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We describe a method for the simulation of the growth of elongated plant

organs, such as seedling roots. By combining a midline representation of

the organ on a tissue scale and a vertex-based representation on the cell

scale, we obtain a multiscale method, which is able to both simulate organ

growth and incorporate cell-scale processes. Equations for the evolution of

the midline are obtained, which depend on the cell-wall properties of

individual cells through appropriate averages over the vertex-based rep-

resentation. The evolution of the organ midline is used to deform the

cellular-scale representation. This permits the investigation of the regulation

of organ growth through the cell-scale transport of the plant hormone auxin.

The utility of this method is demonstrated in simulating the early stages of

the response of a root to gravity, using a vertex-based template acquired

from confocal imaging. Asymmetries in the concentrations of auxin between

the upper and lower sides of the root lead to bending of the root midline,

reflecting a gravitropic response.
1. Introduction
Growth is one of the main responses plants possess with which they adapt to

their environment. To extract resources from their surroundings efficiently,

plants change their growth patterns in response to external stimuli such as

light, touch and the direction of gravity. As a result, the simulation of many pro-

cesses in plant development requires an integrative model for organ growth.

Plant organs usually have a multicellular structure; for example, the primary

root of Arabidopsis thaliana contains multiple concentric cylindrical layers of

cells. As adjacent cells are tightly bound to each other, the overall growth of

the organ must be continuous (symplastic). However, different tissue layers

have different responses to plant hormones such as auxin and giberellic acid;

this facilitates integrated responses to simultaneous environmental and intrinsic

stimuli [1].

The rate at which the plant hormone auxin accumulates in a cell is regulated

by auxin efflux carriers, such as those of the PIN-FORMED (PIN) auxin efflux

carrier family; these have an asymmetric, polar distribution on the plasma

membrane of the cell that leads to directed auxin transport on a tissue scale.

Simulations of auxin transport in the tip of the primary root [2–5], particularly

in the complex region containing the columella cells and lateral root cap, require

a geometrical representation that accurately identifies individual cells and their

spatial relationship with other cells. Individual cell geometries must be rep-

resented with a sufficient level of detail to (at least) permit the calculation of

the volumes (areas in two dimensions) of cells and the surface areas (lengths)

of the interfaces between neighbouring cells. Early models for auxin transport

in the root tip [4,6] used idealized templates to represent the geometries of indi-

vidual cells. With recent advances in imaging and image analysis, it has become

possible to generate templates for simulations from actual cellular geometries,

both in two [2] and three dimensions [7,8].
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Current mechanical models for plant organs generally fall

into one of two categories: those that treat the organ as a con-

tinuum, and those that consider individual cells. Treating the

organ as a continuum has computational and conceptual

advantages, but fails to capture the precise multicellular

structure. A range of models that consider individual cells

have been developed for plant organs. These include, but

are not limited to, cellular Potts, vertex [9,10], vertex-element

[11] or finite-element [7,12–14] formulations. Those models

which explicitly represent individual cell walls (i.e. vertex-

element and finite-element models) can be sensitive to the

precise positioning of cell walls [11], which is difficult to

obtain with sufficient accuracy for a whole plant organ

from microscopy images.

Here, we present a hybrid model, which resolves the

geometries of individual cells through a vertex-based rep-

resentation, but uses a coarser-scale midline representation

to track organ growth. The evolution of the organ in its mid-

line representation depends upon the properties of individual

cells through averaged constitutive relationships, thereby

allowing cell-scale changes in cell-wall mechanical properties,

e.g. caused by changes in the concentration of the plant hor-

mone auxin in a particular tissue layer, to affect growth on

the whole organ scale. In turn, growth and deformation

of the organ midline affects the cell-scale geometry, changing

the lengths of cell walls and volumes of cells, thereby modi-

fying hormone transport. It also changes the distance of cells

from the organ tip, which in the model used here modifies

the mechanical properties of cell walls. This serves as a

simple, but concrete, example of a multiresolution method

for multicellular organs. The effectiveness of this approach

is illustrated by its application to the early stages of the

bending of a growing root in response to gravity.

The model approach is in many ways similar to those

adopted in implementing multiscale homogenization

methods, such as classical techniques [15] and methods such

as representative volume elements [16]. Such methods typi-

cally make the assumption that the microscale problem is

spatially periodic, or can be represented as a realization of a

random process, and do not explicitly track all the changes

to the microscale structure. While plant tissue is often highly

organized, the specific geometries that we wish to use do not

satisfy these assumptions. Numerical methods based upon

representative volume elements, in which mechanical proper-

ties of the material are obtained from simulations of small

regions around the quadrature points of a coarse finite-

element discretization, have been applied to plant organs

[17,18]. However, this technique requires numerical simu-

lation of the microscale model.

Moreover, unlike classical homogenization problems in

continuum mechanics, the microscale problem here is not

necessarily well characterized; we have an incomplete under-

standing of the material properties of cell walls, and it is

challenging to measure accurately the geometries of individ-

ual cells in a multicellular tissue. As a result, the principal

aim is not to solve the microscale problem accurately

(as may be the case for homogenization or multigrid

methods, for example), but instead to generate effective

macroscale equations which capture the qualitative and, to

an appropriate degree, the quantitative behaviour of the

organ. Our approach exploits the fact that, for symplastic

growth, strain fields typically vary smoothly over the tissue

scale. By contrast, stress fields can share the heterogeneity
of the microstructure [19], supporting integration of stress

up to the tissue level.

The method used here is loosely based upon the Cauchy–

Born rule for the mechanical properties of periodic structures:

while the cell-scale structure here is not periodic, we assume

that the deformation on the cell-scale is a smooth interpolation

of the deformation on the tissue scale. The Cauchy–Born rule

has been shown to have deficiencies when applied to models

for animal tissues [18,20,21], largely because of the potential

for lattice-scale deformations. However, plant tissues are

highly ordered and grow in a symplastic fashion, which we

expect to mitigate such deficiencies. Related methods have

been developed in computer graphics, where the simulation

of the mechanical behaviour of objects with highly complex

(and sometimes topologically defective) geometries is of inter-

est. One approach, e.g. used in [22], is to generate a simpler,

coarse geometry; the mechanical behaviour of this coarse

geometry is simulated and, through suitable interpolation,

used to deform the detailed geometry.

