Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jun 21;72(Pt 7):1009–1012. doi: 10.1107/S2056989016009701

Synthesis and crystal structure of [2,7,12-trimethyl-3,7,11,17-tetra­aza­bicyclo­[11.3.1]hepta­deca-1(17),13,15-triene-κ4 N]copper(II) bis­(perchlorate)

Edward Gabrielle V Hilvano a, Guang Yang b, Inno A Emnacen a, Elena V Rybak-Akimova b, Junie B Billones a, Maria Constancia O Carrillo a, Bruce C Noll c, Voltaire G Organo a,*
PMCID: PMC4992927  PMID: 27555952

A copper(II) complex of a pyridine-containing macrocycle (PyMAC) reveals a six-coordinated octa­hedral CuII complex with a tetra­dentate amino­pyridine macrocycle ligand surrounding the metal centre in a square-planar geometry. Two weakly bound perchlorate counter-ions occupy the axial sites above and below the macrocyclic plane.

Keywords: crystal structure, pyridine macrocycles, copper complex

Abstract

The title copper(II) complex of a pyridine-containing macrocycle (PyMAC), [Cu(C16H28N4)](ClO4)2, has been prepared. The crystal structure reveals the CuII atom to be octahedrally coordinated by a tetradentate aminopyridine macrocyclic ligand surrounding the metal cation in a square-planar geometry. Two weakly bound perchlorate counter-ions occupy the axial sites above and below the macrocyclic plane. The crystal studied was refined as a two-component pseudo-merohedral twin; the refined fractional contribution of the minor component is 38.77 (8)%

Chemical context  

There have been several studies of the macrocycles synthesized from 2,6-di­acetyl­pyridine and polyamines. One of the first examples, reported by Karn & Busch (1966), involved a nickel(II)-templated condensation of 2,6-di­acetyl­pyridine and bis­(3-amino­prop­yl)amine. Their pioneering work enabled subsequent syntheses of various pyridine-containing macrocycles (Rezaeivala & Keypour, 2014), including a family of complexes with appended arms (PyMACs) (Organo et al., 2009; Herrera et al., 2003) as shown in Fig. 1.

Figure 1.

Figure 1

Pyridine-containing macrocycles (PyMACs).

Various metal ions have been incorporated into PyMAC ligands, and the resulting complexes often showed inter­esting catalytic properties. For example, NiII–PyMAC complexes have been found to exhibit peroxidase-like activity, with NiLCOOH (Fig. 1) being most active (Organo et al., 2009). FeII–LMe (Fig. 1) was also found to have catalytic use in epoxidation reactions of cyclo­octene with hydrogen peroxide (Ye et al., 2012). A similar CuII–PyMAC complex but without methyl groups at the macrocyclic ring was reported by Fernandes et al. (2007) to scavenge superoxide.

Pyridine-containing metallomacrocycles have also found utility beyond synthetic chemistry. For example, Cu–macrocyclic complexes have become increasingly important in radiopharmaceutical applications as contrast agents in positron emission tomographic (PET) imaging (Boros et al., 2014).

While there are known Cu–pyridine macrocycles, only a few have been characterized structurally (Caira et al., 1975; Lindoy et al., 2001; Herrera et al., 2003; Autzen et al., 2003). Here, we report the synthesis and crystal structure of a CuII–PyMAC perchlorate compound.graphic file with name e-72-01009-scheme1.jpg

Structural commentary  

The title compound has the CuII atom in a distorted octahedral coordination, with the tetradentate amino­pyridine macro­cyclic ligand surrounding the metal atom in a square-planar geometry (Fig. 2). Two perchlorate counter-ions occupy the axial sites perpendicular to the macrocyclic plane. The macrocyclic ligand incorporates a 2,6-substituted pyridine unit that is connected on both sides to an aliphatic chain of 11 atoms, including two secondary amines and a tertiary amine bearing a methyl group. When coordinated to the CuII atom, the macrocycle exhibits approximate mol­ecular mirror symmetry with respect to the plane that bis­ects the pyridine and tertiary amine nitro­gen atoms, and is perpendicular to the macrocyclic plane. The Cu—N distances between CuII and secondary amine nitro­gen atoms [2.0417 (14) and 2.0445 (15) Å] are similar to each other; the distance between CuII and the tertiary amine N atom [2.0108 (13) Å] is slightly shorter. In contrast, the Cu—Npy bond length [1.9316 (13) Å] is much shorter than the Cu—Namine bonds. Both perchlorate anions are only weakly bound, with Cu—O6 and Cu—O3 distances of 2.6478 (13) and 2.4736 (13) Å, respectively.

