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The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms
(PPAR𝛼, PPAR𝛽/𝛿, and PPAR Υ). Those nuclear receptors are members of the steroid receptor superfamily which take part in
essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning
metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has
emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular
disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to
analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated
actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation
and new hypothesis in this fascinating area of research.

1. Introduction

There are three subtypes of PPARG, known as PPARG1,
PPARG2, and PPARG3. It has been established that PPARG2
leads in potency as a transcription factor [1]. PPARG per-
forms its functions mainly through PPARG1 and PPARG2
[2]. Moreover, it shares lots of additional features with its
other counterparts. Concerning that, the parallelism found
between the PPARG system and the vitamin D/vitamin D
receptor (VD/VDR) system will be further explored later on.

In order tomodulate gene expression, the PPARNRs fam-
ily, and specifically the PPARG, after binding with either nat-
ural or synthetic ligands, heterodimerizes with the Retinoid
X Receptor (RXR) as vitamin D receptor (VDR) does.

Later on, the complex PPARG-RXR translocates to the
nucleus in order to get attached to PPREs (PPAR Response
Elements), genome nucleotides sequences wherefrom the
PPARs will coordinate the expression or repression of some
genes involved in metabolism, immunity, differentiation, or
cellular proliferation, to cite some [3–6].

Once in the nucleus, several molecules known as core-
pressors and coactivators, which show histone modifying
activities by themselves [7], bind the PPARG-RXR complex,
showing some control over the genetic expression-repression
interplay. Some known corepressors are SMRT or NCOR.
When it comes to coactivators, we can mention p300/CRRB-
binding protein (CBP) or SRC/p160 [8]. Importantly, dif-
ferential recruitment of coactivators implies different gene
expression patterns [9], wherefrom it can be deduced that
the corepressors and coactivators comprise another gene
expression regulatory point which is worth studying. PPREs
are normally found in the promoter of those genes, which
is regulated by PPARG activity [3]. The direct nucleotide
sequences which PPARG-RXR will be bound to are known
as DR-1 motifs (direct hexanucleotide repeats) of PPRE
[8]. Some PPARG target genes are those codifying CD36,
FABP4 (Fatty Acid Binding Protein 4), adiponectin, or the
CCAAT/enhancer binding protein 𝛼 [10], all being genes
involved in adipose tissue homeostasis. However, afar of its
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adipose functions PPARG is also vital for development of
some important organs such as heart and the placenta [11].

2. The PPARG Physiology
PPARG behaves as a transcription factor, as many other
nuclear receptors (NRs) do.Then, itmodulates the expression
and repression of a myriad of genes involved in metabolic
homeostasis, regulating energy expenditure and storage [12,
13]. Some PPARG target genes are those codifying CD36,
FABP4 (Fatty Acid Binding Protein 4), adiponectin, or the
CCAAT/enhancer binding protein 𝛼 [10], all being genes
involved in adipose tissue homeostasis. However, afar of
its adipose functions PPARG is also vital for development
of some important organs such as heart and the placenta
[11]. Although most research on PPARG has been focused
on its metabolic action, some of them are neurogenesis,
osteogenesis, cancer, or cardiovascular disease [14]. Such
pleiotropism of actions gives us a clue of the relevance of this
transcription factor regarding health and disease. We know
for instance that universal PPARG deletion and life are not
compatible [11].

The considerable host of actions performed by PPARG
can be compared to those of vitamin D and VDR [15],
which has been implicated in neurologic disorders [16–18],
autoimmune pathologies [19–21], cardiovascular disease [22],
diabetes mellitus [23, 24], psoriasis [15] or infectious disease
[25, 26], and, above all of what is mentioned, cancer [27, 28].

