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Objectives: The objectives of this study were to elucidate the genetic context of a novel plasmid-mediated fosA
variant, fosA6, conferring fosfomycin resistance and to characterize the kinetic properties of FosA6.

Methods: The genome of fosfomycin-resistant Escherichia coli strain YD786 was sequenced. Homologues of
FosA6 were identified through BLAST searches. FosA6 and FosAST258 were purified and characterized using a
steady-state kinetic approach. Inhibition of FosA activity was examined with sodium phosphonoformate.

Results: Plasmid-encoded glutathione-S-transferase (GST) FosA6 conferring high-level fosfomycin resistance
was identified in a CTX-M-2-producing E. coli clinical strain at a US hospital. fosA6 was carried on a self-conjuga-
tive, 69 kb IncFII plasmid. The DlysR-fosA6-DyjiR_1 fragment, located between IS10R andDIS26, was nearly iden-
tical to those on the chromosomes of some Klebsiella pneumoniae strains (MGH78578, PMK1 and KPPR1). FosA6
shared .99% identity with chromosomally encoded FosAPMK1 in K. pneumoniae of various STs and 98% identity
with FosAST258, which is commonly found in K. pneumoniae clonal complex (CC) 258 including ST258. FosA6 and
FosAST258 demonstrated robust GSTactivities that were comparable to each other. Sodium phosphonoformate, a
GST inhibitor, reduced the fosfomycin MICs by 6- to 24-fold for K. pneumoniae and E. coli strains carrying fosA
genes on the chromosomes and plasmids, respectively.

Conclusions: fosA6, probably captured from the chromosome of K. pneumoniae, conferred high-level fosfomycin
resistance in E. coli. FosA6 functioned as a GSTand inactivated fosfomycin efficiently. K. pneumoniae may serve as
a reservoir of fosfomycin resistance for E. coli.

Introduction
Escherichia coli accounts for the majority of urinary tract infec-
tions. Recent surveillance studies indicate very low rates of fosfo-
mycin resistance in this species.1,2 As such, fosfomycin was
included as one of the first-line treatment options for uncompli-
cated urinary tract infections in the most recent treatment guide-
lines published by the IDSA and ESCMID.3 Fosfomycin belongs to
an antimicrobial class of its own and functions by inactivating the
cytosolic N-acetylglucosamine enolpyruvyl transferase (MurA),
which prevents the formation of N-acetylmuramic acid from
N-acetylglucosamine and phosphoenolpyruvate, the initial
step in peptidoglycan chain formation of the bacterial wall.4

However, E. coli can acquire resistance to fosfomycin through sev-
eral mechanisms, including impaired transport, target modifica-
tion or overexpression, and inactivation of fosfomycin itself.5

Fosfomycin-modifying enzymes can confer fosfomycin resistance
by breaking its epoxide ring and inactivating the agent.6 Of the
three major classes of fosfomycin resistance enzymes (FosA,
FosB and FosX), FosA is the group of enzymes most frequently
reported among Gram-negative pathogens including E. coli.7 – 11

FosA enzymes can catalyse the nucleophilic addition of glutathi-
one to carbon-1 of fosfomycin.6 An increasing number of studies
report identification of ESBL-producing E. coli isolates that are
resistant to fosfomycin due to plasmid-mediated production of
FosA3 from both animal and human sources in East Asian coun-
tries.7 – 11 We recently reported a case of FosA3-producing E. coli
identified in a hospital in Pennsylvania.12 In addition, plasmid-
mediated production of FosA5, also termed FosKP96, has been
reported in E. coli and Klebsiella pneumoniae from China and
Hong Kong.11,13,14 Here, we report the identification of a novel
plasmid-mediated FosA variant, FosA6, in an ESBL-producing
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E. coli strain and characterize its kinetic properties as well as gen-
etic context.

Materials and methods

Strains
Fosfomycin-resistant E. coli strain YD786 was identified from the urine of a
female inpatient who had recurrent urinary tract infections, but did not
have a documented history of prior fosfomycin therapy. K. pneumoniae
clinical strains NDM01,15 CRKpE6 and CRKpC1, available in our research
laboratory, were used as strains producing FosAPMK1, FosAST37 and
FosAST258, respectively. FosAPMK1, FosAST37 and FosAST258 are some of the
most commonly observed chromosomally encoded FosA in K. pneumoniae
(GenBank accession numbers WP_004146118, WP_004182826 and
WP_002887377) and are closely related to FosA6 described in this study.