Figure 2.

Figure 2

An ORTEP diagram of the mol­ecular structure of CuLMe(ClO4)2 [LMe = 2,7,12-trimethyl-3,7,11,17-tetra­aza­bicyclo­[11.3.1]hepta­deca-1(17),13,15-triene, see Fig. 1], showing the atom-labeling scheme, with ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

An intra­molecular contact (N4—H4⋯O5) occurs between a perchlorate O atom and the tertiary amine NH group. The N⋯O distance [3.423 (2) Å] is longer than the sum of van der Waals radii of the two atoms (2.94 Å), suggesting this is a weaker inter­action comparing to normal hydrogen-bonding interactions.

Supra­molecular features  

In the crystal of the complex (see Fig. 3), several N—H⋯O and Cpy—H⋯O hydrogen bonds have longer DA distances than the van der Waals radii of the corresponding pairs of atoms (3.25 Å for C⋯O). The resulting geometry is a chain along [010]. Numerical details are given in Table 1.

Figure 3.

Figure 3

Crystal packing of the title complex viewed approximately down the a axis. Hydrogen atoms, except those involved in hydrogen bonds, are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O7i 0.83 (2) 2.94 (2) 3.536 (2) 130.6 (18)
N4—H4⋯O4ii 0.86 (2) 2.45 (2) 3.1619 (19) 140.2 (18)
N4—H4⋯O5 0.86 (2) 2.77 (2) 3.423 (2) 134.1 (17)
C2—H2A⋯O5iii 0.93 2.70 3.587 (2) 161
C3—H3⋯O1iv 0.93 2.68 3.585 (2) 165
C4—H4A⋯O1v 0.93 2.64 3.518 (2) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Synthesis and crystallization  

The procedure for the synthesis of the title compound was adapted from Karn & Busch (1966) with subsequent reduction using NaBH4. 10 mmol of 2,6-di­acetyl­pyridine were dissolved in 160 ml of absolute ethanol, and the resulting solution was mixed with 10 mmol of Cu(ClO4)2·6H2O in 240 ml of water. The reaction mixture was heated to 338 K and 10 mmol of N,N-bis­(3-amino­prop­yl)methyl­amine were added. Subsequently, glacial acetic acid was added to the mixture until the pH was about 4. The mixture was heated to reflux of the solvent for 12 h; a color change from blue to dark blue occurred during that period. After reflux, the mixture was cooled to room temperature and 40 mmol of NaBH4 were added. The mixture was left to stir for 12 h for complete reduction. Perchloric acid was added until the remaining NaBH4 was consumed.

The deep-blue solution was concentrated to about a tenth of its original volume by rotary evaporation. The solution was then cooled slowly to room temperature and refrigerated. Dark-purple needle-like crystals formed upon cooling. The crystals were filtered, washed with absolute ethanol and diethyl ether, and allowed to dry. Light-purple crystals were recrystallized from hot water. Single crystals were obtained by dissolving the compound in aceto­nitrile followed by slow ether diffusion.

