kTexpk ¼ 0:59, thus the error

is shared between a mismatch between experimental and pre-

dicted magnitude of traction field, and some misalignment of

the experimental and predicted traction vectors. The optimal

parameters are found to be z�0 ≃ 20, which implies a friction

length of the order of 10 mm, and s�a ≃ 30. Using the numerical

value of parameters ta and vt that we have obtained in [19] for

two other cell types, this would imply that the myosin pre-

stress sa is about three times the zero-shear elastic modulus G
of the actomyosin meshwork, in [19] the same ratio was

found to be 4.3.
During the experiments, cell position and shape Vi
c and

traction forces T i
exp were acquired at several instants ti 2 min

apart. We now ask whether our model and the parameters s�a
and z�0 can, for these different cell shapes Vi

c, predict the trac-

tion forces T i
exp without further parameter adjustment. We

find that for the 21 frames of the experimental results, the rela-

tive error on traction vectors ranges from 0.53 to a maximum of

0.75, with a median of 0.60, which indicates that the parameters

that where optimal for one instant give as good results for other

frames (figure 4c,e) even though the aspect ratio of the cell

changes by a factor 2 depending on the stage of the migration

process. The relative error on traction intensities ranges from

0.48 to 0.61, with a median of 0.57.

Thus, the parameters describing the mechanical behaviour

of a migrating T24 cell are approximately conserved over more

than half an hour during crawling. We then tested whether

these parameters could also predict a good approximation of

the traction stresses exerted by another cell of the same type

in the same conditions. The comparison of the predictions of

the model, using the same values z�0 and s�a as for the first

T24 cell, are shown in the electronic supplementary material,

figure S4, the error of the predicted traction field varies in the

same range as for the first cell (figure 4e).

Next, we considered the other cell type that was studied

experimentally (RT112 cells). These cells spread to a much

lower area on the substrate and maintain a rounded shape

which evolves little in the course of migration. Although

these characteristics are reminiscent of amoeboid migration,

RT112 crawl at smaller speed and exert larger tractions than

T24 [27]. All these characteristics make RT112 cells very differ-

ent from T24, and we asked whether this is due to a different

mechanical balance altogether, or different quantitative impor-

tance of several effects. However, when applying the same

mechanical model as above with the parameters z�0 and s�a, a

fair approximation of the traction field obtained experimen-

tally is recovered (figure 4b,d). This is equally true for the all

20 frames of this RT112 experiment (electronic supplementary

material, figure S5) the median of the relative error on traction

vectors is 0.63 and its range from 0.57 to 0.71, and traction

intensities have a median error of 0.52 and a range from 0.43

to 0.57 (figure 4e).

For both RT112 and T24 cell types, experimental results

show that the traction field maxima are generally not located

quite at the cell edge, but somewhat proximal from it. As

seen in the 1D calculations (figure 3d ), this is compatible

with the model provided that there is a switch from a large fric-

tion number z0 to a lower one z1 above some relative velocity v*.

For an appropriate choice of these parameters, the model pre-

diction is improved (figure 5a). The median error on traction

vectors drops from 0.73 to 0.61 and the one on the traction

intensity from 0.59 to 0.48, the better agreement is not only in

a large part due to a better match in magnitude of the traction

in the protrusion at the cell front, but also in a better match of

the directionality of tractions in this area.

Next, we asked whether this choice of parameters is robust

in the same sense as the choice of z�0 and s�a allowed the linear

model to be predictive of the tractions at later migration stages

and for other cells. We find that if v* and z1 are assumed to

remain constant across the different stages of migration, the

nonlinear model does not significantly improve the match

between predictions and experiments. However, if v* is

adjusted for each frame, we obtain a significant decrease of

the error (figure 5b). In figure 5c, it is seen that the characteristic
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pattern of traction increase towards distal followed by an

abrupt drop near the foremost areas of protrusions is recovered

by this adhesion model.
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5. Discussion
Cell migration is known to rely on a complex machinery sub-

ject to a large number of regulatory pathways [2]. Here,

however, we show that cells which are migrating in a

smooth way without shape changes (RT112) and cells

which exhibit a multi-stage cycle of protrusion and retraction

(T24) have a similar mechanical behaviour, whose baseline

can be predicted with a simple model of actomyosin contrac-

tion and of adhesion. In particular, there is no obvious

adjustment of the global mechanical balance corresponding

to specific steps of mesenchymal migration, since all can be

approximated with the same model parameters, which

describe the myosin activity (pre-stress) and the effective

friction due to the dynamics of adhesions.

This tends to imply that in a significant measure, the

dynamics of actomyosin and of adhesions are not orche-

strated at the time scale of the migration steps, but left to

their self-organized assembly and disassembly pace. As

shown in [19], this is not in contradiction with the ‘sensing’

properties of actomyosin, since the collective dynamics of

actin and myosin give an emergent material which is intrinsi-

cally sensitive to the mechanical behaviour of the

environment, even in the absence of a regulatory signal.

This reliance of the mechanics of motility on self-organized

processes is in agreement with the robustness of this behav-

iour—indeed even lamellar fragments of cells lacking

nuclei, microtubules and most organelles can exhibit motility

[13]. This is not to say that regulation via biochemical path-

ways would not be crucial to the migration process, but

rather that they need to act only in order to tune an otherwise

self-maintained system, just as adjusting the throttle control of

an engine.

Beyond the fact that the global mechanical balance is well

approximated, the traction fields observed contain many

further details that cannot be captured by the linear model.