3. PPARG and Obesity
Much has been already written about PPARG signalling
and its role in conditions such as obesity or diabetes. In
obesity, PPARG orchestrates adipocyte maturation and dif-
ferentiation, harmonising the role of many other players in
that process [29]. Remarkably, it is the only known factor,
which is completely necessary and sufficient for the adipocyte
differentiation process to occur [11, 30].This nuclear receptor
acts, then, as a master regulator of adipogenesis.

In addition, it is widely known that PPARG has an
important whole-body insulin-sensitizer role. For example,
muscle-PPARG knocked-out mice are insulin resistant [31].
In adipose tissue, PPARG deletion leads to increases in
bone mass, lipoatrophy, and insulin resistance (IR) [32].
In the same fashion, PPARG induces the proliferation of
adipocytes progenitors into mature adipocytes and dimin-
ishes the osteoblasts population likewise [33].

The specific deletion of PPARG in liver conduces to IR
and decrease of hepatic fat depots [34]. Even inmacrophages,
the presence of PPARG is important to keep adequate insulin
sensitivity levels throughout the body [35, 36]. It is then easy
to deduce that one of themain objectives of PPARG activity is
the insulin sensitivity maintenance through different tissues.

Thiazolidinediones (TZD), a family of synthetic PPARG
agonist widely used in diabetes treatment, show clear
improvements in insulin sensitivity, enhanced adipocyte
differentiation, reduction of leptin levels, and upregulation of
adiponectin [37].

Contrary to the catabolic actions elicited by the PPAR𝛼
and PPAR𝛿, the PPARG is in charge of anabolic functions. As

we have already addressed, adipogenesis and lipid storage are
some of them. Illustrating this, a high-fat feeding augments
PPARG expression while fasting diminishes it [38].

Remarkably, PPARG performs different functions in
metabolically sick rodents and metabolically healthy ones.
In disease, PPARG activation seems to improve metabolic
parameters, but in the healthy population its downregulation
shows antiobesity effects [39].

In the same way, more different effects have been
described in metabolic health and disease regarding PPARG
expression. For instance, in healthy subjects a high-fat meal
greatly induced the expression of PPARG while the same
high-fat feeding diminished PPARG expression in a group of
morbidly obese patients [40].

In like manner, an indirect correlation between IR and
PPARG expression, measured by glucose status, HOMA-
IR index, and insulin levels, can be set in morbidly obese
persons, whose visceral adipose and muscle tissues show less
PPARG expression as IR increases [40].

During placentation and intrauterine development, the
PPARG gene methylation patterns could be altered by
maternal nutrition, which actually exerts long-term effects
upon the receptor status in the offspring, as indicated very
recently by Lendvai et al. [41]. This is preliminary evidence
about the early programming of our lifelong metabolism set
points through nutritional inputs, which could easily leave us
susceptible to obesity and metabolic disease in later stages of
life.

4. PPARG and Cancer

PPARG is highly expressed in lung, prostate, colorectal,
bladder, and breast tumours [42]. Furthermore, we can find
in the literature compelling evidence for PPARG having
antineoplastic actions in colon, prostate, breast, and lung
cancers [43, 44], which happen to be themost prevalent forms
of cancer in occident (Figure 1).

Solid evidence backs up that epigenetic events frequently
found in cancer can hamper nuclear receptors responsiveness
toward their ligands. In that respect, increased levels of core-
pressor NCOR in prostate cancer can silence the expression
of target genes and constitute a potential epigenetic lesion,
which selectively distorts the actions of PPARG/PPAR𝛼 [45].

In the same line, PPARG promoter methylation in col-
orectal carcinoma (CRC) is associated with poor prognosis
[46]. This transcriptional silencing of PPARG is operated
through HDAC1 (Histone Deacetylase 1), EZH2 (Enhancer
of Zeste 2 Polycomb Repressive Complex 2 Subunit), and
MeCP2 (Methyl CpGBinding Protein 2) recruitment, leading
to repressive chromatin states that eventually increase cell
proliferation and invasive potential [46]. Correspondingly,
APCmin/+ mice which have undergone PPARG genetic abla-
tion demonstrate increased colon tumour growth [47].