UV–Vis data: λmax = 552 nm in methanol, molar extinction coefficient: 209.47 M −1·cm−1. IR: 1619 cm−1 (C=N of pyridine), 1113 and 600 cm−1 (ClO4 bands) and 3400 cm−1 (N—H).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal structure was refined as a two-component pseudo-merohedral twin (twin operation: Inline graphic00, 0Inline graphic0, 001); the refined fractional contribution of the minor component is 38.77 (8)%. All H atoms bonded to C atoms were placed at calculated positions using a riding model, with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3, and 0.93 Å for aromatic CH, and with U iso(H) = 1.2U eq(C) for all but CH3 where U iso(H) = 1.5U eq(C). H2 and H4 connected to N2 and N4 were located in the difference density Fourier synthesis maps and refined freely.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C16H28N4)](ClO4)2
M r 538.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.6918 (12), 12.0588 (16), 20.068 (3)
β (°) 90.153 (3)
V3) 2103.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.35
Crystal size (mm) 0.24 × 0.21 × 0.21
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (Krause et al., 2015)
T min, T max 0.414, 0.454
No. of measured, independent and observed [I > 2σ(I)] reflections 36478, 5284, 5054
R int 0.030
(sin θ/λ)max−1) 0.687
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.062, 1.06
No. of reflections 5284
No. of parameters 292
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016009701/zl2666sup1.cif

e-72-01009-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009701/zl2666Isup2.hkl

e-72-01009-Isup2.hkl (289.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009701/zl2666sup3.tif

CCDC reference: 1485717

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the National Science Foundation (CHE14129090 and CHE1229426) and the UP System Emerging Interdisciplinary Research Program (OVPAA-EIDR 12-001-121102) is greatly acknowledged.

supplementary crystallographic information

Crystal data

[Cu(C16H28N4)](ClO4)2 F(000) = 1116
Mr = 538.86 Dx = 1.702 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.6918 (12) Å Cell parameters from 9732 reflections
b = 12.0588 (16) Å θ = 2.9–30.6°
c = 20.068 (3) Å µ = 1.35 mm1
β = 90.153 (3)° T = 100 K
V = 2103.4 (5) Å3 Clear dark blue cube, clear dark blue
Z = 4 0.24 × 0.21 × 0.21 mm

Data collection

Bruker D8 QUEST diffractometer 5284 independent reflections
Radiation source: sealed tube 5054 reflections with I > 2σ(I)
Detector resolution: 1.024 pixels mm-1 Rint = 0.030
φ and ω scans θmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan (Krause et al., 2015) h = −11→11
Tmin = 0.414, Tmax = 0.454 k = −16→16
36478 measured reflections l = −27→27