Susceptibility testing
MICs of fosfomycin and other commonly used agents were determined by
Etest (bioMérieux, Durham, NC, USA) and commercially available broth
microdilution testing plates (Sensititre GNX2F), respectively, and inter-
preted according to CLSI guidelines.16 E. coli ATCC 25922 (susceptible to
fosfomycin) was used as the quality control strain. Inhibition of the
glutathione-S-transferase activity of FosA was examined with sodium
phosphonoformate as reported previously17 with the following modifica-
tion, where fosfomycin Etest was placed on Mueller–Hinton agar plates
with or without 500 mg/L sodium phosphonoformate. E. coli 55B8 was
used as the fosfomycin-resistant, fosA-negative control strain. This clinical
strain does not possess any fosA gene, but rather lacks the hexose phos-
phate transporter gene uhpT as the fosfomycin resistance mechanism, as
evidenced by PCR and RT–PCR.

PCR and cloning
PCR for fosA3 was conducted as previously described.12 The chromosome
of YD786 was extracted, digested with restriction enzyme Sau3AI and
ligated with cloning vector pUC19 (Thermo Scientific, Waltham, MA,
USA) which was digested with BamHI. E. coli TOP10 (Thermo Scientific)
was transformed with this ligated product and transformants were iden-
tified by growth on LB agar plates containing 50 mg/L ampicillin, 50 mg/L
fosfomycin and 25 mg/L glucose-6-phosphate. Nucleotide and protein
BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to find homolo-
gues of fosA6 and FosA6.

fosA6, fosAPMK1, fosAST37 and fosAST258 were cloned into pBCSK2

(Agilent Technologies, Santa Clara, CA, USA) using the following primers:
FosA-XbaI-F, 5′-TGCTCTAGATGCTGAGTGGACTGAATCAC-3′; FosA-HindIII-R,
5′-TCCAAGCTTCACTGATCAAAAAACACCATCC-3′; and FosA258-HindIII-R,
5′-TCCAAGCTTCACTGTTCAAAAAACACCATCC-3′.

Transferability of plasmids
Transformation and conjugation were performed as described previ-
ously,18 using E. coli TOP10 and azide-resistant E. coli J53 as recipients,
respectively. Transformants and transconjugants were selected on LB
agar plates containing fosfomycin and glucose-6-phosphate as above,
whereas 100 mg/L sodium azide was also added for selection of the
transconjugants.

WGS
The YD786 genome was sequenced by HiSeq 2500 (Illumina, San Diego,
CA, USA) and PacBio RS II (Pacific Biosciences, Menlo Park, CA, USA) as pre-
viously described,19 resulting in full assembly of the chromosome and two

plasmids (pYD786-1 and pYD786-2) and partial assembly of pYD786-3
and pYD786-4. Gaps in pYD786-3 and pYD786-4 were filled with HiSeq
reads and verified by PCR and sequencing (data not shown). The chromo-
somal and plasmid sequences were submitted under accession numbers
CP013112.1 and KU254578–81, respectively.

Purification of FosA6 and FosAST258 and steady-state
kinetic assays
fosA6 and fosAST258 were synthesized by GenScript (Piscataway, NJ, USA)
and cloned into the pE-SUMOstar prokaryotic expression vector
(LifeSensors, Malvern, PA, USA) according to the manufacturer’s instruc-
tions. Fosfomycin-dependent glutathione conjugation was detected spec-
trophotometrically using monochlorobimane (Sigma–Aldrich). A standard
curve was prepared using 0 –750 mM glutathione. Data were fitted to
Michaelis–Menten equations using SigmaPlot (Systat Software, San Jose,
CA, USA). Details of the purification and kinetic assays are available as
Supplementary data at JAC Online.