The most prominent of these are the decreased traction

forces at the leading edges, which are observed at most

stages of mesenchymal migration in both T24 and RT112

cells, and had been noted in the literature before [16,30]. We

find that these features can be reproduced by a nonlinear

model which includes a velocity-dependent friction coeffi-

cient. In [30], they conclude from experimental data on local

traction and actin velocity that the ageing and maturation of

adhesion complexes are not correlated with their strength,

and that the switch is based on a critical velocity v*. Here

we find, however, that the critical velocity v*, contrarily to

the myosin contractile pre-stress sa, varies at the scale of a

few minutes during cell crawling. This suggests that v* may

be the target of a biochemical regulation that would be

coupled with the migration steps.
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Appendix A. Methods
(a) Cell crawling assays and image analysis
The detailed protocol is described in [27]. Briefly, 10 kPa

polyacrylamide gels were prepared with 0.2 mm fluorescent

beads and coated with fibronection. Epithelial bladder

cancer cell lines T24 and RT112 were seeded on the gel and

left overnight to spread. Images were acquired with a time

interval of 120 s for 2 h. The cell shape Vc was acquired

either by transmission microscopy or by fluorescence reflec-

tion microscopy of actin-GFP transfected cells. Within a

domain V (the field of view), the position xi
j of bead j in

frame i is obtained with ‘ParticleTracker’ [50] in IMAGEJ soft-

ware, the relaxed (also called initial) bead position x0
j is

actually acquired at the end of the experiment by detaching

cells using distilled water, allowing to construct the set of dis-

placements ui
expðxÞ ¼

P
jðxi

j � x0
j Þdxi

j
ðxÞ (see [51] for details). V

is chosen so that juexpj is vanishingly small close to @V. In

general, we note that jui
expðxjÞj & 1 mm, while the diameter

of Vc is of the order of 50 mm.
(b) Traction force inverse problem resolution
Details can be found in [27,52,53]. The mechanical character-

ization of the gel is approximated as isotropic and elastic and

the displacements are observed to be small enough so that

linear elasticity applies. We assume that the gel can be

approximated by a half-space fz � 0g, the gel depth of

70 mm is sufficient to guarantee this for RT112 cells which

have a diameter of 50 mm [54], but can introduce an error

on some of the frames of the T24 cell migration, since it can

transiently reach a length of the order of 100 mm. Following

the study of Ambrosi [25], a reduced 2D problem is obtained

by averaging in z over an effective thickness w (typically

1.5 mm) and the adjoint problem is written on V , fz ¼ 0g
in terms of an auxiliary unknown p:

� mDus � ðlþ mÞrðr � usÞ ¼ �
xc

1
ðp� �pÞ in V,

us ¼ 0 on @V
ðA 1aÞ

and

� mDp� ðlþ mÞrðr � pÞ ¼ xexpðus � uexpÞ in V,

p ¼ 0 on @V,
ðA 1bÞ

where xc is the indicator function of Vc, xexp ¼
P

j dx0
j
ðxÞ,

�p ¼
Ð
Vc

p dx is the resultant of p over Vc and the reduced 2D

Lamé coefficients are m ¼ wE=ð2ð1þ nÞÞ and

l ¼ wEn=ð1� n2Þ. Problem (A 1) is solved for all frames i
using a finite-element method on a triangulation

T i
h ¼ T i

c,h < T i
o,h of V, where ðxi

jÞj are among the nodes and

T i
c,h is a triangulation of a polygonal approximation Vc,h of

order h2 of Vc. The calculated traction field is

Texp ¼ �ðxc=1Þðp� �pÞ, which vanishes in V\Vc and has zero

resultant. For the same reason as the resultant is zero, the

torque of the traction field also has to be zero. However, we

do not enforce this currently in the method and the fact that

the torque is small is only checked a posteriori on the calculated

traction field.

(c) Finite-element simulations and parameter fitting
In §3, we derive a tensorial visco-elastic model allowing to pre-

dict cell traction field Th from the knowledge of cell shapeVc and
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some scalar parameters, namelysa, z0, and in the nonlinear case

z1 and v*. The algorithm for the resolution of the full visco-elastic

problem is given in [48]. Here we show in one dimension that

within the range of experimentally relevant parameters, visco-

elastic effects do not affect strongly the results. Thus simulations

are shown only for the reduced viscous limit.

Briefly, we define a finite-element space Vh of piecewise

quadratic functions based on the triangulation eT i
c,h of eVc at

frame i, where eVc is the cell domain Vc observed experimentally

but with distances normalized by D ¼ 50 mm. Using the finite-

element software Rheolef, we solve the variational problem, elec-

tronic supplementary material, equation (9), in Vh for a given

choice of sa ¼ s1
a and a uniform z¼ z0 for a solution v1

h,0. In

the case of nonlinear friction, zdepends on v, a fixed-point algor-

ithm is used to construct a sequence of solutions v1
h,k using the

friction field zðxÞ ¼ zðjv1
h,k�1jðxÞÞ, until convergence.
Next, the parameters can be optimized in order to best fit

the experimental observations Texp. Note that best fit is per-

formed on one cell at the initial frame only throughout the

paper to acquire parameters sa and z0, no fitting is done

for the other frames and the other cells. We normalize Texp

by a typical value 100 Pa, and aim to minimize kTh � eTexpk
by adjusting z0 and sa. Thanks to the linearity of operators

and the scale-invariance of our choices for the function z

(see the electronic supplementary material, text B.2), mini-

mization for a given z0 with respect to sa can be done

explicitly and the minimization writes:

s�a ¼

ÐeVc

eTexp � T1
h dx

kT1
hðz0Þk

s1
a, z �0 ¼ arg min

z0

eTexp �
s�a
s1

a

T1
hðz0Þ

� �����
����:

In the rest of the article, we denote eVc and eTexp simply by Vc

and Texp.
 20160042
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