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.027P)2 + 0.369P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
5284 reflections Δρmax = 0.50 e Å3
292 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.19755 (3) 0.24103 (2) 0.38162 (2) 0.01124 (5)
N1 0.00263 (15) 0.31793 (10) 0.38014 (7) 0.0121 (2)
N2 0.14981 (17) 0.22614 (12) 0.48078 (7) 0.0131 (3)
H2 0.131 (3) 0.1590 (18) 0.4820 (11) 0.016 (5)*
N3 0.40687 (15) 0.17015 (10) 0.38456 (7) 0.0133 (2)
N4 0.16917 (17) 0.24951 (11) 0.28059 (7) 0.0133 (3)
H4 0.126 (2) 0.1870 (18) 0.2721 (10) 0.014 (5)*
C1 −0.05040 (19) 0.35796 (13) 0.32233 (8) 0.0132 (3)
C2 −0.1787 (2) 0.42658 (14) 0.32010 (8) 0.0158 (3)
H2A −0.2162 0.4538 0.2799 0.019*
C3 −0.24897 (18) 0.45302 (14) 0.37997 (9) 0.0169 (3)
H3 −0.3339 0.4999 0.3803 0.020*
C4 −0.1932 (2) 0.40991 (13) 0.43957 (8) 0.0160 (3)
H4A −0.2407 0.4268 0.4798 0.019*
C5 −0.06452 (19) 0.34082 (13) 0.43793 (8) 0.0126 (3)
C6 0.00692 (19) 0.28859 (13) 0.49932 (8) 0.0135 (3)
H6 0.0363 0.3483 0.5299 0.016*
C7 −0.1071 (2) 0.21384 (15) 0.53495 (9) 0.0191 (3)
H7A −0.1304 0.1510 0.5073 0.029*
H7B −0.1998 0.2544 0.5438 0.029*
H7C −0.0630 0.1888 0.5762 0.029*
C8 0.2787 (2) 0.24911 (14) 0.52748 (9) 0.0162 (4)
H8A 0.2451 0.2360 0.5728 0.019*
H8B 0.3086 0.3264 0.5238 0.019*
C9 0.4161 (2) 0.17602 (15) 0.51239 (8) 0.0186 (3)
H9A 0.3824 0.0993 0.5121 0.022*
H9B 0.4906 0.1842 0.5481 0.022*
C10 0.4954 (2) 0.20050 (14) 0.44663 (8) 0.0159 (3)
H10A 0.5183 0.2792 0.4450 0.019*
H10B 0.5927 0.1611 0.4460 0.019*
C11 0.3963 (2) 0.04734 (13) 0.38084 (10) 0.0193 (3)
H11A 0.3423 0.0199 0.4191 0.029*
H11B 0.4979 0.0162 0.3799 0.029*
H11C 0.3418 0.0265 0.3411 0.029*
C12 0.5038 (2) 0.21068 (15) 0.32814 (9) 0.0174 (3)
H12A 0.6037 0.1750 0.3311 0.021*
H12B 0.5200 0.2897 0.3337 0.021*
C13 0.4389 (2) 0.19068 (15) 0.25850 (9) 0.0177 (3)
H13A 0.5213 0.1989 0.2264 0.021*
H13B 0.4023 0.1148 0.2558 0.021*
C14 0.3084 (2) 0.26795 (13) 0.23923 (8) 0.0164 (3)
H14A 0.3422 0.3441 0.2444 0.020*
H14B 0.2825 0.2564 0.1927 0.020*
C15 0.04536 (19) 0.33025 (14) 0.26215 (8) 0.0142 (3)
H15 0.0967 0.3989 0.2484 0.017*
C16 −0.0511 (2) 0.29131 (16) 0.20309 (8) 0.0216 (4)
H16A 0.0151 0.2758 0.1660 0.032*
H16B −0.1229 0.3483 0.1909 0.032*
H16C −0.1061 0.2253 0.2151 0.032*
Cl1 0.31018 (5) 0.52884 (3) 0.37452 (2) 0.01419 (7)
O1 0.40486 (16) 0.60559 (10) 0.41159 (6) 0.0200 (2)
O2 0.15073 (13) 0.55835 (10) 0.38070 (7) 0.0214 (2)
O3 0.33372 (15) 0.41828 (10) 0.40105 (7) 0.0221 (3)
O4 0.35382 (17) 0.53023 (11) 0.30525 (6) 0.0254 (3)