Results and discussion

Antimicrobial susceptibility of E. coli YD786

E. coli YD786 was resistant to cephalosporins, aztreonam, fluoro-
quinolones and doxycycline and intermediate to minocycline
(Table S1). Notably, it showed high-level resistance to fosfomycin
with an MIC of 512 mg/L (susceptibility breakpoint, 64 mg/L).16

The MIC was reduced by 16-fold to 32 mg/L in the presence of
500 mg/L sodium phosphonoformate, which suggested the pres-
ence of FosA-group glutathione-S-transferase activity. However,
PCR was negative for fosA3, which is the most commonly
reported fosA gene in E. coli worldwide. Sequences of murA,
glpT and uhpT, the three genes commonly implicated in fosfomy-
cin resistance,5 were identical to those of fosfomycin-susceptible
reference strain ATCC 25922. In comparison, fosfomycin resist-
ance could not be reversed by sodium phosphonoformate in
the fosA-negative, fosfomycin-resistant control strain 55B8
(Table 1).

Cloning and sequencing of fosA6

Genomic cloning of the fosfomycin resistance determinant from
strain YD786 yielded E. coli TOP10 harbouring recombinant plas-
mid pYD786S14, which was highly resistant to fosfomycin with
an MIC of .1024 mg/L. Sequencing of pYD786S14 revealed an
815 bp insert, which shared 99% nucleotide identity with multiple
chromosomal sequences of K. pneumoniae, including those of the
epidemic carbapenem-resistant ST258 strains and K. pneumoniae
PMK1 (ST15, CP008929.1), which is an NDM-producing strain that
caused an outbreak of neonatal infections in a Nepali hospital.20

The insert contained a single 420 bp ORF encoding FosA, hereafter
referred to as FosA6 since it was located on a plasmid and shared
96% and 79% identity with FosA5 and FosA3 at the amino acid
level, respectively. BLAST searches identified FosA6 homologues
to be widely encoded on the chromosomes of K. pneumoniae
(�700 K. pneumoniae out of 800 Enterobacteriaceae sequences
found in GenBank; data not shown). The amino acid sequence
of FosA6 shared .99% identity with FosAPMK1 with one amino
acid substitution (Pro130Gln) and 98% identity with FosAST258 dif-
fering by only three amino acids (Val91Ile, Pro130Gln and
Glu138Asp; Table 1). FosAPMK1 is distributed in 84 K. pneumoniae
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strains, represented by 33 STs in different clonal complexes
(Table S2 and Figure S1), including reference strains MGH78578
(ST38, CP000647.1), NTUH-K2044 (ST23, AP006725.1) and an
NDM-producing strain reported from our hospital previously
(K. pneumoniae NDM01; ST14, CP006798.1).15 FosAST258 is identi-
fied in 427 K. pneumoniae strains (data not shown), of which 119
were assigned STs based on the MLST scheme (https://cge.cbs.dtu.
dk/services/MLST/), including 111 ST258 and 5 ST11 strains
(Table S3 and Figure S1). FosAST258 appears to be common in
the epidemic CC258 strains, including ST258, ST11 and ST512
among others, suggesting a wide distribution of closely related
homologues of FosA6 in this species (Table S3 and Figure S1).

Genome analysis of E. coli YD786 and transferability
of fosA6

E. coli YD786 had a genome of 4.9 Mb in length and belonged to
ST410. It contained typical quinolone resistance-determining region
substitutions Ser83Leu and Asp87Asn in GyrA and Ser80Ile in ParC.
The plasmids were assembled as 227 kb blaCTX-M-2-carrying IncHI2
plasmid pYD786-1, 69 kb fosA6-carrying IncFII plasmid pYD786-2,
45 kb IncX1 plasmid pYD786-3 and 26 kb IncX2 plasmid pYD786-4.

pYD786-2 carried fosA6 as well as an IncFII replicon region,
conjugative transfer operon (tra-trb), toxin/antitoxin addiction
system (hok-mok) and plasmid stability and partition system
(parB, parM). This overall structure was similar to blaNDM-1-
carrying plasmids pGUE-NDM (JQ364967.1) and pMC-NDM
(HG003695.1), identified in E. coli from India and Poland, respect-
ively,21,22 except that pYD786-2 contained only fosA6 and floR
(encoding chloramphenicol efflux protein) as resistance genes
(Figure S2).

pYD786-2, the native fosA6-carrying plasmid in YD786, was
transferable by transformation and broth mating. E. coli TOP10
(pYD786-2) had a fosfomycin MIC of 128 mg/L, which could be
explained by the presence of fosA6. E. coli TOP10 (pYD786-2)
was also resistant to chloramphenicol, but otherwise remained
susceptible to other classes of antimicrobial agents (Table S1).
The transconjugant had an identical resistance phenotype and
plasmid profile to the transformant (data not shown).