In the literature, some mutations and variations in
PPARG expression have been associated with cancer in our
specie [48, 49]. Beyond that, its expression comprises an
independent prognostic factor in CRC [50, 51].

Apart from epigenetics, we should not lose sight of the
fact that metabolic syndrome, insulin resistance, obesity,
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Figure 1: PPARG actions: PPARG plays an important role in cardiometabolic disease and cancer. The noteworthy crosstalk between vitamin
D system and PPARG is also considered. Arrow’s width exemplifies the level of consistency found in the literature regarding each association
in the mind picture.

and inflammation, importantly interrelated conditions in
which PPARGhasmodifying and regulatory actions, increase
cancer risk [52–59], which adds weight to PPARG and cancer
research (Figure 1).

There is some evidence linking PPARG agonist’s actions
to better cancer treatment responsiveness as well. PPARG
agonist Rosiglitazone, in this phase II clinical trial, raised the
radioiodine uptake in differentiated thyroid cancer [60].

IFN-𝛽 treated pancreatic cancer cells were more affected
when Troglitazone was added to the therapy, showing syner-
gistic effects between IFN-𝛽 and TGZ [61]. But it is necessary
to be careful in some studies, in which PPARG agonist
like Rosiglitazone acts as a great promoter of hydroxybutyl
nitrosamine-induced urinary bladder cancers [62].

In the following paragraphs, we will reviewwhat we know
about the specific molecular actions of PPARG in cancer
biology. Cell cycle arrest, cell differentiation, angiogenesis,
proliferation, invasiveness, migration capacity, apoptosis,
inflammation, and oxidative stress should be evaluated.

4.1. Cell Cycle Arrests. Some evidence suggests that PPARG
and its agonists have the ability to interfere with the cellular
cycle and then, likely, with malignancies development.

In renal cell carcinoma, Troglitazone (TGZ) was able to
induce G2/M cell cycle arrest via activation of p38 MAPK
(Mitogen-Activated Protein Kinase) [63].

In human pancreatic cancer cells the same phenomenon
is observed: PPARG is able to trigger cell cycle arrest of the
malignant cells through activation by thiazolidinediones [64].

Through PPARG activation, its ligands increase the
expression of the cyclin-dependent kinase inhibitors p21 [64,
65] and p27 [65–69], enhance the turnover of 𝛽-catenin, and
downregulate the expression of cyclin D1 [70–74].

4.2. Differentiation. In vitro activation of PPARG by its
ligands correlates with increased expression of carcinoem-
bryonic antigen (CEA), E-cadherin, developmentally regu-
lated GTP-binding protein 1 (DRG), alkaline phosphatase,
or keratins, all of them being molecules expressed in well
differentiated cells, opposing to the undifferentiated cell state
commonly found in most cancers [48, 64, 75–77].

Tontonoz et al. gave us the first evidence about the effec-
tiveness of PPARG ligands inducing differentiation in human
cancer cells, concretely in liposarcoma cancer cells [75].
Again, in human liposarcoma, treatment with Troglitazone
raised the level of differentiation of its cells [78].

More evidence that PPARG enhances terminal differen-
tiation in cells is reviewed in papers of Grommes et al. and
Koeffler, respectively [43, 44].

4.3. Angiogenesis. It is common knowledge that angiogenesis
is a vital step in malignant development. The complex
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process by which new vessels are formed, angiogenesis, has
been feverishly studied as a new possible target in cancer
treatment.

In vitro and in vivo angiogenesis-modulating functions
have been described for PPARG [79]. In spite of that,
differential effects regarding angiogenesis have been observed
for PPARG in vitro and in vivo, showing either pro- or
antiangiogenic actions dependent on cell context [80–85].
PPARG agonist can also enhance VEGF expression in cancer
cells, as some studies reveal [86, 87].