Cl2 −0.09242 (5) 0.01135 (3) 0.35753 (2) 0.01541 (8)
O5 −0.14975 (19) 0.09033 (13) 0.30953 (8) 0.0323 (4)
O6 0.05744 (15) 0.04607 (11) 0.38012 (8) 0.0289 (3)
O7 −0.1936 (2) 0.00640 (14) 0.41356 (8) 0.0373 (4)
O8 −0.08306 (17) −0.09626 (11) 0.32766 (7) 0.0249 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01167 (8) 0.01105 (8) 0.01101 (8) 0.00167 (6) −0.00066 (9) 0.00045 (6)
N1 0.0128 (6) 0.0102 (5) 0.0133 (6) −0.0014 (4) 0.0012 (5) 0.0002 (5)
N2 0.0142 (6) 0.0122 (6) 0.0130 (6) 0.0025 (5) −0.0011 (5) −0.0005 (5)
N3 0.0126 (6) 0.0100 (5) 0.0173 (6) −0.0007 (5) −0.0024 (5) −0.0011 (5)
N4 0.0152 (8) 0.0105 (6) 0.0144 (6) 0.0008 (5) 0.0011 (5) 0.0002 (4)
C1 0.0128 (7) 0.0127 (7) 0.0141 (7) −0.0009 (5) −0.0001 (6) −0.0001 (6)
C2 0.0154 (8) 0.0162 (7) 0.0156 (7) 0.0016 (6) −0.0027 (6) 0.0016 (6)
C3 0.0140 (6) 0.0167 (7) 0.0201 (7) 0.0034 (5) 0.0009 (6) 0.0001 (7)
C4 0.0144 (7) 0.0185 (7) 0.0151 (7) 0.0023 (6) 0.0018 (6) −0.0011 (6)
C5 0.0136 (7) 0.0123 (7) 0.0121 (7) −0.0014 (6) −0.0006 (5) 0.0005 (5)
C6 0.0151 (8) 0.0129 (7) 0.0124 (7) 0.0017 (6) 0.0004 (6) 0.0001 (6)
C7 0.0206 (8) 0.0182 (8) 0.0185 (8) 0.0021 (7) 0.0052 (7) 0.0038 (6)
C8 0.0149 (10) 0.0211 (8) 0.0126 (7) −0.0006 (6) −0.0029 (6) 0.0000 (6)
C9 0.0173 (8) 0.0214 (8) 0.0170 (8) 0.0015 (7) −0.0028 (6) 0.0033 (6)
C10 0.0136 (7) 0.0173 (8) 0.0167 (7) 0.0000 (6) −0.0031 (6) 0.0001 (6)
C11 0.0196 (7) 0.0119 (7) 0.0264 (8) 0.0012 (6) −0.0035 (7) −0.0011 (7)
C12 0.0131 (8) 0.0208 (8) 0.0182 (8) −0.0005 (6) 0.0011 (6) −0.0015 (6)
C13 0.0167 (8) 0.0188 (8) 0.0176 (8) 0.0026 (6) 0.0034 (6) −0.0024 (6)
C14 0.0171 (8) 0.0175 (7) 0.0147 (7) −0.0001 (7) 0.0037 (7) −0.0007 (5)
C15 0.0162 (8) 0.0142 (7) 0.0122 (7) 0.0033 (6) 0.0014 (6) 0.0020 (5)
C16 0.0247 (9) 0.0277 (9) 0.0124 (7) 0.0078 (7) −0.0030 (6) 0.0000 (7)
Cl1 0.01690 (16) 0.01039 (15) 0.01528 (15) −0.00062 (12) 0.00114 (15) −0.00024 (12)
O1 0.0203 (6) 0.0171 (6) 0.0225 (6) −0.0045 (5) −0.0008 (5) −0.0051 (5)
O2 0.0157 (5) 0.0206 (6) 0.0280 (6) 0.0019 (4) −0.0006 (5) 0.0012 (5)
O3 0.0252 (7) 0.0109 (5) 0.0303 (6) −0.0007 (5) −0.0027 (5) 0.0048 (5)
O4 0.0359 (8) 0.0230 (7) 0.0175 (6) 0.0010 (6) 0.0083 (5) −0.0005 (5)
Cl2 0.01338 (16) 0.01372 (16) 0.01913 (17) −0.00071 (13) 0.00050 (15) −0.00212 (13)
O5 0.0370 (9) 0.0249 (7) 0.0349 (8) 0.0108 (6) −0.0117 (6) 0.0023 (6)
O6 0.0200 (6) 0.0197 (6) 0.0470 (8) −0.0074 (5) −0.0096 (7) 0.0012 (6)
O7 0.0401 (9) 0.0351 (8) 0.0368 (8) −0.0028 (7) 0.0230 (8) −0.0050 (6)
O8 0.0283 (7) 0.0176 (6) 0.0287 (7) 0.0024 (5) −0.0031 (6) −0.0091 (5)