Genetic environments of fosA6

A transcriptional regulator gene lysR truncated by IS10R was
located upstream of fosA6 and an aminotransferase truncated
by IS26 was located downstream of fosA6 (Figure 1). This
1183 bp DlysR-fosA6-DyjiR_1 region was nearly identical to
those in K. pneumoniae MGH78578, PMK1 and KPPR1 (ST493,
CP009208.1) with only three or four nucleotide differences, sug-
gesting its mobilization from the chromosome of this species.
K. pneumoniae MGH78578 is also known as ATCC 700721 and
was isolated from the sputum of a 66-year-old ICU patient in
1994. KPPR1 is a rifampicin-resistant derivative of ATCC 43816
commonly used in animal studies.

This genetic context was very similar to that of fosA5, which
was discovered in plasmids pHKU1 (KC960485.1),11 pKP96
(EU195449.1)14 and pHS33 (KP143090.1).13 However, the DlysR
located upstream of fosA5 in these plasmids was shorter (143 ver-
sus 354 bp) than that upstream of fosA6 in pYD786-2 as a result of
more substantial truncation by IS10R. In addition, downstream of
fosA5 there was a gene of unknown function truncated by IS10R
in pHKU1 and pKP96 or by IS1R in pHS33. The IS10R-flanked
transposition unit bounded by direct repeats (DRs) in pHKU1 was
identical to that in pKP96 except that in pKP96 subsequent trans-
position of Tn1721 and ISEcp1B resulted in the acquisition of
blaCTX-M-24 (Figure 1). In contrast to these fosA5-containing plas-
mids, in pYD786-2, IS10R-DlysR-fosA6-DyjiR_1 interrupted IS26.
The 5′ end of IS26 truncated resA while the 3′ end truncated an
ORF of unknown function, a structure that, together with adjacent
stbAB, is observed in some non-fosA-carrying IncFII plasmids
(pEQ011, KF582523.1; pEC_B24, GU371926.1; p12-4374_62,
CP012928.1).

Overall, it appeared likely that fosA6 was mobilized from the
chromosome of K. pneumoniae closely related to PMK1 by IS10,
but in a separate mobilization event compared with fosA5, given
its distinct insertion site and mobilization onto an IncFII plasmid,
as opposed to IncN or IncA/C plasmid for fosA5, and also the geo-
graphical separation where fosA5 was found in China and Hong
Kong whereas fosA6 was identified in the USA.

Also of note is the fact that fosA6 is located on a plasmid
that only carries one other resistance gene, floR, encoding a

Table 1. MICs for E. coli clones carrying various fosA genes and K. pneumoniae clinical isolates with chromosomal fosA genes

Strain MIC of fosfomycin (mg/L)
MIC of fosfomycin in the
presence of PPF (mg/L)

Amino acid alteration compared with FosAPMK1

Ile91 Pro130 Asp138

E. coli TOP10 (pBCSK2) 0.38 0.50
E. coli TOP10 (pFosAPMK1) 16 0.75
E. coli TOP10 (pFosA6) 12 0.75 Gln
E. coli TOP10 (pFosAST37) 16 1 Val
E. coli TOP10 (pFosAST258) 12 0.75 Val Glu
K. pneumoniae NDM01(FosAPMK1) 24 4
K. pneumoniae CRKpE6 (FosAST37) 16 2 Val
K. pneumoniae CRKpC1(FosAST258) 24 1 Val Glu
E. coli 55B8 (fosA negative) .1024 .1024