The mechanisms deciding whether PPARG will act as
a proangiogenic factor or as an antiangiogenic one are
still elusive to us, but we believe that cellular context and
environment are likely the controllers of such process.

4.4. Proliferation. Antiproliferative actions are also attributed
to PPARG and its ligands. TZD, for example, has shown
antiproliferative effects [88, 89].

Modulation of PPARG can have differential effects on
carcinogenesis depending on the cellular microenvironment
[90]. Therefore, depending on the cellular environment
PPARG can behave as a proliferative or antiproliferative
factor, as happened with angiogenesis.

Tumour cells are frequently in shortage of polyunsatu-
rated fatty acids.Docosahexaenoic acid (DHA), awell-known
ligand of the PPAR family, has been shown to reduce tumour
proliferation in lung tumour cell cultures [91]. Along with
that, DHA in breast cancer cells diminishes proliferation and
increases apoptosis [92, 93].

In prostate cancer, PPARG ligand activation effect was
assessed in a phase II clinical trial. The results showed a
hampered cancer cell growth [94].

Eukaryotic initiation factor 2 is a target of inhibition
for PPARG agonists (i.e., thiazolidinediones). Such factor
inhibition, which is mediated in a PPARG-independent way,
truncates the translation process [95].

In liposarcoma patients, treatment with Rosiglitazone
increased the necessary time to double tumour volume in
this clinical trial [96]. In other studies, however, Troglitazone
(another member of the thiazolidinedione family) had low or
no effects in prostate cancer [97] or breast or colorectal cancer
[98, 99].

4.5. Apoptosis. The combined effect of an RXR agonist and
Troglitazone curtailed gastric cancer cells proliferation in
vitro by enhancing apoptotic mechanisms [100].

PPARG agonists increased the expression of PTEN [101–
105], BAX, BAD [106, 107], and the turnover of the FLICE
inhibitory protein (FLIP) [108, 109], known for its antiapop-
totic role.

Conversely, PPARG agonists can inhibit BCL-XL and
BCL-2 expression [107, 110], PI3K activity, and AKT phos-
phorylation [101, 111, 112] and restrain the activation of JUN
N-terminal protein kinase [107]. It is worth mentioning that
many of those actions were elicited in a PPARG-independent
manner. The exact mechanisms by which these effects are
performed are still unknown.

4.6. Inflammation. Nowadays, it is commonknowledge in the
scientific community that chronic inflammation promotes

cancer. The milieu found in chronic inflammation acts as
a facilitator for carcinogenesis and cancer development [52,
113]. This has been shown in colorectal, liver, bladder, lung,
and gastric neoplasms [114, 115] and investigated in several
more.The range of processes in which inflammation partakes
in carcinogenesis goes from cell growth and survival, metas-
tasis and cell invasion, treatment response, angiogenesis, and
tumour immunity [115, 116].

There is evidence of PPARG having anti-inflammatory
activity in several cell lines [117, 118]. In models of experi-
mentally induced colitis PPARG expressed in macrophages
is capable of inhibiting inflammation [119].

It is widely known that some PPAR ligands such as
omega-3 fatty acids EPA and DHA have anti-inflammatory
properties. Those and other natural and synthetic ligands
could be used in the future as chemopreventive agents in
a vast range of conditions linked to inflammation, that is,
cancer [105, 120, 121].

Activation of PPARG by its ligands reduces cytokines
such as TNF𝛼 and NF-𝜅𝛽 in monocytes, turning down the
inflammatory milieu [120, 122].

The epigenetic process of sumoylation has been linked to
PPARG transrepression of inflammation. After ligand acti-
vation, PPARG binds to a SUMO protein (Small Ubiquitin-
like Modifier) and both join a nuclear corepressor complex,
reducing the proinflammatory gene expression [123].

The NF-𝜅𝛽 transcription factor has repeatedly been
associated with tumour development and thriving [52].
Interacting with this factor, PPARG inhibits the genesis of
proinflammatory molecules such as IL-6, TNF, and MCP1
through transrepression [3, 117].

Again, a word of caution must be said due to the
seemingly tumour-promoting effects of PPARG found spo-
radically [124–127].Therefore, it seems as if the effects carried
on by the cell depend of cell context and environment.
Environment is, usually, at the helm of cellular functions.

4.7. Oxidative Stress. PPARG has demonstrated an antioxi-
dant effect [128, 129]. SOD (Superoxide Dismutase) expres-
sion might well be regulated by PPAR because a PPRE is
found in the Cu/Zn-SOD promoter [40].

IR found in diabetes mellitus and metabolic disease is
certainly correlated with increased oxidative stress, which
eventually could lead to an increased risk of cancer through
nongenomic carcinogenesis [130–133].

In macrophages, PPARGmediates some notable abilities:
uptake and reverse transport of cholesterol, macrophage
subtype specification (enhancing theM2macrophage pheno-
type, which is associated with higher insulin sensitivity and
lower inflammation levels), and anti-inflammation proper-
ties [36, 134, 135].

Postprandial hypertriglyceridemia is associated with
lower PPARG expression in metabolic syndrome patients
while in healthy subjects the same “insult” leads to overex-
pression of PPARG [136]. We could hypothesize that since
the PPARG system is injured in the metabolically ill patients,
after an oxidative stress insult (a high-fat feeding), it cannot
respond, leaving us more susceptible to oxidative actions
and its consequences (hypothesis coined as “nuclear receptor



PPAR Research 5

exhaustion theory”). In the healthy group, the PPARG would
perfectly be capable of managing the lipid storage and would
act as an oxidative stress buffer.

4.8. Cell Migration and Invasiveness. Less evidence is avail-
able with respect to invasiveness and PPARG. However, we
should pay attention to some preliminary data.

The PPARG gene modulates the invasion of cytotro-
phoblast into uterine tissue, which could be a novel indicator
of some invasion-related function of PPARG [137].

Going further, this study by Yoshizumi et al. showed
how PPARG ligand thiazolidinedione (TZD) is able to inhibit
growth andmetastasis ofHT-29 human colon cancer cells, via
the induction of cell differentiation.Theuse of the TZDdrives
to G1 arrest, in association with a great increase in p21Waf-1,
Drg-1, and E-cadherin expression [77].

Paradoxically, molecules with PPARG antagonist actions
are able to inhibit invasiveness and proliferation of some
cancer cell lines [26, 138–140]. Again, one nuclear receptor
can exert one or just the opposite function depending on the
cellular environment and ligand exposure.

5. Connecting the Dots: PPARG, Vitamin D
System, Obesity, and Cancer

Often in biology and medicine research, we tend to focus
on the individualities of separated molecules or molecule
systems in order to explain their functions, forgetting the
intermolecular communication, which is ever-present in
every biological system. More frequent than not, that sepa-
rateness gives us a rather limited perspective of the matter at
hand. For instance, the interconnectedness of biology systems
and the emerging properties of such interconnectedness
should be further examined and taken into account.

The crosstalk between different NRs, the “dance” and
messages they give one another, is recently becoming an
exciting new area which will be explored. This is the case of
the VDR/VD and the PPARG system, in which both have
been shown to be involved in some relationship we do not
utterly understand yet.

5.1. PPARG and VDR/VD System: Commonalities in Cancer.
Noteworthy, great parallelism exists between PPARG and
the VDR/VD system regarding its protective role in carcino-
genesis. There are a vast number of studies describing the
anticancer properties of vitamin D. The majority of them are
brilliantly analysed in this review by Feldman et al. [28].