Geometric parameters (Å, º)

Cu1—N1 1.9316 (13) C8—H8B 0.9700
Cu1—N2 2.0417 (14) C8—C9 1.515 (3)
Cu1—N3 2.0108 (13) C9—H9A 0.9700
Cu1—N4 2.0444 (15) C9—H9B 0.9700
Cu1—O3 2.4736 (13) C9—C10 1.519 (2)
Cu1—O6 2.6478 (13) C10—H10A 0.9700
N1—C1 1.337 (2) C10—H10B 0.9700
N1—C5 1.329 (2) C11—H11A 0.9600
N2—H2 0.83 (2) C11—H11B 0.9600
N2—C6 1.500 (2) C11—H11C 0.9600
N2—C8 1.485 (2) C12—H12A 0.9700
N3—C10 1.507 (2) C12—H12B 0.9700
N3—C11 1.4857 (19) C12—C13 1.525 (2)
N3—C12 1.496 (2) C13—H13A 0.9700
N4—H4 0.86 (2) C13—H13B 0.9700
N4—C14 1.486 (2) C13—C14 1.517 (3)
N4—C15 1.497 (2) C14—H14A 0.9700
C1—C2 1.389 (2) C14—H14B 0.9700
C1—C15 1.506 (2) C15—H15 0.9800
C2—H2A 0.9300 C15—C16 1.524 (2)
C2—C3 1.386 (2) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C3—C4 1.390 (2) C16—H16C 0.9600
C4—H4A 0.9300 Cl1—O1 1.4436 (13)
C4—C5 1.395 (2) Cl1—O2 1.4365 (12)
C5—C6 1.515 (2) Cl1—O3 1.4498 (12)
C6—H6 0.9800 Cl1—O4 1.4421 (13)
C6—C7 1.520 (2) Cl2—O5 1.4423 (15)
C7—H7A 0.9600 Cl2—O6 1.4403 (13)
C7—H7B 0.9600 Cl2—O7 1.4308 (15)
C7—H7C 0.9600 Cl2—O8 1.4317 (13)
C8—H8A 0.9700
N1—Cu1—N2 82.92 (6) H8A—C8—H8B 108.0
N1—Cu1—N3 176.39 (5) C9—C8—H8A 109.4
N1—Cu1—N4 81.79 (6) C9—C8—H8B 109.4
N1—Cu1—O3 90.40 (5) C8—C9—H9A 108.6
N1—Cu1—O6 91.30 (5) C8—C9—H9B 108.6
N2—Cu1—N4 161.21 (6) C8—C9—C10 114.84 (14)
N2—Cu1—O3 91.20 (5) H9A—C9—H9B 107.5
N2—Cu1—O6 80.69 (6) C10—C9—H9A 108.6
N3—Cu1—N2 96.91 (6) C10—C9—H9B 108.6
N3—Cu1—N4 99.04 (6) N3—C10—C9 116.03 (14)
N3—Cu1—O3 86.00 (5) N3—C10—H10A 108.3
N3—Cu1—O6 92.23 (5) N3—C10—H10B 108.3
N4—Cu1—O3 99.76 (5) C9—C10—H10A 108.3
N4—Cu1—O6 88.79 (5) C9—C10—H10B 108.3
O3—Cu1—O6 171.44 (5) H10A—C10—H10B 107.4
C1—N1—Cu1 119.14 (11) N3—C11—H11A 109.5
C5—N1—Cu1 118.27 (11) N3—C11—H11B 109.5
C5—N1—C1 122.07 (14) N3—C11—H11C 109.5
Cu1—N2—H2 99.0 (15) H11A—C11—H11B 109.5
C6—N2—Cu1 111.60 (10) H11A—C11—H11C 109.5
C6—N2—H2 108.8 (16) H11B—C11—H11C 109.5
C8—N2—Cu1 116.33 (11) N3—C12—H12A 108.3
C8—N2—H2 108.1 (15) N3—C12—H12B 108.3
C8—N2—C6 111.95 (13) N3—C12—C13 115.72 (14)
C10—N3—Cu1 112.38 (10) H12A—C12—H12B 107.4
C11—N3—Cu1 111.48 (10) C13—C12—H12A 108.3
C11—N3—C10 108.37 (13) C13—C12—H12B 108.3
C11—N3—C12 108.83 (13) C12—C13—H13A 108.7
C12—N3—Cu1 110.52 (10) C12—C13—H13B 108.7
C12—N3—C10 105.00 (12) H13A—C13—H13B 107.6
Cu1—N4—H4 101.8 (14) C14—C13—C12 114.27 (14)
C14—N4—Cu1 117.72 (11) C14—C13—H13A 108.7
C14—N4—H4 112.3 (14) C14—C13—H13B 108.7
C14—N4—C15 110.53 (13) N4—C14—C13 112.03 (13)
C15—N4—Cu1 111.25 (10) N4—C14—H14A 109.2
C15—N4—H4 101.8 (14) N4—C14—H14B 109.2
N1—C1—C2 121.18 (15) C13—C14—H14A 109.2
N1—C1—C15 115.19 (14) C13—C14—H14B 109.2