MICs were determined by Etest. Sodium phosphonoformate (PPF) was added to Mueller–Hinton agar at 500 mg/L. The E. coli clones harbour fosA genes
carried on vector pBCSK2. E. coli 55B8 was included as a fosfomycin-resistant, fosA-negative control strain, which has a defective uhpT gene.
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chloramphenicol efflux pump. In contrast, fosA3 has so far been
identified exclusively on plasmids carrying a broad-spectrum
b-lactamase gene (CTX-M-group ESBL,8,10,23,24CMY-2-group plasmid-
mediated AmpC b-lactamase23,25 or KPC and NDM carbapene-
mases).24,25 However, the fact that fosA6 is located on a non-MDR
plasmid suggests that these emerging fosfomycin resistance
genes may have been overlooked. It is also possible that the
acquisition of fosA6 was a relatively recent event and fosA6 may
find other resistance genes as partners on the same plasmids in

the future. Nevertheless, K. pneumoniae serving as a ubiquitous
reservoir of fosA for E. coli is a concerning phenomenon given
the selective pressure exerted by increasing use of fosfomycin.

Functionality of FosA6 and FosAST258

The steady-state kinetic parameters for fosfomycin (Table 2) were
largely comparable for FosA6 and FosAST258, suggesting that the
three amino acid differences between these genes do not impact

Figure 1. Genetic environment of fosA6, fosA5 and the corresponding region on the chromosome of K. pneumoniae PMK1. Fragments between the
dotted lines share .99% identity. The predicted ORFs and ISs are indicated by bold arrows and annotated above or below, with arrowheads
indicating the direction of transcription. Putative DR sequences are given to indicate their boundaries. Paired filled/unfilled squares or circles
represent DRs of transposition units of transposons or ISs. K. pneumoniae PMK1, CP008929.1; pHKU1, KC960485.1; pKP96, EU195449.1; and pHS33,
KP143090.1.

Table 2. Steady-state kinetic parameters determined for FosA6 and FosAST258

Enzyme

Fosfomycina Glutathioneb

KM (mM)
Vmax

(mM. min21) kcat (min21)
kcat/KM

(mM21. min21) KM (mM)
Vmax

(mM. min21) kcat (min21)
kcat/KM

(mM21. min21)

FosA6 2.5+1.5 0.1+0.0 500.3+70.4 200.1 5.4+4.5 0.2+0.1 937.9+350.7 173.6
FosAST258 2.1+1.1 0.1+0.0 438.9+49.5 209.0 21.4+13.1 0.5+0.2 2018.2+948.2 94.3

aMeasured at 20 mM glutathione.
bMeasured at 20 mM fosfomycin.
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fosfomycin binding. In contrast, the catalytic efficiency for gluta-
thione for FosA6 was �2-fold higher than the value determined
for FosAST258, which was predominantly driven by a change in KM.

These kinetic data showed that FosAST258, the chromosomally
encoded FosA produced by the epidemic KPC-producing ST258
strains, is able to inactivate fosfomycin as robustly as FosA6.
Median fosfomycin MICs for KPC-producing K. pneumoniae strains
are 16–64 mg/L,26,27 which are substantially higher than those
for E. coli, which are typically in the 1–2 mg/L range.1,26 While
further studies are needed, these findings suggest that fosA prob-
ably contributes to the higher baseline fosfomycin MICs for
K. pneumoniae compared with E. coli that lacks chromosomal
fosA as a species.28,29 The functionality of various FosA enzymes
was also supported by reduction of fosfomycin MICs by 6- to
24-fold in the presence of sodium phosphonoformate for
fosA-positive K. pneumoniae strains as well as E. coli clones carry-
ing these fosA genes of K. pneumoniae origin (Table 1).

Sodium phosphonoformate behaves as a competitive inhibitor
of fosfomycin by binding to FosA in the active site including con-
served Thr9 and Mn(II).30 It has been successfully used as a diag-
nostic tool to detect production of FosA3, FosA4 and FosC217 and,
in our study, FosA6 and chromosomal FosA of K. pneumoniae. It is
worth noting that sodium phosphonoformate is approved for clin-
ical use in the treatment of herpes virus infections as the antiviral
compound foscarnet.

Conclusions

We report a novel glutathione-S-transferase FosA6 that confers
high-level fosfomycin resistance in an E. coli clinical strain identi-
fied in Pennsylvania, USA. The gene was probably mobilized from
K. pneumoniae chromosome to E. coli plasmid through an
IS10-mediated mobilization event. K. pneumoniae may serve as
a significant reservoir of fosfomycin resistance in E. coli as the
use of this agent increases.
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