The paper is organized as follows. Section 2 briefly

describes the cellular-scale (vertex-based) representation and

details the midline approach and computational implemen-

tation. Section 3 describes illustrative numerical results, and

we summarize the advantages and limitations of the results

in §4. Details of the auxin transport model, the coordinate trans-

formations used for the midline model and the precise form of

the growth profile used are described in the appendices.
2. Material and methods
Here, in order to describe the method in a simple context, we

consider a two-dimensional model of a plant organ, where all

points under consideration lie in a plane; therefore, individual

cells occupy two-dimensional regions, and the organ midline is

a curve lying in this two-dimensional plane.
2.1. Vertex-based organ representation
We use a vertex-based representation of the cellular-scale geome-

try of the organ (figure 1), as has previously been employed in

a large number of other simulations (e.g. [23]). Cells occupy

polygonal regions, described by the positions of their vertices;

neighbouring cells have common vertices, which enforce the

symplastic nature of organ growth. In the simulations of this

paper, the implementation of a vertex-based tissue from

the OpenAlea software platform [24] was used. Using such a

representation, it is straightforward to calculate geometrical

quantities such as cell areas and the lengths of the interfaces

between neighbouring cells, which are needed for models of

auxin transport and other cell-scale processes.

While the method described here can be used without trian-

gulating the polygonal regions occupied by each cell, for the

purposes of the simulations described below it proves very

useful to do so. One reason for this is that the growth of

organs varies over length scales that are comparable with the

size of cells [25], which suggests that it is likely that the mechan-

ical properties of cell walls are not uniform on each cell. Another

reason is that it simplifies the calculation of the integrals

appearing in the discretized versions of the midline equations.

Triangularization of the vertex-based tissue representation is

perfomed using gmsh [26], which uses a Delaunay algorithm.

Additional vertices are inserted within cell walls and in the

interior of cells to enforce a maximum triangle area.



Figure 1. Vertex-based organ representation. Circles indicate vertices. Grey
lines show triangulation of the polygonal regions. Grey circles are vertices
inserted within cells for the purposes of triangulation. Coloured shading
indicates cell type within the organ.
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Figure 2. Midline organ representation in two spatial dimensions. The vari-
able s describes distance along the midline (thick black line), which is of total
length L. At a point r on the midline of the tissue, t and n are the tangent
and normal vectors, respectively. The angle made between the positive
x-direction and the tangent is denoted by u. The curvature k is the rate
of change of u with respect to s, or equivalently the reciprocal of the
radius of the osculating circle meeting the surface at a point (brown). The
variable j is the proportion of the distance of a point along the midline
in the initial configuration; a point at constant j corresponds to a material
point. This coordinate system is extended to points away from the midline
through the variable h, which is the (signed) distance from a point x to
the midline along a line normal to the midline.
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2.2. Midline organ representation
Here, we outline the mathematical details of our midline descrip-

tion. A more general kinematic framework for three-dimensional

deformations of elongating rods can be found in [27], for

example. Compared with that study, we consider the midline

of a two-dimensional object (rather than a three-dimensional

rod) restricted to deform in a plane, and as we consider a viscous

(rather than elastic) constitutive model we will be concerned with

the strain rates (rather than strains) experienced by the material.

The geometry is described on a larger scale by a curved line

through the midline of the organ, as can be seen in figure 2.

For the purposes of simulation, the midline of the organ is

parametrized using a Lagrangian representation, i.e.

x ¼ rðj, tÞ, 0 � j � 1, ð2:1Þ

where j is constant following a material point; j ¼ 0 corresponds

to a fixed point on the organ (the base) and j ¼ 1 corresponds to

the tip or apex of the organ. Using such a representation,

common measures of organ geometry can be easily calculated;

distance along the midline is given by the integral of the stretch

sðj, tÞ ¼
ðj

0

krjkdj0, ð2:2Þ

so the total length of the organ is given by

LðtÞ ¼
ð1

0

krjkdj0: ð2:3Þ

Note also that sj ¼ krjk. Some plant organs, such as roots, grow

mostly in a region near the tip, so for the purposes of specifying

growth profiles we also introduce the distance from the tip

d ¼ LðtÞ � s. The local unit tangent, t, and normal, n, to the mid-

line are given by

tðj, tÞ ¼ rs ¼
rj
krjk

, nðj, tÞ ¼ k ^ t, ð2:4Þ

where k is a unit vector in the positive z-direction, normal to the

plane of interest. The angle uðj, tÞ, between the positive x-axis

and the tangent to the midline, is chosen such that

t ¼ ðcos u, sin uÞ, n ¼ ð�sin u, cos uÞ: ð2:5Þ

One key measurement of the local shape of the organ is its

curvature, defined by

kðj, tÞ ; us: ð2:6Þ

In the simulations, we will fix the position and angle at the end of

the midline where j ¼ 0, so rð0, tÞ ¼ r0 and uð0, tÞ ¼ u0 for all t.
The midline path is then fully specified, and can be found from

integrating (2.4)–(2.6) with respect to j.
A number of measures have been proposed to describe the

local kinematics of growth. The (Lagrangian) velocities of

material points on the midline (relative to r0) are given by

uðj, tÞ ¼ rt: ð2:7Þ

The speed of a point along the midline is similarly given by

v ¼ st: ð2:8Þ

We also define the spin (angular velocity) of a point on the mid-

line to be

v ¼ ut: ð2:9Þ

The most common measure for the rate of growth along the

organ axis is the relative elemental growth rate or relative

elongation rate (RER), given by

gðj, tÞ ¼ krjkt

krjk
¼ rj � rjt

krjk2
¼ vs: ð2:10Þ

Here, we choose to describe bending of the root midline through

the rate of change of curvature (following a material point),

_k ; kt.

2.2.1. Relating midline and Cartesian coordinates
The midline representation describes the locations and trajec-

tories of material points lying on the midline of the organ. By

using curvilinear coordinates defined relative to the midline,

we may extend this description to the whole of the organ in

the form

xðj,h, tÞ ¼ rðj, tÞ þ hnðj, tÞ: ð2:11Þ

For each point x in the organ, we find the nearest point r on the

midline; j is then the midline coordinate of r, and h is the signed

distance from the point x to the midline at r. Assuming that the

tissue does not undergo shear deformation, these coordinates are

orthogonal, i.e. xj � xh ¼ 0 everywhere, and uniquely defined in a

local neighbourhood of the midline (provided h is less than the

maximum value of jk�1j ), assuming that the midline does not

turn through more than 1808 (i.e. does not double back upon

itself ). The vertices in the vertex-based representation will be

assumed to remain at fixed positions in the midline coordinate

system.

As described in more detail in appendix A, the rate of strain

tensor is given by

e ¼ 1

2
ðruþ ðruÞTÞ ¼ et � t, ð2:12Þ
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i.e. it is diagonal in these curvilinear coordinates, with zero strain

rate normal to the midline, and strain rate e parallel to the

midline, where this is given by

e ¼ g� _kh

1� kh
: ð2:13Þ

2.3. Viscous and elastic growth models
Here, we will consider plant organs over sufficiently long

time scales and sufficiently short length scales that the effects

of inertia are negligible. As a consequence, each material element

in the tissue is in mechanical quasi-equilibrium. This will require

a model for the constitutive law, which relates the deformation in

the tissue to material stresses.

Multicellular models, which explicitly represent individual

cell walls, have tended to use one of two main classes of consti-

tutive laws: elastic growth models and viscous growth models.

Elastic growth models treat the cell wall on short time scales

as an elastic material. The strain generated by cell-wall defor-

mation relaxes over longer time scales through growth. Various

different models for strain relaxation have been proposed

[12,13,28].

Viscous growth models treat the cell wall as a viscous

material, with cell-wall stresses depending on the strain rate in

the wall rather than the strain [29,30]. Such a model is appropriate

to capture growth processes, which occur over time scales longer

than those on which elastic stresses relax, and has the advantages

of being computationally and conceptually simpler than elastic

growth models, as the viscous constitutive law in some respects

(see below) combines the elastic constitutive law and the growth

law. However, viscous models do have the weaknesses that they

are not appropriate to study deformations occurring over short

time scales (such as indentation experiments).

2.3.1. Relationship between viscous and elastic growth models
A number of different elastic growth models are possible. The

simplest possible one-dimensional model consists of a linearly

elastic spring, with undeformed length l0 that grows at a rate

proportional to the strain (or stress) in the spring, for which

T ¼ l
l
l0
� 1

� �
d

_l0
l0
¼ l

l0
� 1, ð2:14Þ

where l is the length of the spring and l the spring constant.

We assume that l varies over time scales much longer than the

relaxation time scale d, which we take to be small.

The second part of (2.14) gives us that, to leading order in d,

l≃ l0. To next order in d, this equation becomes l� l0 ¼ d_l0 ≃ d_l.
Substituting these approximations into the first part of equation

(2.14) gives

T ≃ ld
_l
l
, ð2:15Þ

so the forces in the spring can be seen to be approximated by a

viscous element (or dashpot) with viscosity ld, provided that

the time scale of deformation is much longer than the relaxation

time for viscous stresses. In this sense, viscoelastic growth

models of the form (2.14) can be approximated by viscous

growth models over long time scales. In modelling plant tissues,

it is common for viscous relationships such as (2.15) to be sup-

plemented with a threshold stress (or strain) above which the

material yields irreversibly [31], but we do not incorporate this

feature here.

2.4. Midline evolution equations
The midline evolution equations that will be obtained are similar

to those in [29]. However, in that work the equations were derived
from consideration of the forces acting on a cross-section normal to

the axis of the root, which requires that both the cross-sectional

cellular geometry and the mechanical properties of cells vary

slowly along the organ axis. Here, we wish to derive the midline

equations in a variational form, as this makes it simpler to deduce

the discrete forms of the midline equations that we use for simu-

lation. This is made more complicated by the fact that variational

principles for dissipative systems (away from equilibrium) may

not be as well grounded as those for elastic solids, for example.

Below, we sketch out a plausible approach to the derivation of

the governing system that we then implement computationally;

given our focus on the practical implementation of the hybrid

model, we here leave more rigorous considerations on one side.
2.4.1. Energy dissipation for viscous models
In analogy with Stokes’ law for viscous flow, we will use an

energy dissipation principle to derive the evolution equations

of the organ midline. Introducing a wall viscosity m, the energy

dissipation rate per unit area is 2me2, so the overall rate of

energy dissipation is given by

D ¼
ð

R
2me2 dA, ð2:16Þ

where this integral is over the region in two dimensions R occu-

pied by the organ. We expect that the evolution of the midline

will be an extremum of D, subject to the constraint that the

work done by the internal pressure forces (turgor) be equal to

the viscous dissipation, i.e. that

0 ¼
ð

R
eð2me� pÞdA: ð2:17Þ

Thus, using the method of Lagrange multipliers, we find that the

midline evolution must be a stationary point of

H ¼
ð

R
ðme2 � peÞdA: ð2:18Þ
2.4.2. Midline equations from variational principle
The evolution of the organ midline is a stationary point of (2.18)

at each time t, with respect to variations in the RER gðsÞ and

curvature generation rate _kðsÞ. Using (2.13) gives

Hð _k,g; tÞ ¼
ð

RðtÞ
mðs,h; tÞ gðs; tÞ � _kðs; tÞh

1� kðs; tÞh

� �2

� pðs,h; tÞ gðs; tÞ � _kðs; tÞh
1� kðs; tÞh

� �
dA: ð2:19Þ

Here, for clarity we show the explicit dependence of all quantities

on s, h and t; in the remainder of this section we will omit the

dependence on t for conciseness. We desire that the midline evol-

ution be an extremum of H. Writing ĝðsÞ ¼ gðsÞ þ dgðsÞ,
_̂kðsÞ ¼ _kðsÞ þ d _kðsÞ, we have

dH ;Hð _̂k, ĝÞ �Hð _k,gÞ

¼
ð

R
2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �

� dgðsÞ � hd _kðsÞ
1� kðsÞh

� �
dA:

ð2:20Þ

Splitting this into two gives

dH ¼
ð

R
dgðsÞ 2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �
dA

�
ð

R

hd _kðsÞ
1� kðsÞh 2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �
dA:

ð2:21Þ
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To be a stationary point, these two integrals must indepen-

dently be zero for all variations dgðsÞ and d _kðsÞ. When we

change the integration variables to midline coordinates ðs,hÞ,
for which dA ¼ ð1� kðsÞhÞdsdh, this condition becomes

0 ¼
ðEþðsÞ

E�ðsÞ
ð1� kðsÞhÞ

� 2mðs,hÞ gðsÞ � _kðsÞh
1� kðsÞh

� �
� pðs,hÞ

� �
dh ð2:22aÞ

and

0 ¼
ðEþðsÞ

E�ðsÞ
h 2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �
dh, ð2:22bÞ

for all 0 � s � L, where these integrals at each s are over the por-

tion of the line normal to the midline that lies within the region

occupied by the organ, E�ðsÞ � h � EþðsÞ (i.e. these amount to

integrated versions of the Euler–Lagrange equations arising

from (2.19)). Identifying

TðsÞ ¼
ðEþðsÞ

E�ðsÞ
2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �
dh ð2:23Þ

and

MðsÞ ¼
ðEþðsÞ

E�ðsÞ
h 2mðs,hÞ gðsÞ � _kðsÞh

1� kðsÞh

� �
� pðs,hÞ

� �
dh,

ð2:24Þ

as the net tension and moment acting on each cross-section

normal to the root midline, these equations are

0 ¼ TðsÞ ¼ MðsÞ, ð2:25Þ

for all 0 � s � L. Using the expressions for TðsÞ and MðsÞ, we can

find gðsÞ and _kðsÞ at each point s as the solution of the two-

dimensional linear system

2g

ðEþðsÞ

E�ðsÞ
mðs,hÞdh

� 2 _kðsÞ
ðEþðsÞ

E�ðsÞ

mðs,hÞh
1� kðsÞhdh ¼

ðEþðsÞ

E�ðsÞ
pðs,hÞdh ð2:26Þ

and

2g

ðEþðsÞ

E�ðsÞ
mðs,hÞhdh

� 2 _kðsÞ
ðEþðsÞ

E�ðsÞ

mðs,hÞh2

1� kðsÞhdh ¼
ðEþðsÞ

E�ðsÞ
pðs,hÞhdh: ð2:27Þ

When the organ curvature is small relative to its thickness,

i.e. kðsÞjE+ðsÞj�1, we have

gðsÞ ¼ kpl
2kml� 2ðkmhl2=kmh2lÞ

, _kðsÞ ¼ kmhl
kmh2l

, ð2:28Þ
if the midline is chosen such that kpl ¼ 0, where here

kflðsÞ ¼
Ð EþðsÞ

E�ðsÞ fðs,hÞdh
EþðsÞ � E�ðsÞ

ð2:29Þ

denotes the average of a quantity fðs,hÞ over the line normal to

the midline at each s. These correspond to the two-dimensional

version of the midline equations from [29].

2.5. Midline discretization
Simulation of the midline equations for complex geometries

generally requires discretization of the midline geometry. The

simplest approach is to treat the midline as a piecewise circular

curve, as shown in figure 3; such a choice is natural as it leads

to a piecewise constant curvature k, although other discretiza-

tions with sufficient smoothness such as piecewise polynomial

splines would be feasible. This consists of N sections with

length ln and curvature kn, for n ¼ 0, . . . , N � 1. We then replace

the midline coordinates for each vertex, ðjm,hmÞ by ðjm, ~jm,hmÞ,
where j is the index of the piecewise circular section containing

the vertex and ~j is the proportion of the distance along the

circular section that the nearest point on the midline lies.

Substituting this discretization into (2.20) gives

H ¼
X

n

ð
Rn

m gn �
_knh

1� knh

� �2

�p gn �
_knh

1� knh

� �
dA, ð2:30Þ

dH ¼
X

n
dgn

ð
Rn

2m gn �
_knh

1� knh

� �
� p

� �
dA,

� _kn

ð
Rn

1

1� knh
2m gn �

_knh

1� knh

� �
� p

� �
dA, ð2:31Þ

where Rn is the region sn � s � snþ1, E�ðsÞ � h � EþðsÞ occupied

by the organ within the nth midline section, where

sn ¼
Xn

m¼0

lm: ð2:32Þ

On transforming the integration to midline coordinates, this can

be written as

dH ¼
X

n
{dgnðTn � knMnÞ � d _knMn}, ð2:33Þ

where

Tn ¼
ðsnþ1

sn

ðEþðsÞ

E�ðsÞ
2m gn �

_knh

1� knh

� �
� p

� �
dhds ð2:34Þ

and

Mn ¼
ðsnþ1

sn

ðEþðsÞ

E�ðsÞ
h 2m gn �

_knh

1� knh

� �
� p

� �
dhds: ð2:35Þ

Thus, we find that the net tension and moment vanish over

each section. This gives equations for the evolution of kn and
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gn, namely that for each n ¼ 0, . . . , N � 1, kn and gn are the

solutions of the two-dimensional linear system

2gnkmln � 2 _knk mh

1� knh
ln
¼ kpln ð2:36aÞ

and

2gnkmhln � 2 _knk mh2

1� knh
ln
¼ kphln: ð2:36bÞ

Here

kfln ¼
Ð snþ1

sn

Ð EþðsÞ
E�ðsÞ fdhdsÐ snþ1

sn
EþðsÞ � E�ðsÞds

: ð2:37Þ

For the purposes of simulation, it is easier to compute all

integrals in terms of spatial coordinates, in particular this is

because edges between vertices will be treated as straight lines

in Cartesian coordinates, rather than in the midline coordinate

system. Transforming back into Cartesian coordinates for the

integration variables, and for simplicity subtracting kn times

(2.36b) from (2.36a), the equations for each section become

2gnkmlRn
� 2 _knk mh

1� knh
lRn

¼ kplRn
ð2:38aÞ

and

2gnk mh

1� knh
lRn

� 2 _knk mh2

ð1� knhÞ2 lRn

¼ k ph
1� knh

lRn

:

ð2:38bÞ

Here,

kflRn
;

Ð
Rn

fdAÐ
Rn

dA
: ð2:39Þ

These integrals are approximated by numerical quadrature

using the triangularization of the vertex-based tissue represen-

tation. Integrands are evaluated at the three vertices of each

triangle; each vertex contributes Af=3 to the integral corre-

sponding to the midline section that contains it, where A is

the area of the triangle and f the value of the integrand at

the vertex.
2.6. Regulation of cell-wall mechanical properties
One key feature of this computational approach is that it can

incorporate regulation of cell-wall mechanical properties through

cell-scale processes. The regulation of growth in the primary root

tip is likely to be the consequence of the combination of many

different signals, some of which are typically diffusible hor-

mones. Modelling the complex interactions between multiple

hormones is beyond the scope of this study. We instead choose

a simple model for the regulation of cell-wall properties. The hor-

mone auxin is thought to be the key signal generating growth

differences between the upper and lower sides of the root

during gravitropic bending; evidence indicates that the epider-

mal (outermost) cell tissue plays a primary role in responding

to this auxin asymmetry and generating bending [6]. All cells

are taken to have uniform constant turgor pressure P, and the

viscosities of the cell walls (apart from those in the epidermis)

are chosen such that the RER of the root adopts the Peters-

Baskin step-stool function gPBðdÞ ([25], and here described in

appendix D)

m ¼ P
2gPBðdÞ

, ð2:40Þ

where d ¼ L� s is the distance from the root tip. However, as

noted above, we wish to let the cell-wall properties of epidermal

cells outside the meristem be regulated by auxin. As a simple
method, we choose epidermal cell viscosities to be

m ¼ P
2gPBðdÞ

1� bMðdÞ þ bMðdÞ 2a
ka þ a

� �
, ð2:41Þ

where a is the cellular auxin concentration (in arb. units, scaled

such that the concentration in the central vasculature at the

base of the organ is 2), ka ¼ 0:6 is the half-saturation constant,

b ¼ 0:8 controls the amplitude of the response and MðdÞ is

chosen to be a smooth function which is approximately zero

within the meristem and one outside it, namely

MðdÞ ¼ 1

2
erfc( eMðdM � dÞÞ, ð2:42Þ

where eM ¼ 0:2, dM ¼ 300 mm, and erfc denotes the complemen-

tary error function. Cellular auxin concentrations are computed

using a model described in appendix C.

2.7. Effect of midline evolution on cell-level
vertex-based representation

The equations (2.38) govern the evolution in time of the discrete

midline; here, we describe how this is used to update the vertex-

based representation of the organ.

At the start of each time step, we calculate the discrete midline

coordinates ðjm, ~jm,hmÞ for each of the vertices in the cell-scale

representation using the method described in appendix Ba. Note

that, while usually constant between time steps, these coordinates

may change owing to subdivision of the discrete midline, and new

vertices may be introduced following cell division. Cell-level prop-

erties (such as auxin concentrations) are updated (e.g. using the

auxin transport model described in appendix C) to permit the cal-

culation of cell-wall viscosities.

Then, using the discretized midline equations (2.38), the

evolution of the organ midline over one time step is calculated.

The new positions of the vertices in Cartesian coordinates are

calculated using the discrete midline coordinates and the

relationship (B 1). As a result of this step, cell areas and cell-

wall lengths may change, and these are recomputed. Concen-

trations of substances contained by cells (such as hormones)

are updated to reflect the effect of dilution. Vertex velocites can

also be calculated using the derivatives of (B 1) with respect to

the midline variables; these are used for the specification of the

axis of cell division.

From this, we see that the evolution of the macroscopic mid-

line affects the cell-level properties of the simulation in a number

of different ways. Changes in the areas of cells and the lengths of

the walls between neighbouring cells modify the transport of

auxin between cells, thereby affecting the auxin levels experi-

enced by cells. These changes in cell area also change hormone

concentrations through dilution, although for auxin this effect

is small compared with transport. The evolution of the macro-

scopic midline also changes the distance of cells from the apex

of the tissue, and, therefore, cell-wall mechanical properties.

2.8. Simulation overview
At each time step, the following operations are performed in

order.

— Processes on the vertex-based mesh, such as auxin transport,

are evolved for one time step.

— The viscosity m for each (triangle of the) cell wall is calculated.

— The mean viscosity kmlRn
, the corresponding moments

kmh=ð1� knhÞlRn
, kmh2=ð1� knhÞ2lRn

, and the mean kplRn

and moment kph=(1� knh)l of the pressure are calculated for

each section of the midline.

— The lengths and curvatures of each of the midline sections are

updated from (2.38) using a simple first-order forward Euler

method.
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— The positions of each of the vertices in Cartesian coordinates is

updated using the coordinate transformation (B 1).

— Cell-level quantities, such as auxin concentration, are updated

based on the change in cell size over the growth step.

— Cell division is performed.

— Midline sections, which have exceeded a specified

threshold in length, are divided into two, and midline
coordinates for the vertices in this section updated to reflect

this change.

We note here that the numerical approximations made in this

simulation are numerical integration the system of the ordinary

differential equations for auxin transport [32], quadrature over

the triangles to approximate the integrals occurring in (2.36),
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the piecewise constant approximation of the midline, and the

forward Euler method used for the evolution of the lengths

and curvatures of the midline sections.
3. Results
3.1. Organ bending
We first investigate the behaviour of this method when

applied to the growth of an organ with a relatively simple,

artificial geometry. The initial shape of the organ was taken

to be a rectangle of height H ¼ 100 mm and length

L ¼ 500 mm. This was subdivided in the y-direction into

n ¼ 5 files of cells (of height 20 mm). Each file of cells was

further subdivided in the x-direction into cells, starting at

the left-hand end of the tissue (smallest x-coordinate), with

each cell length being drawn from a uniform distribution

on ½Lx, 2Lx�, where Lx ¼ 50 mm. Cell-wall viscosities were

chosen to be m ¼ 0:15 MPa h�1, except for the uppermost

layer of cells, which we took to be easier to extend, with

m ¼ m̂ ¼ 0:13 MPa h�1. Cellular turgor pressures were taken

to be P ¼ 0:3 MPa. (Note that similar simulations have been

carried out in the context of a vertex-element method; see

[11, fig. 6].) The midline was initially discretized into N ¼ 9

sections of equal length.
Results of these simulations are shown in figure 4. From

figure 4d, we see that the organ extends, and from figure 4e
that the tip angle of the organ increases with time. The

number of midline sections, N, increases adaptively with

time, through midline sections being divided into two

when they exceed lc ¼ 90 mm. Simulations with increased

number of initial midline sections (N ¼ 19) and smaller

threshold for division (lc ¼ 45 mm) gave results which were

in close numerical agreement; the relative difference in both

midline length and tip angle after 1 h were less than 10�5.

We also explored the effect of the choice of the organ midline.

The midline of an extended body is not well defined; one candi-

date for the organ midline, namely the medial axis [33], tends to

branch towards the tip of the organ. Using a midline offset by a

distance 40 mm from the centre of the organ figure 4b, it can be

seen that the length figure 4d and tip angle (figure 4e) of the

resulting simulation are very close to those obtained using the

centreline of the organ. Note that, in the simulations of figs 4–

7, the small curvature correction terms (1 2 kh) were omitted

from the calculations of the averaged quantities in (2.38);

including them makes the agreement even better.

The results were also compared with those generated by

the vertex-element model previously described in [11]. This

model uses triangular elements with anisotropic viscous
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mechanical properties to describe cell walls in the plane of the

simulation, and viscoelastic elements to describe cell walls

perpendicular to the plane of plane of the simulation. Choos-

ing the parameters of the vertex-element model such that

axial elongation was resisted only by the isotropic viscosity

of cell walls in the plane of the simulation, we found in

figure 4f that the length of the organ was in close agreement

between the two approaches, but that the tip angle figure 4g
increased more slowly in the vertex-element simulations than

in midline simulations.

A second simulation was performed in which the initial

organ geometry was curved. This initial geometry was gener-

ated using the rectangular geometry used before, with the

midline through the centre of the object. The positions of

the vertices were found in the discrete midline coordinates.

A curvature of k0 ¼ 0:002 mm�1 was then applied to the

midline, and the new positions of the vertices in Cartesian

components calculated. Unlike the earlier simulations, we

took all cell walls to have the same viscosity m. From

figure 5c–e, it can be seen that while the organ extends,

and the tip angle increases, the average curvature of the

root midline remains almost constant over the course of the

simulations. Such behaviour is consistent with (2.28).

Again, the number of midline sections N increases as the

organ extends (N ¼ 9 initially, and N ¼ 18 at t ¼ 1 h).
3.2. Axial variation of cell-wall properties
To illustrate that the method is applicable to situations in

which cell-wall properties vary with time, we consider a

simulation in which the properties of cell walls were function

of their distance from the tip of the organ. We take the depen-

dence of cell-wall viscosity on distance to be a function of the

distance from the tip d ¼ L� s, namely

mðdÞ ¼ P
2gðdÞ , ð3:1Þ

where gd is as shown in figure 6a. (Note that we use a different

elongation rate function as the organ considered here is smaller

than the full-root geometry used later.) We see the results of this

simulation in figure 6c. The non-uniformity of the elongation

rate profile leads to a non-uniform distribution of cell lengths
along the organ axis, with the largest cells at the end of the simu-

lation being found roughly 500 mm from the tip (left-hand end

of the organ). This is to be expected, as these cells have spent

most of the simulation in the region of rapid expansion (i.e. in

the elongation zone, which here lies between 200 mm and

450 mm from the tip). Although the model has no variation in

cell-wall properties normal to the organ midline, slight bending

of the midline can be seen in the simulations. The polygons

occupied by each cell are divided into triangles, and cell-wall

properties are assigned depending upon the positions of these

triangles; this gives a discrete approximation to the smooth

growth rate shown in figure 6a. Differences in cellular geome-

tries lead to differences in the triangulation, and therefore cell-

wall properties are not exactly uniform over each line normal

to the root midline. In addition, the simulation currently uses

a crude method to handle triangles which overlap the ends of

each piecewise circular section, and differences in the degree

of overlap across the root also contribute towards bending of

the root midline. Such effects become more significant as the

axial gradient in cell-wall properties increases, and indicate

the importance of both the discretization of the cells and the

midline being sufficiently fine in regions where cell-wall

properties change rapidly along the root axis.

Cell division can readily be incorporated in this framework.

At each time step (here with length Dt ¼ 0:1 h) cells divide with

probability pd ¼ 0:1, provided that their area is greater than

Ad ¼ 800 mm2 and that the distance from their centroid to the

tip of the organ (measured along the centreline) is less than

some threshold sd ¼ 200 mm. The resulting distribution of cell

areas is shown in figure 6d. Again, the largest cells can be

found just beyond the region of rapid expansion. However,

there is now a region of small cells near the tip owing to cell div-

ision events. This indicates the possibility of applying models of

these types to explore the effects of changes in the spatial distri-

bution of growth and division rates upon the resulting

distribution of cell lengths in a multicellular tissue.

3.3. Whole root geometry with auxin transport
We now apply this method to a more complex scenario, in

which changes in the cellular levels of the hormone auxin

regulate the mechanical properties of individual cells.
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As a cell-scale geometry, we use a template based upon a

longitudinal cross-section of an A. thaliana root (from [2]).

Owing to limitations of the field of view of the microscope,

only part of the growing region of the root was acquired.

The geometry was therefore extended by stretching the cells

furthest from the tip, and then subdividing these cells using

a length distribution that depended upon the cell file and

the distance from the tip.

Cell-wall viscosity of epidermal cells (shootwards of the

meristem at the root tip) was regulated by auxin in a manner

described in §2.6. During gravitropism, it has been observed

that the PIN efflux proteins (which transport auxin out of

cells) change their localization in certain columella cells

within the tip of the root [34]. When a root is growing vertically,

PIN efflux proteins were found to be equally distributed on

all sides of the columella cells (as illustrated in figure 7a).

However, Kleine-Vehn et al. [34] observed that PIN proteins

become localized to the lower sides of columella cells soon

after gravistimulation (i.e. when a vertical root is rotated by a

quarter-turn such that it is oriented in a horizontal direction).

In our simulation, we first find the steady state of the auxin

transport equations on the static initial geometry with equal

abundance of PIN proteins on all sides of the columella cells

(figure 7c). These auxin concentrations were used as the initial

conditions for the simulation. We then changed the
localization of PINs on columella cells such that, after gravisti-

mulation, they were only found on the lower faces of the

columella cells (figure 7b). Soon after the start of the simu-

lation, a difference in auxin concentrations between the

upper and lower sides of the root tip can be observed

(figure 7d ). These differences are most pronounced in the

cells bordering the columella cells (known as lateral root cap

cells), and are smaller in magnitude in the epidermal cells,

reflecting observations made using auxin sensors [35,36].

As the simulation proceeds, the increase in cell-wall vis-

cosity for epidermal cells on the lower side of the root and

the decrease on the upper-side of the root leads to the gener-

ation of curvature (figure 7e), and thereby, reorients the root

tip. We terminate the simulations after the first 2 h; at later

times during the gravitropic response, the asymmetry in

auxin concentrations between the upper and lower sides of

the root is thought to be switched off [35].

4. Discussion
Here, we have described a multiscale computational method

that can be used for the simulation of multicellular plant

organs undergoing axial elongation. This method captures

the multicellular geometry of the plant tissue throughout

the simulation, which permits simulation of cell-scale
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processes such as auxin transport. The macroscale equations

for the evolution of the organ midline incorporate appropri-

ately weighted averages of cell-level mechanical properties,

which allows the simulation to capture the effects of changes

in the mechanical properties of individual cells. This frame-

work provides a convenient tool with which to investigate

the intricate internal control systems that regulate growth pat-

terns. However, the model is still vulnerable to the effect of

geometric imperfections, whereby internal structural asym-

metries can induce bending. This raises the possibility of

internal regulatory mechanisms correcting such biases, analo-

gous to the proprioception proposed in other models of

gravitropic bending [37], which are naturally implemented

in terms of the evolving centreline of the organ.

The method has promise for the investigation of a range of

biological problems, in particular responses to gravity, and

also responses to other stimuli such as water and light. The

midline representation is well suited to long slender organs

but it presents a restriction on the deformations that the

organ can undergo. The model is unable to explain the com-

plex pattern of growth and cell division that occurs near the

root tip [38], or during the development of a new lateral root

primordium [39]. Such deficiencies require either a different

organ-scale description of growth in these regions [40,41], or

coupling the method to the solution of a (finite-element) cell-

scale simulation [12,13] in a local region. However, the theor-

etical details and practical implementation of such a coupled

method have not yet been studied. The model is also unable

to describe situations in which the organ can widen, for

example the increases in root diameter that occur when a

root is impeded by soil [42]. Nevertheless, the type of hybrid

framework that we have described would seem to have

promise for the description of a wide variety of multiscale

and multicellular processes. It would also be of interest to

extend this approach to study branching root structures, in

which the root midline is represented by a (graph-theoretic)

tree of circular sections rather than a one-dimensional list, in

a similar manner to root architecture simulations (see the

review of [43]). Additional consideration of the appropriate be-

haviour at branching points would be necessary in this case.

We note here that the model for gravitropism is deliber-

ately simplistic, and here to illustrate how cell-scale models

can be effectively integrated into this framework. There are

still many details of the gravitropic response that are yet to

be explained [44]; the sensing of auxin by cells is complex

[45], and it is also thought that other mechanisms such as

ion channels may play key roles [46].
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Appendix A. Derivation of rate of strain tensor
in midline coordinates
From the definitions (2.4) of t and n,

ts ¼ kn, ns ¼ �kt, ðA 1Þ

and also
tt ¼ vn, nt ¼ �vt: (A 2)

The first part of (A 2) can be written as

vn ¼ rj
krjk

� �
t
¼ rjt

krjk
� rjðrj � rjtÞ
krjk3

: ðA 3Þ

Using (2.10) and (A 3) gives

us ¼ gt þ vn: ðA 4Þ

From the chain rule, temporal derivatives following material

points and at fixed distances along the midline are related by

v ¼ utjj ¼ utjs þ usstjj ¼ utjs þ vus, ðA 5Þ

and similarly

ktjj ¼ ktjs þ vks: ðA 6Þ

Here, the subscript j indicates that the partial derivative with

respect to t is to be taken with j held constant (also known as

a material or Lagrangian derivative), while the subscript s
denotes a derivative with respect to t at constant distance s
along the midline. Using these gives the compatibility

conditions

vs ¼ ðutjs þ vusÞs ¼ ðusÞtjs þ vuss þ vsus ¼ ktjj þ gk: ðA 7Þ

Elsewhere in this paper, all temporal derivatives are follow-

ing a material point, and we omit this notation.

The velocity in Cartesian coordinates of a point at fixed

midline coordinates ðj,hÞ is given by

uðj,h, tÞ ¼ rt þ hnt ¼ rt � vht: ðA 8Þ

Using (A 4), we have

us ¼ gt þ vn� hvst � hvkn, ðA 9Þ

which can be combined with (A 7) to give

us ¼ ð1� hkÞðet þ vnÞ, ðA 10Þ

where we define

e ¼ g� _kh

1� kh
: ðA 11Þ

(As we will see below, e is the strain rate component parallel

to the organ midline.) Also, from (A 8)

uh ¼ �vt: ðA 12Þ

Differentiating (2.11), we have that

dx ¼ ðrj þ hnjÞdjþ ndh, ðA 13Þ

and from (2.4) and (A 1) this becomes

dx ¼ krjkð1� khÞt djþ n dh: ðA 14Þ

Using these, we find that

t � ru ¼ 1

krjkð1� khÞ uj ¼ et þ vn ðA 15Þ

and

n � ru ¼ uh ¼ �vt, ðA 16Þ

so

ru ¼ 1t � t þ vðt � n� n� tÞ: ðA 17Þ
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The rate of strain tensor is therefore given by

e ¼ 1

2
ðruþ ðruÞTÞ ¼ et � t: ðA 18Þ
and is able to diffuse (grey). This leads to a flux between a cell and the
neighbouring apoplastic compartment, the latter with auxin concentration
aij . Diffusive auxin fluxes (blue) permit apoplastic auxin diffusion via
vertex compartments (av

q).
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Appendix B. Discrete coordinate transformations
Here, we list for reference the explicit form of the transform-

ations between the discrete piecewise circular midline

coordinates and Cartesian coordinates.
(a) Midline to Cartesian coordinates
There is a relatively simple transformation between discrete

midline coordinates ðj, ~j,hÞ and Cartesian coordinates x,

given by

x ¼ rB
j þ

1

kj
� h

� �
sinðkjlj ~j ÞtB

j

þ 2

kj
sin2ð12kjljÞ þ h cosðkjlj ~j Þ

� �
nB

j ,

ðB 1aÞ

where rB
j , tB

j and nB
j denote the position, tangent and normal

to the start of the jth circular section (figure 3), given by

tB
j ¼ ðcosðuB

j Þ, sinðuB
j ÞÞ, nB

j ¼ ð�sinðuB
j Þ, cosðuB

j ÞÞ, ðB 1bÞ

with

uB
j ¼ uB

0 þ
Xj�1

k¼0

kklk ðB 1cÞ

and

rB
j ¼ rB

0 þ
Xj�1

k¼0

1

kk
sinðkklkÞtB

k þ 2 sin2 1

2
kklk

� �
nB

k

� �
: ðB 1dÞ

Note that, for kj ¼ 0, (B 1a) becomes

x ¼ xB
j þ lj ~j tB

j þ hnB
j : ðB 1eÞ
(b) Cartesian to midline coordinates
The inverse transformation from Cartesian coordinates x to

midline coordinates ðj, ~j,hÞ first involves identifying a

circular section for which x lies in the region between the nor-

mals to the circle at either end of the section (figure 8), i.e.

j such that

ðx� rB
j Þ � tB

j 	 0, ðx� rB
jþ1Þ � tB

jþ1 , 0: ðB 2Þ
If multiple suitable sections exist, the one whose midpoint is

closest to the point x is chosen. The values of ~j and h are then

given by

h ¼ 1

kj
�

nB
j

kj
þ rB

j � x

�����
����� ðB 3aÞ

and

~j ¼ 1

kjlj
arcsin

tB
j � ðx� rB

j Þ
1=kj � h

 !
, ðB 3bÞ

if kj . 0,

h ¼ 1

kj
þ

nB
J

kj
þ rB

j � x

�����
����� ðB 3cÞ

and

~j ¼ 1

kjlj
arcsin

tB
j � ðx� rB

j Þ
1=kj � h

 !
, ðB 3dÞ

if kj , 0, and

h ¼ nB
j � ðx� rB

j Þ ðB 3eÞ

and

~j ¼
tB

j � ðx� rB
j Þ

lj
, ðB 3fÞ

if kj ¼ 0. Note that the expressions here suffer from round-off

errors for small k, in which case they are instead calculated in

the form

h ¼
ð2=kÞðx� rB

j Þ � nB
j � jxj

2

1=kþ jð1=kÞnB
j þ rB

j � xj , ðB 3gÞ

for k . 0 and

h ¼
ð2=kÞðx� rB

j Þ � nB
j � jxj

2

1=k� jð1=kÞnB
j þ rB

j � xj , ðB 3hÞ

for k , 0.
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Appendix C. Auxin transport
Auxin transport was simulated using the model of [2]; we

summarize this briefly here. All parameter values for auxin

transport are as listed there.

Auxin is considered to be uniformly distributed within

each of the N cells, with concentration ai, where

i [ f1 . . . Ng denotes the index of the cell (figure 9). Apoplas-

tic compartments are associated with the common edges

between each pair of adjacent polygons, and have auxin con-

centrations aij, where i and j are the indices of the two

neighbouring cells (we identify aij ; a ji). The volume of

each cell is taken to be proportional to its area Vi, while the

volume of each apoplastic compartment is taken to be pro-

portional to its length Sij times its thickness hij (Sij can be

calculated from the polygonal network; hij is a property

associated with each apoplastic compartment).

Auxin influx and efflux carriers facilitate the movement of

auxin ions through the cell plasma membrane. Auxin fluxes

from apoplast compartments (with label ij) into adjacent

cells (with label i), Jij!i, are given by

Jij!i ¼ ðA1PI þ A2ðPAAUXij þ PLLAXijÞ þ A3PPPINijÞaij

� ðB1PI þ B2ðPAAUXij þ PLLAXijÞ þ B3PPPINijÞai;

ðC 4Þ

A1, 2, 3, B1, 2, 3 and PA, PL, PI , PP are constants, AUXij, PINij and

LAXij are 1 if AUX/PIN/LAX proteins are present on the

plasma membrane domain of cell i facing cell j, and 0 other-

wise. For each cell i we have

dai

dt
¼ 1

Vi

X
j

SijJij!i þ ai � giai, ðC 5Þ

where ai is the auxin production rate in each cell, gi is the

auxin degradation rate and the sum runs over all cells j that

neighbour cell i.
Auxin transport between adjacent apoplastic compart-

ments (i.e. compartments that meet a common vertex)

occurs by diffusion. A (small) ‘vertex compartment’ is associ-

ated with each vertex, and the diffusive flux between a vertex

compartment and the neighbouring wall compartment (per

unit wall thickness) is taken to be

Jij!q ¼
2Dw

Sij
ðaij � av

q Þ, ðC 6Þ

where av
q is the auxin concentration in the vertex compart-

ment with index q. As the vertex compartment is small, the

net flux into the compartment must be approximately zero.

This provides equations specifying the vertex compartment
concentrations

av
k ¼

P
ij ðaijhij=SijÞP

ij ðhij=SijÞ
: ðC 7Þ

Substituting this into (B 6), and again considering conserva-

tion of auxin, equations for the wall compartment auxin

concentrations are given by

hijSij
daij

dt
¼
X
k¼i, j

SijJij!k þ
X

q
hijJij!q, ðC 8Þ

where the first sum (k) runs over the pair of cells (i,j ) adjacent

to the wall compartment, while the second sum (q) is over the

two vertices at either end of the wall compartment. Auxin

production and PIN efflux carrier locations were specified

on the root template using the same rules as in [2], except

that during our simulation of the response to gravity we

modify the PIN efflux carrier locations on specific (columella)

cells located within the tip of the root. Boundary conditions

were applied at the base of the root; cells in the central files

were set to have constant auxin concentration 1, while cells

in the outermost three cell files (from the outside in, these

are known as the epidermis, cortex and endodermis) were

set to have constant zero auxin concentration.
Appendix D. Peters – Baskin step-stool function
For reference, here we describe the function gPBðsÞ that we

use to specify growth rates as a function of the distance

from the organ tip. Using the definitions given in [25], we

have

K ¼ logðexpðb2c1d1Þ þ expðb2d1xÞÞ, ðD 1aÞ
L ¼ logðexpðb2c1d1Þ þ expðb2c2d1ÞÞ, ðD 1bÞ

M ¼ b1 þ
b2

expðb2d1ðc1 � xÞÞ þ 1
, ðD 1cÞ

N ¼ exp d2 b1ðc2 � xÞ þ L� K
d1

� �� �
ðD 1dÞ

and

gPBðxÞ ¼ M 1� 1

N þ 1

� �
, ðD 9eÞ

for some constants b1 ¼ 0:01 h�1 (RER in meristem),

b2 ¼ 0:24 h�1 (RER in elongation zone), c1 ¼ 400 mm (length

of meristem), c2 ¼ 800 mm (distance of end of elongation

zone from tip), d1 ¼ 150 mm�1 h (controls width of meris-

tem-elongation zone transition), d2 ¼ 80 mm�1h (controls

width of elongation zone to mature transition).
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