C2—C1—C15 123.48 (14) H14A—C14—H14B 107.9
C1—C2—H2A 121.2 N4—C15—C1 110.16 (13)
C3—C2—C1 117.68 (15) N4—C15—H15 106.9
C3—C2—H2A 121.2 N4—C15—C16 112.66 (14)
C2—C3—H3 119.8 C1—C15—H15 106.9
C2—C3—C4 120.40 (15) C1—C15—C16 112.84 (14)
C4—C3—H3 119.8 C16—C15—H15 106.9
C3—C4—H4A 120.6 C15—C16—H16A 109.5
C3—C4—C5 118.75 (15) C15—C16—H16B 109.5
C5—C4—H4A 120.6 C15—C16—H16C 109.5
N1—C5—C4 119.91 (14) H16A—C16—H16B 109.5
N1—C5—C6 116.31 (14) H16A—C16—H16C 109.5
C4—C5—C6 123.77 (15) H16B—C16—H16C 109.5
N2—C6—C5 110.17 (13) O1—Cl1—O3 108.70 (8)
N2—C6—H6 108.1 O2—Cl1—O1 110.21 (8)
N2—C6—C7 111.11 (13) O2—Cl1—O3 109.36 (8)
C5—C6—H6 108.1 O2—Cl1—O4 109.67 (9)
C5—C6—C7 111.28 (14) O4—Cl1—O1 109.77 (8)
C7—C6—H6 108.1 O4—Cl1—O3 109.11 (8)
C6—C7—H7A 109.5 Cl1—O3—Cu1 132.04 (8)
C6—C7—H7B 109.5 O6—Cl2—O5 109.19 (9)
C6—C7—H7C 109.5 O7—Cl2—O5 109.90 (10)
H7A—C7—H7B 109.5 O7—Cl2—O6 108.79 (11)
H7A—C7—H7C 109.5 O7—Cl2—O8 109.08 (9)
H7B—C7—H7C 109.5 O8—Cl2—O5 109.81 (9)
N2—C8—H8A 109.4 O8—Cl2—O6 110.05 (9)
N2—C8—H8B 109.4 Cl2—O6—Cu1 132.63 (8)
N2—C8—C9 111.04 (14)
Cu1—N1—C1—C2 −171.12 (12) C3—C4—C5—N1 0.4 (2)
Cu1—N1—C1—C15 4.49 (19) C3—C4—C5—C6 −179.88 (15)
Cu1—N1—C5—C4 170.68 (12) C4—C5—C6—N2 −175.87 (15)
Cu1—N1—C5—C6 −9.09 (18) C4—C5—C6—C7 60.4 (2)
Cu1—N2—C6—C5 2.44 (16) C5—N1—C1—C2 0.5 (2)
Cu1—N2—C6—C7 126.24 (12) C5—N1—C1—C15 176.06 (14)
Cu1—N2—C8—C9 −56.21 (16) C6—N2—C8—C9 173.83 (13)
Cu1—N3—C10—C9 55.43 (16) C8—N2—C6—C5 134.81 (14)
Cu1—N3—C12—C13 −58.20 (16) C8—N2—C6—C7 −101.40 (16)
Cu1—N4—C14—C13 48.28 (16) C8—C9—C10—N3 −70.04 (19)
Cu1—N4—C15—C1 −15.39 (16) C10—N3—C12—C13 −179.61 (15)
Cu1—N4—C15—C16 −142.35 (12) C11—N3—C10—C9 −68.21 (18)
N1—C1—C2—C3 0.6 (2) C11—N3—C12—C13 64.54 (18)
N1—C1—C15—N4 7.8 (2) C12—N3—C10—C9 175.62 (15)
N1—C1—C15—C16 134.62 (15) C12—C13—C14—N4 −66.11 (19)
N1—C5—C6—N2 3.89 (19) C14—N4—C15—C1 −148.11 (14)
N1—C5—C6—C7 −119.80 (16) C14—N4—C15—C16 84.93 (17)
N2—C8—C9—C10 67.86 (19) C15—N4—C14—C13 177.62 (13)
N3—C12—C13—C14 75.39 (19) C15—C1—C2—C3 −174.60 (15)
C1—N1—C5—C4 −1.0 (2) O1—Cl1—O3—Cu1 169.81 (9)
C1—N1—C5—C6 179.27 (14) O2—Cl1—O3—Cu1 49.44 (13)
C1—C2—C3—C4 −1.2 (2) O4—Cl1—O3—Cu1 −70.51 (12)
C2—C1—C15—N4 −176.75 (15) O5—Cl2—O6—Cu1 22.21 (15)
C2—C1—C15—C16 −49.9 (2) O7—Cl2—O6—Cu1 −97.73 (14)
C2—C3—C4—C5 0.7 (3) O8—Cl2—O6—Cu1 142.81 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O7i 0.83 (2) 2.94 (2) 3.536 (2) 130.6 (18)
N4—H4···O4ii 0.86 (2) 2.45 (2) 3.1619 (19) 140.2 (18)
N4—H4···O5 0.86 (2) 2.77 (2) 3.423 (2) 134.1 (17)
C2—H2A···O5iii 0.93 2.70 3.587 (2) 161
C3—H3···O1iv 0.93 2.68 3.585 (2) 165
C4—H4A···O1v 0.93 2.64 3.518 (2) 158