Vitamin D has been extensively associated with anti-
inflammatory actions [141–143], apoptotic mechanisms [144–
150], antiproliferative functions [151–159], prodifferentia-
tion effects [160–166], antiangiogenic properties [167–171], a
potential role-managing invasion and metastasis [172–184],
microRNA modulation [185–189], and even some role in the
Hedgehog signalling pathwaymodulation [190]. Remarkably,
most of those actions have been attributed to PPARG sig-
nalling in a somewhat lesser extent, as reviewed in this work.
Such similarity and overlap in anticancer actions are worth
studying.

Moreover, there is enough evidence to assert that epi-
genetic events can influence both PPARG and VDR/VD
systems behaviour.

In this study, Fujiki et al. showed that in a diabetic mouse
model PPARG promoter methylation levels are higher than
those of the control mice [191], along with the possibility
of methylation reversal when the animals were exposed
to 5AZA (5󸀠-aza-cytidine). At least three messages can be
drawn from this study: (1) the PPARG system is susceptible
to epigenetic regulation, (2) diabetes and other metabolic
conditions could alter the PPARG epigenetic landscape and
then disrupt its proper functioning, and (3) this disruption
can be reversed by drug-induced changes or, likely, by lifestyle
changes.

The vitamin D system is likewise susceptible to epige-
netic regulation [192–195] and, interestingly, in cancer this
epigenetic repression of the vitamin D system is almost
always present [196–204], which compellingly leaves the door
opened to the possibility of the same phenomena happening
in the PPARG system.

In fact, PPARG promoter hypermethylation is a prognos-
tic factor of adverse outcome in colorectal cancer [46, 205].
Higher levels of PPARG promoter methylation were found
in advanced tumour stages while earlier stages showed lower
methylation levels.This suggests that as happenswith vitamin
D, advanced cancer stages can epigenetically repress PPARG
expression and then nullify its antineoplastic actions.

5.2. The PPARG/VDR Crosstalk: What an Interesting Con-
versation! Some studies have clearly shown the existence
of some communication between PPARG and VD/VDR.
Interestingly, potent VDRE (Vitamin D Response Elements)
have been discovered in human PPAR𝛿 promoter, which
opens the door to VDR/VD influence over the PPAR sys-
tem [206]. In the opposite direction, some studies have
demonstrated the ability of PPARG to bind VDR and inhibit
vitamin D-mediated transactivation [207]. This data might
be an indicator of bidirectional or reciprocal actions of both
systems influencing each other, which have deep implications
and introduce new and interesting questions to ponder upon.

Even between PPAR subtypes some modulation of
expression have been found: PPAR𝛿 could repress PPAR𝛼
andPPARGgene expression [208], illustrating the complexity
of PPAR system regulation.

In the adipocyte cell, the VD/VDR system has shown
anti-PPARG activity, inhibiting its expression and then
adipogenesis [209, 210], which is contradictory with the
commonly found proadipogenesis effects of vitamin D [211],
at least in human. The factors leading to either pro- or
antiadipogenesis effects are completely uncharted.

In melanoma cell lines, administration of calcitriol and
several PPAR ligandsmodified the expression of both PPARG
and VDR, demonstrating again this intriguing connection
[212]. Sertznig et al. conclude in this article that calcitriol and
some PPAR ligands can inhibit proliferation of the human
melanoma cell line MeWo [213].

5.3. PPARG and VD/VDR System: Metabolic Commonalities.
We are about to discuss the metabolic effects of vitamin D
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and their analogy with those of PPARG, establishing again
the parallelism.

As contradictory as it seems, VDR or CYP27B1 knocked-
out mice show great fat mass loss [211] while obesity in
humans is commonly associated with poor vitamin D plas-
matic levels [214]. Actually, an indirect relationship between
Body Mass Index (BMI) and 25OHD3 has been amply
described in the literature [215].

In addition, low plasmatic vitamin D levels are associated
with increased risk of type 2 diabetes mellitus (T2DM) inde-
pendently of BMI [24] and with hypertension, dyslipidemia
(DLP), and metabolic syndrome (MS) [216, 217]. Besides,
vitamin D deficiency predisposes to diabetes in animal
models, while its supplementation prevents the disease [214].
Concerning PPARG, we have extensively discussed before in
the review its orchestrating actions regarding adipogenesis
and adipocyte metabolism. Both calcitriol (the active form of
vitaminD) and PPARG seem to opposemetabolic homeosta-
sis disruption.

Another paradoxical event is found in the fact that in
humans calcitriol enhances adipogenesis while in mice the
same hormone diminishes it via downregulation of C/EBP𝛽
mRNA and upregulation of CBFA2T1 (a corepressor) [218,
219].With reference to PPARG, it enhances adipogenesis [10].

In human subcutaneous preadipocytes, calcitriol elicits
actions impressively similar to those of PPARG in adipocyte
maturation and differentiation. For instance, calcitriol is able
to increase the expression of the enzyme Fatty Acid Synthase
(FASN) increasing lipogenesis in like manner as PPARG
[210].

The storage capacity theory introduces the idea that lipid
storage capacity and the ability of PPARG to manage the
processes leading to lipid storage are limited. As to that, when
the organism reaches a lipid level threshold lipotoxicity shows
up, PPARG is no more capable of lipid handling, and the
harmful hormonal environment of obesity starts to spread
through the organism [220].

Transferring the same concept of “nuclear receptor
exhaustion” to VD/VDR anticancer actions we could estab-
lish a parallelism. It has shown that the VD/VDR is epigenet-
ically downregulated in late cancer stages but overexpressed
or normally expressed in early stages [221, 222]. As the
aforementioned studies show, in those later stages epigenetic
downregulation of the VD system molecules occurs, leaving
it unable to exert its antineoplastic functions properly. Is
obesity, as cancer does with vitamin D, acting as a negative
epigenetic driver when it comes to PPARG signalling? That
could answerwhy inmostmorbidly obese patients expression
of PPARG is greatly lower in comparison to healthy subjects.

Accordingly, PPARG1 and PPARG2 expression in visceral
adipose tissue (VAT) from morbidly obese (MO) subjects is
significantly downregulated when compared tometabolically
healthy subjects [223]. Not only that, in insulin resistant MO
subjects PPARG expression is even lower [220] compared
with noninsulin resistant MO patients, whichever interest-
ingly correlates with the lower vitamin D levels found in
MO with IR compared to their insulin sensitive counterparts
[24]. Somehow, the metabolic impairment caused by insulin
resistance is able to deteriorate both PPARG and VD/VDR

system.The underlyingmechanism behind this deterioration
should be further studied.

A disrupted VDR/VD system leads mice to loss of
fat deposits and great increase of energy expenditure. In
relation to that, VDR−/− mice increase the expression of
UCP1 (uncoupling protein 1 or Thermogenin) twenty-five-
fold [211], with the consequent energy consumption. Is
vitamin D, along with PPARG, an energy-conserving and
metabolic homeostasis-maintaining hormone?

However, adipose tissue is not the only one affected by
disruption of the VD system. A shortage of calcitriol in rats
was related with increased skeletal muscle ubiquitination and
loss of total muscle mass [224]. On the PPARG side, its
activation through TZD in growing pigs increased muscle
fiber oxidative capacity independently of fiber type [225].
Overexpression of PPAR𝛿 in mice almost doubles the animal
endurance and exercise capacity [226]. We should not lose
sight of the important role the muscle has in obesity and
metabolic disease pathogenesis, being a potential target for
calcitriol and PPAR modulating actions.

Taken all data together, the vitamin D system seems to
team up with PPARG in order to maintain proper metabolic
homeostasis. Notwithstanding, in some occasions this love
relationship breaks apart and both partners seem to bother
one another in ways that we utterly ignore but, likely, have
something to do with epigenetic regulation.

6. Conclusions

The PPARG transcription factor has been classically associ-
ated with metabolic homeostasis and lipid storage functions.
Recently, newfound anticancer actions are assigned to this
nuclear receptor.

However, its anticancer actions are not always consistent;
in some studies some oncogenic effects have been described.
We believe that cellular environment is the guiding factor
behind PPARG actions and cells are controlled “from outside
in.” In alignment with this, the PPARG and other nuclear
receptorswould only be “cellular effectors,” carriers of outside
messages of health or disease.

When a “disease threshold” is reached, in either obe-
sity or cancer, PPARG and VDR expression, respectively,
diminishes. However, in early stages of those diseases, the
expression of those nuclear receptors is higher than normal.
Derived from these observations, we have coined the so-
called “nuclear receptor exhaustion theory,” by which, in an
early disease stage, nuclear receptors PPARG and VDR coun-
terbalance the harmful effects that obesity and cancer exert
upon the organism, their expression being high. However,
sadly, if disease progresses, it generates epigenetic silencing
mechanisms upon both transcription factors, whose expres-
sion decreases radically. This silencing leaves us increasingly
susceptible to disease. The positive side is that through drugs
or, better yet, lifestyle changes reversal of epigenetic changes
is possible.

There is an exciting function overlap between PPARGand
VDR/VD system, both of which wield oncoprotective and
metabolic actions. Actually, parallel metabolic and anticancer
actions are described in the literature, suggesting that they
team up to keep at bay those diseases. Maybe the detailed
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Figure 2: The four players: this figure shows the interrelation between the four players: obesity, cancer, vitamin D system, and PPARG.
Red arrow: harmful effects, which contribute to disease. Green arrow:positive effects, which contribute to health. Disease perpetuates itself
damaging both nuclear receptors. Arrow’s width is in proportion with the strength and consistency of each association found in the literature.
Dashed line: yet-to-be determined, preliminary, or hypothetical effects. Continuous line: in vitro/in vivo demonstrated effects. Right box: in
green, actions mainly attributed to vitamin D, and in purple, actions classically attributed to PPARG. However, it is known that both agents
exert every action illustrated in this box, in a higher or lower extent.

study of this overlap could give us clues in respect to the
molecular pathogenesis of important conditions as metabolic
disease and cancer. Further study in this new area is necessary
to elucidate those questions.

Obesity, a first-order problem in our society, is linked
with increased risk of cancer incidence and progression.
The debatable factors behind this risk are an increment in
oxidative stress, chronic inflammation, poorer vitamin D
status, hormone misbalance, and, arguably, PPARG silencing
through unknownmechanisms. As we know, PPARG and the
vitamin D system play conjunctly a yet-to-elucidate role in
cancer, so it is not surprising at all that their hypothetical
epigenetic repression in obesity could be another mechanism
linking this metabolic disorder to malignancies.

It has been shown, both in vitro and in vitro, that the
tumours are capable of epigenetically silencing both the
vitamin D and the PPARG system. This silencing could lead
to the deterioration of their anticancer andmetabolic actions.

Finally, a worse known crosstalk between the two NRs
exists. Its usefulness, purpose, and message are (almost)
utterly unexplored to us and should be studied more dili-
gently. The interrelation, reciprocity, and interdependence of
all four actors examined here might be the starting point
of new fascinating research linking epigenetic signalling and
two of the most hurtful diseases of our time (Figure 2).

Additional Points
Design is literature review across preclinical studies, descrip-
tive studies, analytic studies, and reference lists of selected

studies. The author focused mainly on systematic and narra-
tive reviews. Data sources are medline (Pubmed), Jábega 2.0
(Málaga University Search Engine Software), Gerión search
engine, and screening of citations and references. Regarding
eligibility criteria, we focused on papers published in mag-
azines considered to be in the first impact factor quartile
without restrictions regarding publishing date. Keywords are
PPARG; Obesity; Transcription factor; Vitamin D; Calcitriol;
Vitamin D Receptor; Epigenetics; Nuclear Receptor; Cancer;
Methylation.
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