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x, −y+1, −z+1.

References

  1. Autzen, S., Korth, H.-G., Boese, R., Groot, H. & Sustmann, R. (2003). Eur. J. Inorg. Chem. pp. 1401–1410.
  2. Boros, E., Rybak-Akimova, E., Holland, J. P., Rietz, T., Rotile, N., Blasi, F., Day, H., Latifi, R. & Caravan, P. (2014). Mol. Pharm. 11, 617–629. [DOI] [PMC free article] [PubMed]
  3. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caira, M. R., Nassimbeni, L. R. & Wooley, P. R. (1975). Acta Cryst. B31, 1334–1338.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Fernandes, A. S., Gaspar, J., Cabral, M. F., Caneiras, C., Guedes, R., Rueff, J., Castro, M., Costa, J. & Oliveira, N. G. (2007). J. Inorg. Biochem. 101, 849–858. [DOI] [PubMed]
  7. Herrera, A. M., Kalayda, G. V., Disch, J. S., Wikstrom, J. P., Korendovych, I. V., Staples, R. J., Campana, C. F., Nazarenko, A. Y., Haas, T. E. & Rybak-Akimova, E. V. (2003). Dalton Trans. pp. 4482–4492.
  8. Karn, J. L. & Busch, D. H. (1966). Nature, 211, 160–162.
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Lindoy, L. F., Rambusch, T., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 1857–1862.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Organo, V. G., Filatov, A. S., Quartararo, J. S., Friedman, Z. M. & Rybak-Akimova, E. V. (2009). Inorg. Chem. 48, 8456–8468. [DOI] [PubMed]
  13. Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Ye, W., Staples, R. J. & Rybak-Akimova, E. V. (2012). J. Inorg. Biochem. 115, 1–12. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016009701/zl2666sup1.cif

e-72-01009-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016009701/zl2666Isup2.hkl

e-72-01009-Isup2.hkl (289.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016009701/zl2666sup3.tif

CCDC reference: 1485717

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES